• Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Southampton Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cass Business School Featured Masters Courses
Coventry University Featured Masters Courses
"theoretical" AND "physic…×
0 miles

Masters Degrees (Theoretical Physics)

  • "theoretical" AND "physics" ×
  • clear all
Showing 1 to 15 of 309
Order by 
This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts. Read more

Programme description

This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts.

The MSc programme is a core part of the Higgs Centre for Theoretical Physics, which has been created to mark the start of a new era in theoretical physics research, following the discovery of the Higgs boson at CERN. You will take part in the centre’s activities, including weekly seminars, colloquia and workshops involving physicists from around the world, and you will be involved in research-level projects as part of your dissertation.

The partnership between mathematics and physics is an essential one. In theoretical physics we attempt to build abstract constructs that rationalise, explain and predict physical phenomena. To do this we need mathematics: the language of physics. The underlying structure of the physical world can be understood in great detail using mathematics; this is a never-ending source of fascination to theoretical physicists.

Programme structure

Taught courses

You will take two compulsory courses plus a selection of courses that will bring you to an advanced level in subjects such as general relativity, cosmology, statistical physics, condensed matter physics, quantum field theory and the standard model of particle physics. You may also take courses drawn from a wider pool including specialist courses in mathematics, computing and climate science.

Dissertation

Following the taught component of the programme, you will undertake a three-month research project, which leads to a dissertation.

Industry-based dissertation projects

Through the School’s strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

By undertaking an industry-based dissertation project you will have the opportunity to enhance your skills and employability by tackling a real-world industry project, gaining work place experience, exploring potential career paths and building relationships with local companies.

Learning outcomes

By engaging with and completing the MSc in Theoretical Physics, graduates will acquire core knowledge of theoretical physics subjects and the research methodologies of modern theoretical and mathematical physics. The programme aims to develop research skills and problem solving skills, especially in mathematics. It also aims to develop an attitude of mind conductive to critical questioning and creative thinking and the capacity to formulate ideas mathematically.

Career opportunities

These degrees are designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable to a wide range of research areas and sectors including academia, industry, education and finance.

Read less
The MSc Theoretical Physics programme will provide you with exposure to a very wide range of world-leading teaching and research skills. Read more
The MSc Theoretical Physics programme will provide you with exposure to a very wide range of world-leading teaching and research skills. As well as the wide range of modules offered by the Department of Mathematics, many optional modules are available from across the University of London, subject to approval. King's will offer you a unique module in 'General Research Techniques' which will prepare you for life as a research scientist. You will also undertake an extended research project supervised by one of our academic staff.

Key benefits

- This intensive programme covers basic topics in theoretical and mathematical physics such as general relativity and quantum field theory, and leads to advanced topics such as string theory, supersymmetry and integrable quantum field theory.

- Intimate class environment with small class sizes (typically fewer than 30 students per module) allows good student-lecturer interactions.

- A full 12-month course with a three-month supervised summer project to give a real introduction to research.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/theoretical-physics-msc.aspx

Course detail

- Description -

The master's is organised on a module system together with an individual project. You will take eight taught modules of which at least five will be from the list: Mechanics, Relativity & Quantum Theory; Quantum Mechanics II; Quantum Field Theory; Lie Groups & Lie Algebras; Manifolds; Space-time Geometry and General Relativity; Advanced General Relativity; Supersymmetry & Gauge Theory; String Theory and Branes; Mathematical Methods for Theoretical Physics; Standard Model Physics and Beyond.

The remaining modules can be drawn from the wide range of theoretical physics or pure mathematics MSc courses available in London, the Financial Mathematics MSc in King's and at most two courses from the undergraduate programme at King's. The project is undertaken over the summer in an area of current research.

- Purpose -

The purpose of this programme is to provide a coherent and comprehensive introduction to the main building blocks of modern theoretical physics, preparing students for active research at the forefront of this discipline.

- Course format and assessment -

At least eight taught modules assessed by written examinations and one individual project.

