• Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Coventry University Featured Masters Courses
University of Manchester Featured Masters Courses
Imperial College London Featured Masters Courses
Swansea University Featured Masters Courses
"chemical" AND "engineeri…×
0 miles

Masters Degrees (Chemical Engineering)

We have 473 Masters Degrees (Chemical Engineering)

  • "chemical" AND "engineering" ×
  • clear all
Showing 1 to 15 of 473
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology

Entrepreneurship for Engineers

Colloid and Interface Science

Communication Skills for Research Engineers

Water and Wastewater Engineering

Membrane Technology

Environmental Analysis and Legislation

Optimisation

Desalination

Polymers: Properties and Design

Principles of Nanomedicine

Nanoscale Structures and Devices

Pollutant Transport by Groundwater Flows

MSc Research Practice

MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation

Biochemical engineering

Biomanufacturing

Engineering applications of nanotechnology

Bioengineering, biomedical engineering

Cell and tissue engineering

Colloid science and engineering

Desalination

Pharmaceutical engineering

Polymer engineering

Rheology

Separation processes

Transport processes

Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.



Read less
Chemical Engineering is key in addressing global challenges relating to sustainable supply of clean energy, food and water, through the production of chemicals, functionalised products and fuels. Read more

Chemical Engineering is key in addressing global challenges relating to sustainable supply of clean energy, food and water, through the production of chemicals, functionalised products and fuels. The MSc in Advanced Chemical Engineering provides technical and management training that employers increasingly demand from chemical engineers. The programme offers a general Chemical Engineering option, which covers core chemical engineering subjects and a range of specialised optional modules; and a Biorefining option (formerly the Biofuels Process Engineering MSc), which provides advanced understanding of the production of bioenergy and biofuels while strengthening the knowledge on chemical engineering discipline.

Who is it for?

The course is suitable for engineering and applied science graduates who wish to embark on successful careers as chemical engineering professionals.

Our general Chemical Engineering route equips you with diversified skills in advanced engineering, which includes theoretical and practical elements in operation, design, and control of a wide range of chemical processes. The Biorefining route (formerly the Biofuels Process Engineering MSc) equips you with fundamental understanding of chemical engineering and solid skills to address the challenges of the rapidly growing and dynamic bioenergy sector. This option covers the sustainable production of heat, power and fuels from biomass within the biorefining framework. Both routes include training in management applied to the energy sector which enables engineers to effectively fulfil a wider role in a business organisation.

Why this course?

Chemical engineering is a continuously evolving discipline linked to a variety of industries. Chemical engineers lead the design of large-scale facilities in the chemical, petrochemical, and industrial biotechnology sectors.

A distinguished feature of this course is that it is not directed exclusively at chemical engineering graduates. This MSc will provide you with the training and knowledge skill set that employers actively seek in a desirable engineering graduate. We recognise the importance of an interdisciplinary approach; as such the core and optional modules and course contents have been carefully developed to meet the engineering skill shortage currently faced within industry. In particular, no other university in the UK offers a MSc in Advanced Chemical Engineering with a dedicated option in Biorefining. You will develop the professional profile required by the growing biobased sector (more than 480,000 jobs and annual turnover of about €50 million only in the European Union), with a high level of skills' transferability across the chemical and energy sectors.

Cranfield is an exclusively postgraduate university with distinctive expertise in technology and management. There are also numerous benefits associated with undertaking a postgraduate programme of study in here. These include:

  • Teaching activities involving bespoke pilot plant facilities
  • Undertaking projects in consultation with industry, government and its agencies, local authorities and consultants
  • Lecturing from leading academics and industrial practitioners
  • Dedicated support for off-campus learners including extensive information resources managed by our library.
  • Very well located for part-time students which enables students from all over the world to complete their qualification whilst balancing work/life commitments.
  • A Career Development Service, which is an accredited member of the Association of Graduate Careers Advisory Services (AGCAS) and provides a personalised service to Cranfield students and alumni, working to enhance careers and increase opportunities. 

