• University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Imperial College London Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Coventry University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
  • Study Type

    Full time available

  • Subject Areas


  • Start Date


  • Course Duration

    1 year full time

  • Course Type


  • Course Fees


  • Last Updated

    02 June 2017

Course content

This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field.

The programme will develop from fundamental topics, including modern approaches to understanding properties of the systems on a molecular scale and advanced numerical methods, to the actual processes, with a particular emphasis on energy efficiency, to the summer dissertation projects where the acquired skills in various areas are put into practice, in application to actual chemical engineering problems.

Programme structure

The programme develops from compulsory courses, emphasizing modern computational techniques and research methods, to a range of options. It is complemented by a strong management and economics component.

Compulsory Courses

  • Numerical Methods for Chemical Engineers
  • Molecular Thermodynamics
  • Introduction to Research Methods

In addition to the compulsory courses you will take a range of optional courses, please review the "Degree Structure" portion the MSc website listed below to find further information on available courses and course descriptions:

Learning outcomes

  • A working knowledge of modern modelling and simulation approaches to understanding properties of chemical systems at a molecular level.
  • A working knowledge of advanced experimental techniques, such as for example particle image velocimetry, spectroscopy and infra-red thermography, as applied in engineering research and development.
  • Ability to transform a chemical engineering problem into a mathematical representation; broad understanding of the available numerical tools and methods to solve the problem; appreciation of their scope and limitations.
  • An understanding of the basic design approaches to advanced energy efficient separation processes.
  • Ability to transfer and operate engineering principles in application to other fields, such as biology.
  • Proficiency in using modern chemical engineering software, from molecular visualisation to computational fluid dynamics to process engineering.

On completion of the research dissertation, the students will be able to:

  • Plan and execute a significant research project
  • Apply a range of standard and specialised research instruments and techniques of enquiry
  • Identify, conceptualise and define new and abstract problems and issues
  • Develop original and creative responses to problems and issues
  • Critically review, consolidate and extend knowledge, skills practices and thinking in chemical engineering
  • Communicate their research findings, using appropriate methods, to a range of audiences with different levels of knowledge and expertise
  • Place their research in the context of the current societal needs and industrial practice
  • Adhere to rigorous research ethics rules
  • Exercise substantial autonomy and initiative in research activities
  • Take responsibility for independent work
  • Communicate with the public, peers, more senior colleagues and specialists
  • Use a wide range of software to support and present research plans and findings

Career opportunities

Our graduates enjoy diverse career opportunities in oil and gas, pharmaceutical, food and drink, consumer products, banking and consulting industries. Examples of the recent employers of our graduates include BP, P&G, Mondelēz International, Doosan Babcock, Atkins, Safetec, Xodus Group, Diageo, Wood Group, GSK, Gilead Sciences, ExxonMobil, Jacobs, Halliburton, Cavendish Nuclear to name a few. This wide range of potential employers means that our graduates are exceptionally well placed to find rewarding and lucrative careers. According to the Complete University Guide, the chemical engineering programme at the University of Edinburgh is ranked one of the top in the UK in terms of graduates prospects.

Find our more about career opportunities:

The MSc in Advanced Chemical Engineering may also lead to further studies in a PhD programme. With the 94% of our research activity rated as world leading or internationally excellent (according to the most recent Research Excellence Framework 2014), Edinburgh is the UK powerhouse in Engineering. As an MSc student at Edinburgh you will be immersed in a research intensive, multidisciplinary environment and you will have plenty of opportunities to interact with PhD, MSc students and staff from other programmes, institutes and schools.

Find out more about our research:

Visit the Advanced Chemical Engineering - MSc page on the University of Edinburgh website for more details!





Enquire About This Course

Recipient: University of Edinburgh

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

Cookie Policy    X