Career prospects

Many of our very successful graduates go on to start PhD studies in theoretical physics at various universities in the United Kingdom and abroad, including with our group here at King's, for which the MSc is particularly well tailored. Our graduates also take up full-time employment in various industries that require good mathematical/computer knowledge or that look for intelligent and creative people. Recent employers of our graduates include the Algerian Space Agency, FRM Capital Advisors and Lloyds Banking Group.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area. Read more

Theoretical Physics

Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area.

This programme serves as a gateway to understanding the fascinating world of physics, ranging from the unimaginably small scales of elementary particles to the vast dimensions of our universe.

The central goal of the Theoretical Physics programme is to obtain a detailed understanding of the collective behaviour of many particle systems from a fully microscopic point of view. In most physical systems, microscopic details determine the properties observed. Our condensed matter theorists and statistical physicists develop and apply methods for explaining and predicting these connections.

Examples include density functional theory, renormalisation-group theory and the scaling theory of critical phenomena. Dynamical properties are studied using such methods as kinetic theory and the theory of stochastic processes. These theories can be quantum mechanical, including theories of the quantum Hall effect, superconductivity, Bose-Einstein condensation, quantum magnetism and quantum computing. More classical are relationships between chaos and transport, nucleation phenomena, polymer dynamics and phase structure and dynamics of colloids.

Read less
The Masters in Theoretical Physics provides an understanding of the principles and methods of modern physics, with particular emphasis on the theoretical aspects of the subject, and at a level appropriate for a professional physicist. Read more
The Masters in Theoretical Physics provides an understanding of the principles and methods of modern physics, with particular emphasis on the theoretical aspects of the subject, and at a level appropriate for a professional physicist.

Why this programme

-The University of Glasgow’s School of Physics and Astronomy is ranked 2nd in Scotland (Complete University Guide 2016).
-The School plays a leading role in the exploitation of data from the Large Hadron Collider, the world’s largest particle accelerator at CERN.
-With a 93% overall student satisfaction in the National Student Survey 2014, the School of Physics and Astronomy combines both teaching excellence and a supportive learning environment.
-You will gain the theoretical and computational skills necessary to analyse and solve a range of advanced physics problems, providing an excellent foundation for a career of scientific leadership in academia or industry.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.

Programme structure

Modes of delivery of the MSc in Theoretical Physics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional lecture courses and project work to a wide variety of specific research topics and their applications in the area of theoretical physics.

Core courses include
-Advanced data analysis
-Quantum information
-Quantum theory
-Research skills
-Extended project

Optional courses include
-Advanced electromagnetic theory
-Advanced mathematical methods
-Applied optics
-Dynamics, electrodynamics and relativity
-General relativity and gravitation (alternate years, offered 2016-17)
-Plasma theory and diagnostics (alternate years, offered 2015-16)
-Relativistic quantum fields
-Statistical mechanics

Industry links and employability

-The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
-You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
-Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.
-This programme is accredited by the Institute of Physics. Accredited MSc programmes automatically meet the master's level education requirement for Chartered Physicist (CPhys) status. To fully meet the educational requirements for CPhys, graduates must also possess an IOP accredited undergraduate degree or equivalent.

Career prospects

Career opportunities include academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts. Read more

Programme description

This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts.

The MSc programme is a core part of the Higgs Centre for Theoretical Physics, which has been created to mark the start of a new era in theoretical physics research, following the discovery of the Higgs boson at CERN. You will take part in the centre’s activities, including weekly seminars, colloquia and workshops involving physicists from around the world, and you will be involved in research-level projects as part of your dissertation.

The partnership between mathematics and physics is an essential one. In theoretical physics we attempt to build abstract constructs that rationalise, explain and predict physical phenomena. To do this we need mathematics: the language of physics. The underlying structure of the physical world can be understood in great detail using mathematics; this is a never-ending source of fascination to theoretical physicists.