Course details

The taught programme is delivered from October to February and is comprised of eight modules. The modules are delivered over one week of intensive delivery with the later part of the module being free from structured teaching to allow time for more independent learning and reflection. Students on the part-time programme will complete all of the modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The Group Project, undertaken between February and April, enables you to put the skills and knowledge developed during the course modules into practice in an applied context, while gaining transferable skills in project management, teamwork and independent research. Projects are often supported by industry and potential future employers value this experience. The group project is normally multidisciplinary and shared across the Energy MSc programme, giving the added benefit of working with students with other backgrounds.

Each group is given an industrially relevant problem to solve. During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. At the end of the project, all groups submit a written report and deliver a poster presentation to industry partners. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Part-time students are encouraged to participate in a Group Project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows students to investigate deeper into an area of specific interest. It is very common for industrial partners to put forward real world problems or areas of development as potential research project topics. The individual research project component takes place between May and September.

If agreed with the Course Director, part-time students have the opportunity to undertake projects in collaboration with their place of work, which would be supported by academic supervision.

Individual research projects undertaken may involve feasibility assessments, reviews, practical evaluations, designs, simulations, and experimental investigations.

Assessment

Taught Modules 40%, Group Project 20%, Individual Research Project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment by companies competing in a range of industries, including chemicals, petrochemicals, biochemicals, conventional energy and bioenergy, food, materials, consultancy and management.

Those wishing to continue their education via PhD or MBA studies in the chemical or energy sectors will be greatly facilitated by the interdisciplinary, project-oriented profile that they will have acquired through this course.



Read less
This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field. Read more

This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field.

The programme will develop from fundamental topics, including modern approaches to understanding properties of the systems on a molecular scale and advanced numerical methods, to the actual processes, with a particular emphasis on energy efficiency, to the summer dissertation projects where the acquired skills in various areas are put into practice, in application to actual chemical engineering problems.

Programme structure

The programme develops from compulsory courses, emphasizing modern computational techniques and research methods, to a range of options. It is complemented by a strong management and economics component.

Compulsory Courses

  • Numerical Methods for Chemical Engineers
  • Molecular Thermodynamics
  • Introduction to Research Methods

In addition to the compulsory courses you will take a range of optional courses, please review the "Degree Structure" portion the MSc website listed below to find further information on available courses and course descriptions:

Learning outcomes

  • A working knowledge of modern modelling and simulation approaches to understanding properties of chemical systems at a molecular level.
  • A working knowledge of advanced experimental techniques, such as for example particle image velocimetry, spectroscopy and infra-red thermography, as applied in engineering research and development.
  • Ability to transform a chemical engineering problem into a mathematical representation; broad understanding of the available numerical tools and methods to solve the problem; appreciation of their scope and limitations.
  • An understanding of the basic design approaches to advanced energy efficient separation processes.
  • Ability to transfer and operate engineering principles in application to other fields, such as biology.
  • Proficiency in using modern chemical engineering software, from molecular visualisation to computational fluid dynamics to process engineering.

On completion of the research dissertation, the students will be able to:

  • Plan and execute a significant research project
  • Apply a range of standard and specialised research instruments and techniques of enquiry
  • Identify, conceptualise and define new and abstract problems and issues
  • Develop original and creative responses to problems and issues
  • Critically review, consolidate and extend knowledge, skills practices and thinking in chemical engineering
  • Communicate their research findings, using appropriate methods, to a range of audiences with different levels of knowledge and expertise
  • Place their research in the context of the current societal needs and industrial practice
  • Adhere to rigorous research ethics rules
  • Exercise substantial autonomy and initiative in research activities
  • Take responsibility for independent work
  • Communicate with the public, peers, more senior colleagues and specialists
  • Use a wide range of software to support and present research plans and findings

Career opportunities

Our graduates enjoy diverse career opportunities in oil and gas, pharmaceutical, food and drink, consumer products, banking and consulting industries. Examples of the recent employers of our graduates include BP, P&G, Mondelēz International, Doosan Babcock, Atkins, Safetec, Xodus Group, Diageo, Wood Group, GSK, Gilead Sciences, ExxonMobil, Jacobs, Halliburton, Cavendish Nuclear to name a few. This wide range of potential employers means that our graduates are exceptionally well placed to find rewarding and lucrative careers. According to the Complete University Guide, the chemical engineering programme at the University of Edinburgh is ranked one of the top in the UK in terms of graduates prospects.

Find our more about career opportunities:

The MSc in Advanced Chemical Engineering may also lead to further studies in a PhD programme. With the 94% of our research activity rated as world leading or internationally excellent (according to the most recent Research Excellence Framework 2014), Edinburgh is the UK powerhouse in Engineering. As an MSc student at Edinburgh you will be immersed in a research intensive, multidisciplinary environment and you will have plenty of opportunities to interact with PhD, MSc students and staff from other programmes, institutes and schools.

Find out more about our research:



Read less
Our Chemical Engineering MSc will equip you with a multidisciplinary knowledge of chemical engineering in areas such as fuel cells, control, intensification and sustainability. Read more

Our Chemical Engineering MSc will equip you with a multidisciplinary knowledge of chemical engineering in areas such as fuel cells, control, intensification and sustainability. It is intended for honours graduates with a chemical engineering degree who wish to advance their knowledge in the chemical and process engineering design.

The course meets the industry’s growing need for chemical engineers and provides an understanding of theory and its application in an economic and environmentally suitable way. It gives scientists and engineers the opportunity to work with researchers in the fields of new energy technologies and new advanced materials.

You will gain specialist knowledge and understanding via lectures, seminars and personal supervision. You will develop an understanding of:

  • chemical processes
  • model based approaches to process control and measurement
  • process intensification and modelling 
  • latest research developments in chemical engineering

The course is delivered by the School of Chemical Engineering and Advanced Materials. Hear first-hand from our students about studying with us in our postgraduate video.

Accreditation:

We are seeking Institution of Chemical Engineers (IChemE) accreditation, so you can be assured that you will graduate with a degree that meets the standards set out by the chemical engineering industry.

Facilities:

The School of Chemical Engineering and Advanced Materials has a wide range of attractive facilities.

The School occupies five floors in Merz Court, and we provide a Student Common Room and a separate Student Study Space.



Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs. Read more

Mission and goals

Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs: we need efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they involve chemical processes. Chemical engineers are the "engineers of chemistry": by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Career opportunities

The Master of Science programme in Chemical Engineering completes the basic preparation of the bachelor chemical engineer and provide guided paths towards high-level professional profiles which are employed in various industrial sectors including the chemical, pharmaceutical, food, biological and automotive industry; energy production and management; transformation and process industries; engineering companies designing, developing and implementing processes and plant; research centres and industrial laboratories; technical structures in Public Administration; environmental and safety consultancy firms.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Chemical_Engineering_01.pdf
Chemical engineering provides the leading-edge solutions to the society’s needs: we require clean energy sources, efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they are based on chemical processes. Chemical engineers are the “engineers of chemistry”: by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level (chemical bond) to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy. The Master of Science programme in Chemical Engineering provides guided paths towards high-level professional profiles which find employment in various industrial sectors. The programme is taught in English.

Subjects

The Chemical Engineering programme includes mandatory courses on Chemical reaction engineering and applied chemical kinetics; Advanced calculus; Industrial organic chemistry; Unit operations of chemical plants; Mechanics of solids and structures; Applied mechanics. Other courses can be selected by the students on many subjects related to e.g. chemical plants and unit operations, safety, process design, catalysis, material science, numerical methods, environmental protection, food production, energy, biomaterials, etc.. A proper selection of the eligible courses will lead to specializations in Process engineering, Project engineering or Product engineering.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Chemical engineering now extends beyond its traditional roots in oil and gas processing. In this course you will learn about the aspects of chemical engineering that deal with the design and development of formulated products such as food and pharmaceuticals. Read more
Chemical engineering now extends beyond its traditional roots in oil and gas processing. In this course you will learn about the aspects of chemical engineering that deal with the design and development of formulated products such as food and pharmaceuticals.

This programme comprises 12 short-course taught modules (six core and six optional) and a research project carried out with one of the department's research teams (MSc only).The programme has options in Food Processing, Pharmaceutical Technology and Business Studies.