Programme structure

Taught courses

You will take two compulsory courses plus a selection of courses that will bring you to an advanced level in subjects such as general relativity, cosmology, statistical physics, condensed matter physics, quantum field theory and the standard model of particle physics. You may also take courses drawn from a wider pool including specialist courses in mathematics, computing and climate science. For the MSc in Mathematical Physics, mathematics courses can account for up to half of the taught course element.

Dissertation

Following the taught component of the programme, you will undertake a three-month research project, which leads to a dissertation.

Industry-based dissertation projects

Through the School's strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies..

By undertaking an industry-based dissertation project you will have the opportunity to enhance your skills and employability by tackling a real-world industry project, gaining work place experience, exploring potential career paths and building relationships with local companies.

Learning outcomes

By engaging with and completing the MSc in Mathematical Physics, graduates will acquire core knowledge of theoretical physics subjects and the research methodologies of modern theoretical and mathematical physics.

The programme aims to develop research skills and problem solving skills, especially in mathematics. It also aims to develop an attitude of mind conductive to critical questioning and creative thinking and the capacity to formulate ideas mathematically.

Career opportunities

These degrees are designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable to a wide range of research areas and sectors including academia, industry, education and finance.

Read less
This renowned MSc course is designed to prepare students for PhD study in fundamental theoretical physics by bridging the gap between an undergraduate course in physics or mathematics and the research frontier. Read more
This renowned MSc course is designed to prepare students for PhD study in fundamental theoretical physics by bridging the gap between an undergraduate course in physics or mathematics and the research frontier.

The Theoretical Physics Group is internationally recognised for its contribution to our understanding of the unification of fundamental forces, the early universe, quantum gravity, supersymmetry, string theory, and quantum field theory.

The origins of the MSc course date back to the founding of the Theoretical Physics Group by Abdus Salam, one of Imperial’s Nobel Laureates.

Read less
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

PROGRAMME OVERVIEW

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

Examples of other topics include magnetic resonance imaging and the use of lasers in medicine.

You will learn the theoretical foundations underpinning modern imaging and treatment modalities, and will gain a set of experimental skills essential in a modern medical physicist’s job.

These skills are gained through experimental sessions in the physics department and practical experiences at collaborating hospitals using state-of-the-art clinical facilities.

PROGRAMME STRUCTURE

This programme is studied full-time over two academic years. It consists of ten taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement C
-Experimental and Professional Skills for Medical Physics
-Introduction to Biology and Radiation Biology
-Therapy Physics
-Diagnostic Applications of Ionising Radiation Physics
-Non-ionising Radiation Imaging
-Extended Group Project
-Research Skills (Euromasters)
-Outreach and Public Engagement
-Euromaster Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in Physics that is fully compatible with the spirit and the letter of the Bologna Accord.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Concepts and theories: Students will be able to demonstrate a systematic understanding of the concepts, theories and ideas of a specialized field in physics in Radiation Physics through the taught elements of one of the component MSc programmes MSc in Medical Physics.
-Instrumentation and materials: Students will understand the operation, function and performance of the key radiation detection devices and technologies or principles of the physics relevant to applied radiation physics, in particular medical applications.
-Methods and best practices: Students will become fully acquainted with the scientific methods and best practices of physics and exposed to a specialized field described in the handbook documents of the validated MSc in Medical Physics.

In the second year of the programme the outcomes are linked closely to a unique 8-month research project (two months preparation and research skills development, 5 months research, and 1 month reporting), students will apply their acquired research skills to an individual research project in a Research Group.

During the first two months of year two of the programme students will further extend their self-confidence in their practical, analytical and programming abilities; their ability to communicate; realise that they can take on responsibility for a task in the Research Group and see it through.

An important element is the assignment of responsibility for a substantial research project which is aimed to be of a standard suitable for publication in an appropriate professional journal.

It is expected that the student will approach the project in the manner of a new Research Student, e.g. be prepared to work beyond the normal working day on the project, input ideas, demonstrate initiative and seek out relevant information.