Programme content:

Core modules

Multidisciplinary core modules cover the fundamental science and engineering underpinning the design of sophisticated formulated products. Depending upon your academic background, you will begin by studying the fundamental principles of either chemical engineering or the relevant biological science.

Further core modules deal with topics such as:

Modern molecular biology
Advanced techniques for material characterisation
Interfacial physics and chemistry
Structured fluids
Molecular delivery
Optional modules

A wide range of optional modules enables you to gain specific knowledge relating to food and/or pharmaceutical product development. You may also choose to study business and management modules, or develop mathematical modelling skills.

The programme can be studied full-time over one year, or part-time over two or three years. Modules are also available individually to fulfil continuing professional development needs.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. Read more
Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. It is vital to many issues affecting our quality of life; such as better and more economical processes to reduce the environmental burden, and more delicious and longer lasting food due to the right combination of chemistry, ingredients and processing.

Birmingham is a friendly, self-confident, School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country.

Selected modules from our taught programmes can be combined with an extended research project to obtain an MRes degree. This is a strongly research-orientated qualification and provides excellent training for further research in industry or academia.

Programme content:

Taught modules support the development of both research and transferable skills. All students take a set of compulsory modules and a selection of optional modules of their choice (subject to timetabling) in addition to their research project

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The M.Phil. Programme is a full-time course occupying one year and is structured as follows. 1. Read more
The M.Phil. Programme is a full-time course occupying one year and is structured as follows:

1. Michaelmas Term Students come into College residence in Cambridge in late September/early October, and take three core Chemical Engineering modules and start one core Management of Technology and Innovation (MoTI) module (run by the Judge Business School). In addition, students are expected to take two elective modules taught by other departments within the University.

2. Lent Term Students take one core Chemical Engineering module and three elective modules, and complete the MoTI module by undertaking a consultancy project for a UK client organisation.

3. March - August During this period students undertake a full-time research project within the Department of Chemical Engineering and Biotechnology, the results of which are submitted as a dissertation. The research projects are supervised by University staff members, and students will be required to plan and execute their own work. The projects may include extensive industrial collaboration.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/egcempace

Course detail

The objectives of this Programme are to:

1. provide students with advanced technical skills in chemical engineering;
2. enable students to solve problems within a technical consulting environment;
3. provide students with business skills and a knowledge of entrepreneurship; and
4. provide training in research.

Format

Modules are taught by a combination of formal lectures, demonstrations, discussion classes and example problems, and students are expected to devote at least four evenings per week to private study. The taught material enhances basic knowledge on Chemical Engineering fundamentals, as well as offering experience of other science and business based disciplines. The courses are assessed by both unseen examination and written coursework.

During the first two Terms, students take ten taught modules. Each module usually contains at least 16 hours of contact time (lectures, tutorials, etc.) and students are expected to spend at least four evenings per week on private study and coursework preparation.

During the taught component, students may normally receive up to 2 hours of supervision per core module taken. During the research component, students will normally meet with their supervisor for at least one hour per week.

Students are asked to attend studies meetings with the Programme Manager at the end of Michaelmas Term to discuss any academic-related issues. During the taught component, students are normally provided with feedback on any coursework assignments submitted for assessment. During the research component, feedback is normally provided on a continual basis by the research supervisor.

Assessment

- Thesis -

Students undertake a full-time research project within the Department of Chemical Engineering and Biotechnology, the results of which are submitted as a dissertation. An oral examination may also be held.

The assessment of taught modules involves a combination of some or all of the following:

- Coursework - individual or group
- Class participation
- Written and oral examinations
- Presentations - individual or group.

Continuing

The one year M.Phil. ACE course cannot be counted as one year of a Ph.D. research degree, although continuing students wishing to apply for a Ph.D. are normally expected to obtain at least 70% overall for the M.Phil. ACE course.