Thereby the students will acquire proficiency in research skills, including (but not limited to) careful planning, time scheduling, communication with colleagues and at workshops, keeping a detailed notebook, designing and testing equipment, taking and testing data and analysis.

The dissertation required at the end of the Research Project has the objective of encouraging students to write clearly and express their understanding of the work, thereby developing the required skills of scientific writing.

During the Research Project as a whole it is expected that the students will further develop communication skills through participation in group meetings, preparation of in-house reports, giving oral presentations and show initiative in acquiring any necessary new skills.

The oral presentation at the end of the Research Project is a chance to show their oral presentation skills and ability to think independently.

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context.
-Ability to plan projects and research methods in the subject of the course.
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication.
-Aware of public concern and ethical issues in radiation and environmental protection.
-Able to formulate solutions in dialogue with peers, mentors and others.

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development.

Subject knowledge and skills
-A systematic understanding of Medical Physics in an academic and professional context, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the state of the art
-A comprehensive understanding of techniques applicable to research projects in Medical Physics
-Familiarity with generic issues in management and safety and their application to Medical Physics in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation, analyse critically the results and draw valid conclusions (students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data; they should be able to evaluate the significance of their results in this context)
-The ability to evaluate critically current research and advanced scholarship in the discipline
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

PROGRAMME OVERVIEW

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

PROGRAMME STRUCTURE

This programme is studied full-time over two academic years. It consists of ten taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Experimental and Professional Skills for Medical Physics
-Introduction to Biology and Radiation Biology
-Therapy Physics
-Diagnostic Applications of Ionising Radiation Physics
-Non-ionising Radiation Imaging
-Extended Group Project
-Research Project

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in Physics that is fully compatible with the spirit and the letter of the Bologna Accord.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Concepts and theories: Students will be able to demonstrate a systematic understanding of the concepts, theories and ideas of a specialized field in physics in Radiation Physics through the taught elements of one of the component MSc programmes MSc in Medical Physics.
-Instrumentation and materials: Students will understand the operation, function and performance of the key radiation detection devices and technologies or principles of the physics relevant to applied radiation physics, in particular medical applications.
-Methods and best practices: Students will become fully acquainted with the scientific methods and best practices of physics and exposed to a specialized field described in the handbook documents of the validated MSc in Medical Physics.

During their 60-credit Research Project students will gain further practical, analytical or programming abilities through working on a more extended investigation. This may be an experiment- or modelling-based project, for which the student will be encouraged to propose and set in place original approaches.

The dissertation required at the end of the Research Project has the objective of encouraging students to write clearly and express their understanding of the work, thereby developing the required skills of scientific writing.

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context.
-Ability to plan projects and research methods in the subject of the course.
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication.
-Aware of public concern and ethical issues in radiation and environmental protection.
-Able to formulate solutions in dialogue with peers, mentors and others.

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

Subject knowledge and skills
-A systematic understanding of Medical Physics in an academic and professional context, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the state of the art
-A comprehensive understanding of techniques applicable to research projects in Medical Physics
-Familiarity with generic issues in management and safety and their application to Medical Physics in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation, analyse critically the results and draw valid conclusions (students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data; they should be able to evaluate the significance of their results in this context)
-The ability to evaluate critically current research and advanced scholarship in the discipline
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our MSc Mathematics programme consists of a wide range of modules and a written project. Read more
Our MSc Mathematics programme consists of a wide range of modules and a written project. Your module choices will be mainly from the two main blocks of pure mathematics and theoretical physics but you are also able to choose certain modules from the Financial Mathematics programme and at other University of London institutions, subject to approval.

Key benefits

- An intensive course covering a wide range of basic and advanced topics.

- Intimate class environment with small class sizes (typically fewer than twenty students on a module) allowing good student-lecturer interactions.

- A full twelve-month course with a three-month supervised summer project to give a real introduction to research.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/mathematics-msc.aspx

Course detail

- Description -

The majority of the eight modules are taken from blocks of pure mathematics and theoretical physics, with other options from the MSc Financial Mathematics and other University of London institutions available, subject to approval.

Pure Mathematics:

- Metric & Banach Spaces
- Complex Analysis
- Fourier Analysis
- Non-linear Analysis (new in 2013)
- Operator Theory
- Galois Theory
- Lie Groups & Lie Algebras
- Algebraic Number Theory
- Algebraic Geometry
- Manifolds
- Real Analysis II
- Topology
- Rings & Modules
- Representation Theory of Finite Groups

Theoretical Physics:

- Quantum Field Theory
- String Theory & Branes
- Supersymmetry
- Advanced Quantum Field Theory
- Spacetime geometry and General Relativity
- Advanced General Relativity
- Low-dimensional Quantum Field Theory

- Course purpose -

This programme is suitable for Mathematics graduates who wish to study more advanced mathematics. The programme ideally prepares students for PhD study in a mathematical discipline.

- Course format and assessment -

Eight modules assessed by written examinations; one individual project.

Career prospects

Many of our graduates take up full-time employment in various industries that require good mathematical/computer knowledge or that look for intelligent and creative people. Recent employers of our graduates include Barclays Bank, Kinetic Partners, Lloyds Banking Group and Sapient.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The Masters in Physics. Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist. Read more
The Masters in Physics: Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist.

Why this programme

-The University of Glasgow’s School of Physics and Astronomy is ranked 2nd in Scotland (Complete University Guide 2016).
-You will gain theoretical, experimental and computational skills necessary to analyse and solve advanced physics problems relevant to the theme of Nuclear Technology, providing an excellent foundation for a career of scientific leadership.
-With a 93% overall student satisfaction in the National Student Survey 2014, the School of Physics and Astronomy combines both teaching excellence and a supportive learning environment.
-You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.

Programme structure

Modes of delivery of the MSc Physics: Nuclear Technology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses include
-Advanced data analysis
-Detection and analysis of ionising radiation
-Environmental radioactivity
-Imaging and detectors
-Nuclear power reactors
-Research skills
-Extended project

Optional courses include
-Advanced electromagnetic theory
-Advanced nuclear physics
-Computational physics laboratory
-Dynamics, electrodynamics and relativity
-Energy and environment
-Medical imaging
-Nuclear and particle physics
-Numerical methods
-Plasma theory and diagnostics (alternate years starting 2015-16)
-Relativistic quantum fields
-Statistical mechanics

The programme in Physics: Nuclear technology lasts 1 year and contains a minimum of 180 credits. You will undertake a minimum of 120 credits in Semesters 1 and 2 and be assessed on these courses either via continuous assessment, or unseen examination in the May/June examination diet, or a combination thereof. The remaining 60 credits will take the form of an extended MSc project, carried out on a specific aspect of theoretical, computational or experimental physics which has current or potential application in the areas of nuclear technology, nuclear energy, radiation detection or environmental monitoring. You will conduct this project while embedded within a particular research group – under the direct supervision of a member of academic staff.

Your curriculum will be flexible and tailored to your prior experience and expertise, particular research interests and specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme. Generally, however, courses taken in Semester 1 will focus on building core theoretical and experimental/computational skills relevant to the global challenge theme, while courses taken in Semester 2 will build key research skills (in preparation for the extended project).

Industry links and employability

-The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
-You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
-Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.
-This programme is accredited by the Institute of Physics. Accredited MSc programmes automatically meet the master's level education requirement for Chartered Physicist (CPhys) status. To fully meet the educational requirements for CPhys, graduates must also possess an IOP accredited undergraduate degree or equivalent.

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena. Read more
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:
-Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
-Have good analytical, deductive and computational skills.
-Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
-Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
-Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

Selection of the Major

The Master’s programme includes two study tracks:
-Particle physics and cosmology
-Astrophysical sciences

Courses in the programme have been compiled into modules. Both study tracks contain a mandatory core module that includes a research seminar. The study tracks are divided into specialisations that focus on astronomy, space physics, particle physics or cosmology. Courses typically include lectures, exercises, group work and research literature and end in examinations and/or final assignments. In addition, some studies can be completed as book examinations.