How to apply here http://www.graduate.study.cam.ac.uk/courses/directory/egcempace/apply

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow this link: http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. Read more
Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. As well as dealing with chemical reactors, distillation and the numerous processes that take place in a chemical or petrochemical plant, there is an increasing need for chemical engineers able to design and develop formulated products and to have knowledge of biotechnology and environmental issues.
-If you already have a first degree in chemical engineering you can study the discipline in greater depth as well as learning about broader issues through the choice of elective subjects.
-If you are already working in industry or are planning to work in a particular area, then this course can be tailored to focus on issues related to those of direct concern to you.

Who will benefit from the course?
-Those who already have a background in chemical engineering but who wish to obtain a higher level qualification from a top-ranking British university.
-Those who wish to enhance their career prospects in a chemical industry.

What are the benefits to students?
-Our graduates get great jobs and chemical engineers are the highest paid professionals in the engineering field
-Courses are designed to meet the needs of employers and you develop many skills for a successful career - design, problem solving, numeracy, analysis, communication and teamwork
-The University of Manchester has an excellent international reputation and a qualification from us will significantly increase your chances of getting a job anywhere in the world
-Specialist subjects are all taught by experts in the field
-Entry requirements are flexible - relevant experience is considered alongside your formal qualifications

Teaching and learning

We use modern, innovative teaching and learning methods which have proved extremely successful and are enjoyed by our students. Much of the source materials and study aids are available through Blackboard (the University's web learning package) which has the advantage of enabling you to carry out much of your study when and where you want. You take part in face-to-face lectures, seminars and laboratory classes.

The Dissertation Project forms a major part of the MSc course and provides useful practice in carrying out academic research and writing in an area that you are interested in. You have the opportunity to study a chosen topic in depth - you can choose one of the challenging topical projects available through the University or if you are employed can base your project on an aspect of your current job or employer's business.

The course helps you to develop valuable transferable skills such as report writing, data analysis and presentation skills - these are all invaluable for your career development.

Coursework and assessment

Assessment is a combination of examinations and written coursework assignments. For the MSc a major part of the assessment is through an in-depth project which is written up as a formal dissertation report.

Career opportunities

For those with a chemical engineering background, a masters level qualification in Advanced Chemical Engineering from a top UK University will provide a boost to your career prospects.

The National Signposts to Employability Survey 2000 (Performance Indicator Project) found that employers preferred to employ University of Manchester engineering graduates above any others.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
MSc Chemical Engineering and Process Management explores topics required for a successful career as a chemical engineer. Read more
MSc Chemical Engineering and Process Management explores topics required for a successful career as a chemical engineer. You'll study process management and how this relates to chemical engineering, which is increasingly required in chemicals and petrochemical plants along with solid knowledge in reactor design, process simulation, and the numerous unit operations that take place.

The course has been developed in response to these industry needs and it reflects our strength in research and teaching in this area.

If you already have a first degree in chemical engineering you can gain more in-depth knowledge in this discipline as well as explore broader issues through specialist modules relating to project management, the chemical industry, and sustainability. Academic staff in the Division of Chemical and Petroleum Engineering are very research active in areas such as greener energy, multiphase flow, materials and catalytic reactions.

If you do not have a chemical engineering degree but graduated from a closely related engineering discipline, this course offers you a platform to study chemical engineering and opens a career path for you in the chemical industry.

Modules

Engineering management for chemical engineers
Advanced reaction engineering
Energy management and sustainability
Materials engineering
Multiphase fluid flow
Dissertation

Plus one option from:

Applied engineering practice
Chemical process management

All modules except the dissertation are assessed by a combination of examinations and written coursework assignments.

Accreditation

This course is seeking accreditation from the Institution of Chemical Engineers (IChemE).

Read less
The Advanced Chemical Engineering (ACE) course allows students to undertake advanced study in chemical engineering coupled with appropriate background study in basic sciences, mathematics and computing techniques, while the specialised MSc streams (BIO, PSE or SPE) give you the opportunity to explore one area of chemical engineering in more depth.. Read more
The Advanced Chemical Engineering (ACE) course allows students to undertake advanced study in chemical engineering coupled with appropriate background study in basic sciences, mathematics and computing techniques, while the specialised MSc streams (BIO, PSE or SPE) give you the opportunity to explore one area of chemical engineering in more depth.

Read less

Show 10 15 30 per page



Cookie Policy    X