Programme Structure

The scope of the Master’s programme is 120 credits (ECTS), which can be completed in two years. The degree consists of:
-90 credits of Master’s studies, including a Master’s thesis (30 credits).
-30 credits of other studies from the Master’s programme or other degree programmes.

In addition, your studies include a personal study plan as well as career orientation and planning. You might also take part in a traineeship, elective studies offered by the Master’s Programme in Particle Physics and Astrophysical Sciences, or studies offered by other degree programmes.

Career Prospects

A Master’s degree in elementary particle physics or astrophysical sciences provides you with excellent qualifications for postgraduate education in research or for a career in diverse positions both in Finland and abroad. As a Master’s graduate you could begin a career in research and development in industry as well as in universities and other research institutes that enable you to conduct independent research on a topic that interests you.

Potential employers and career opportunities include:
-Research institutes in Finland and abroad (basic scientific research).
-Universities and universities of applied sciences (teaching).
-Industry, particularly high technology companies (applied research and development, managerial duties).
-Software production, e.g., the game sector.
-Diverse planning and consulting positions.

Master’s graduates from equivalent study tracks under the previous degree system have embarked on careers in:
-Research and teaching positions in Finnish universities and research institutes.
-Research and teaching positions abroad, for example at CERN (the European Organization for Nuclear Research), ESA (the European Space Agency), ESO (the European Southern Observatory), and NASA (the National Aeronautics and Space Administration).
-Administrative positions, for example at the Academy of Finland or the Finnish Funding Agency for Innovation (Tekes).
-The business sector.

The strong theoretical and analytical skills you will acquire in the programme are in great demand in fields such as:
-Data analysis (industry, media companies, game companies, financing).
-Industrial research, development and consulting (at, e.g., Nokia, Ericsson, Apple, Sanoma, Spinverse, Supercell, Nielsen, Valo -Research and Trading, Planmeca, Reaktor, Comptel, and Goldman Sachs).

Internationalization

Our multilingual Master’s programme is highly international. The Department hosts a large number of international students and staff members. In addition, the University of Helsinki and the Faculty of Science provide many opportunities for international engagement:
-Student exchange at one of the destinations available through the Faculty or the University.
-International traineeships.
-English-language teaching offered by the Faculty.
-Master’s thesis project as a member of one of the international research groups operating under the programme.
-Cooperation with international students enrolled in the programme.
-International duties in subject-specific student organisations or the Student Union of the University of Helsinki.
-Language courses organised by the Language Centre of the University of Helsinki.

The Faculty of Science is a top research institute in its fields among European universities. Its partners include many leading international research institutes, such as the European Organization for Nuclear Research (CERN), the European Space Agency (ESA) and the European Southern Observatory (ESO).

As a student at the Faculty of Science, you will have the opportunity to complete a research traineeship period at, for example, CERN in Geneva. By completing a traineeship at one of the internationally active research groups on campus you will be able to acquaint yourself and network with the international scientific community during your Master’s studies. The international student exchange programmes available at the University provide numerous opportunities to complete part of your degree at a university abroad.

Read less
The Masters in Physics. Advanced Materials provides an understanding of the principles and methods of modern physics, with particular emphasis on their application to global interdisciplinary challenges in the area of advanced materials and at a level appropriate for a professional physicist. Read more
The Masters in Physics: Advanced Materials provides an understanding of the principles and methods of modern physics, with particular emphasis on their application to global interdisciplinary challenges in the area of advanced materials and at a level appropriate for a professional physicist.

Why this programme

-The School of Physics & Astronomy hosts the Kelvin Nanocharacterisation Centre, which houses state-of-the-art instrumentation for studying materials at the nanoscale or below.
-With a 93% overall student satisfaction in the National Student Survey 2014, the School of Physics and Astronomy combines both teaching excellence and a supportive learning environment.
-The University of Glasgow’s School of Physics and Astronomy is ranked 2nd in Scotland (Complete University Guide 2016).
-You will gain the theoretical, experimental and computational skills necessary to analyse and solve a range of advanced physics problems relevant to the theme of this global challenge, providing an excellent foundation for a career of scientific leadership in academia or industry.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.

Programme structure

Modes of delivery of the MSc in Physics: Advanced Materials include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional lecture courses and project work to a wide variety of specific research topics and their applications in the area of advanced materials.

Core courses include
-Advanced data analysis
-Nano and atomic scale imaging
-Research skills
-Solid state physics
-Extended project

Optional courses include
-Detection and analysis of ionising radiation
-Detectors and imaging
-Environmental radioactivity
-Nuclear power reactors
-Semiconductor physics
-Statistical mechanics

Industry links and employability

-The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
-You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
-Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.
-The School of Physics and Astronomy plays a world-leading role in the design and operation of the worldwide network of laser interferometers leading the search for gravitational waves. These interferometers are among the most sensitive scientific instruments ever built.
-This programme is accredited by the Institute of Physics. Accredited MSc programmes automatically meet the master's level education requirement for Chartered Physicist (CPhys) status. To fully meet the educational requirements for CPhys, graduates must also possess an IOP accredited undergraduate degree or equivalent.

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
The MSc programme in Physics offers four two-year research specialisations, which are connected to the research carried out at the Leiden Institute of Physics (LION), and three specialisations that are more broadly oriented, and combine at least one year of the physics curriculum with training in which specific career opportunities in science-related professions can be explored. Read more
The MSc programme in Physics offers four two-year research specialisations, which are connected to the research carried out at the Leiden Institute of Physics (LION), and three specialisations that are more broadly oriented, and combine at least one year of the physics curriculum with training in which specific career opportunities in science-related professions can be explored.

Visit the website: http://en.mastersinleiden.nl/programmes/physics/en/introduction

Course detail

The research specialisations are:

- Research in Experimental Physics (from september 2015 divided into two specialisations: ‘Research in Physics, Biological and Soft Matter Physics’ and ‘Research in Physics, Quantum Matter and Optics’)
- Research in Physics, Cosmology
- Research in Physics, pre-PhD (‘Casimir’)
- Research in Physics, theoretical

The combined specialisations are:

- Physics and Science-Based Business
- Physics and Science Communication and Society
- Physics and Education

The Leiden Master’s Programme in Physics is offered by the Leiden Institute of Physics (LION), an excellent place to study the foundations of nature.

Reasons to Choose Physics in Leiden

1) The programme places a strong emphasis on research training. Students can spend up to 50% of their time on research projects.

2) Leiden University is known for its top-level international research and excellent research groups, both theoretical and experimental, in which master’s students participate during their research projects. Many master’s students obtain their degree with a publication in an international refereed journal.

3) The programme offers a wide choice of individual profiles. Specialisations have been defined within the Master programme, but there still is wide latitude for tailoring individual programmes. Individual plans can always be discussed with the study advisor and submitted to the Board of Examiners for approval.

4) The close connection between the MSc programme and the Leiden Institute of Physics results in an open atmosphere, in which students are invited to attend lectures and symposia and to participate in scientific discussions.

5) Students can start in the MSc programme at any time throughout the year, although September is strongly preferred.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less
From the Higgs boson to the cosmos, Physics & Astronomy encompasses the fundamentals of modern physics. We provide an open environment where students team up with faculty members to gain knowledge of the known universe and explore the unknown. Read more
From the Higgs boson to the cosmos, Physics & Astronomy encompasses the fundamentals of modern physics. We provide an open environment where students team up with faculty members to gain knowledge of the known universe and explore the unknown. Chalmers hosts the Onsala Space Observatory and has research connections to many other universities and laboratories. Our research in basic science makes use of the newest technology and may lead to new technical developments.

Programme description

Understanding the basic laws of physics has posed a challenge since the birth of modern science. The area is of great intrinsic interest, and forms the basis for other branches of science. Trying to probe the smallest structures of matter and the largest structures of the Universe also drives the development of new technologies. At Chalmers we are actively engaged in many areas of modern physics and astrophysics:

In theoretical particle physics we look beyond the Standard Model and at the possibility for the Higgs boson to be a harbinger of new physics.

In experimental nuclear physics we work with international accelerator laboratories like CERN or GSI/FAIR on experiments of key importance for understanding both the microscopic world and astrophysical phenomena.

In theoretical nuclear physics we focus on modelling and simulation of stable and unstable isotopes with small numbers of nucleons.
In mathematical physics we investigate the cross-fertilization between mathematics and string theory, where abstract mathematical theorems find new applications in physics, and where physical insight has in turn sparked new developments in mathematics. We also investigate the recent applications of string theory to condensed matter.

In astrophysics we explore distant stars and galaxies by radio astronomical methods and model galaxy formation by numerical simulations.

In geophysics we study the solid earth and its atmosphere.

This programme gives you the opportunity to be part of an intimate environment among active researchers in these fascinating areas of science. As a student you will gain knowledge of fundamental physics and acquire specialised skills in a chosen sub-field of physics or astronomy. You will be able to construct mathematical models or design or conduct experiments in physics and astronomy. In addition, you will gain experience in scientific communication from working in projects.

Educational methods

All of the faculty are engaged in research and we have a high teacher-to-student ratio.
After completing a few core courses, students choose elective courses that prepare them to specialise in theoretical, observational or experimental aspects of astronomy, in mathematical physics, particle physics, subatomic physics or string theory. Students finish the program with a research project that forms the basis for a MSc thesis.

Read less
The Masters in Physics. Energy & the Environment provides an understanding of the principles and methods of modern physics, with emphasis on their application to global challenges in sustainable energy, climate change and the environment, and at a level appropriate for a professional physicist. Read more
The Masters in Physics: Energy & the Environment provides an understanding of the principles and methods of modern physics, with emphasis on their application to global challenges in sustainable energy, climate change and the environment, and at a level appropriate for a professional physicist.

Why this programme

-The University of Glasgow’s School of Physics and Astronomy is ranked 2nd in Scotland (Complete University Guide 2016).
-The School plays a leading role in the exploitation of data from the Large Hadron Collider, the world’s largest particle accelerator at CERN.
-With a 93% overall student satisfaction in the National Student Survey 2014 the School of Physics and Astronomy combines both teaching excellence and a supportive learning environment.
-The School of Physics & Astronomy hosts the Kelvin Nanocharacterisation Centre, which houses state-of-the-art instrumentation for studying materials at the nanoscale or below.
-You will gain the theoretical, experimental and computational skills necessary to analyse and solve a range of advanced physics problems relevant to the theme of this global challenge, providing an excellent foundation for a career of scientific leadership in academia or industry.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
-You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.

Programme structure

Modes of delivery of the MSc Physics: Energy and the Environment include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional lecture courses and project work to a wide variety of specific research topics and their applications in the areas of energy and the environment.

Core courses include
-Advanced data analysis
-Energy and environment
-Nuclear power reactors
-Research skills
-Extended project

Optional courses include
-Advanced electromagnetic theory
-Detection and analysis of ionising radiation
-Detectors and imaging
-Environmental radioactivity
-Plasma theory and diagnostics (alternate years, starting 2015–16)
-Statistical mechanics

Industry links and employability

-The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
-You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
-Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.
-The School plays a world-leading role in the exploitation of data from the Large Hadron Collider, the world’s largest particle accelerator at CERN.
-This programme is accredited by the Institute of Physics. Accredited MSc programmes automatically meet the master's level education requirement for Chartered Physicist (CPhys) status. To fully meet the educational requirements for CPhys, graduates must also possess an IOP accredited undergraduate degree or equivalent.

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X