• Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Stuttgart Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Durham University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Newcastle University Featured Masters Courses
"printing" AND "technolog…×
0 miles

Masters Degrees (Printing Technology)

We have 60 Masters Degrees (Printing Technology)

  • "printing" AND "technology" ×
  • clear all
Showing 1 to 15 of 60
Order by 
The MSc in Marketing & Technology aims to transform students into uniquely-trained individuals possessing the knowledge and skills required to be successful marketers in dynamic and technology-driven industries. Read more

The MSc in Marketing & Technology aims to transform students into uniquely-trained individuals possessing the knowledge and skills required to be successful marketers in dynamic and technology-driven industries.

Companies such as Netflix, Airbnb, and Tesla have one thing in common: they break with the norms of existing markets and employ unconventional, technology-driven marketing approaches. Traditional marketing education all too often neglects the marketing abilities that these companies possess. 

The MSc in Marketing & Technology departs from the rather passive marketing logic that assumes markets and marketing channels are fixed features of reality. Instead, it shows how managers can proactively shape and create new markets and marketing landscapes.

The goal of this programme is to transform students into uniquely-trained individuals who understand how to leverage emerging technologies, such as 3D printing, Virtual Reality, and the Internet of Things, to design unique customer experiences, disrupt existing markets, and create entirely new ones.

The programme will direct students’ attention to significant and emerging technological trends, and show how they can address important social and environmental problems.

It seeks to enable students to discover new market opportunities that will have a positive impact on the economy, society, and the environment. Students will be equipped with the skills required to effectively navigate today’s technology-dominated marketing environments, and they will learn how to be successful marketers in the digital marketing era. 

You will find this programme valuable if you:

  • aim to find a marketing job in an entrepreneurial company, in a creative or technology-dominated industry, and/or in the area of digital marketing.
  • prefer working in dynamic and fast-changing environments
  • have an entrepreneurial mindset and enjoy thinking outside the box.
  • are fascinated by human ingenuity and the latest technological discoveries.
  • seek to make a positive impact on society.

Modules & structure

The MSc Marketing & Technology consists of:

  • six core modules (90 combined credits)
  • two optional modules (30 combined credits)
  • a research dissertation (60 credits)

You will study the following core modules:

Research project

You'll undertake an independent piece of research focusing on the intersection of marketing, technology management, and innovation. The research dissertation should be no longer than 10,000 words. You'll be advised by an experienced supervisor.

Optional modules

You can choose two optional modules to make up the remaining 30 credits

Please note that due to staff research commitments not all of these modules may be available every year.

Skills & careers

Companies across many industries have to cope with increasingly technology-dominated marketing environments. This programme is a response to the marketing needs of such companies. Also, entrepreneurial, technology-based firms will value the skills provided by this programme. Typical jobs include, but are not limited to, the positions of marketing manager, product manager, brand manager, advertising manager, PR manager, media manager, digital communications manager, account manager, marketing strategist, marketing analyst, marketing consultant, or sales manager.



Read less
The textiles industry is continually evolving. Developing new products that meet the needs of a changing market demands a combination of technology and design technology. Read more

The textiles industry is continually evolving. Developing new products that meet the needs of a changing market demands a combination of technology and design technology. This programme will give you access to the latest developments across the textile industry to equip you for these challenges.

You’ll receive training in key skills including laboratory practice, problem solving, and reasoning, and you’ll undertake a substantial research dissertation. In addition, you’ll have the chance to specialise in either textile technology or textile design technology, depending on your own interests and career plans. A variety of optional modules will also give you the chance to learn about topics such as medical textiles, or fashion and sustainability.

Taught by experts in one of the UK’s major hubs for textile research, this programme will help you gain the specialist knowledge and skills to build a career in a fast-paced and challenging industry.

We have plenty of facilities to help you make the most of your time at Leeds, including well-equipped laboratories and purpose-built computer clusters so you can build your skills on both PC and Mac.

Accreditation

The course is accredited by the Society of Dyers and Colourists as being equivalent to its ASDC examinations leading to Chartered Colourist (CCol) status. It is also accredited by The Textile Institute at Associate level (CText ATI), this demonstrates a good broad knowledge of textiles and its application, and allows you to apply for Licentiateship (LTI) upon graduation, and Associateship (CText ATI) after one year in industry.

Course content

Everyone studies the same compulsory modules throughout the programme, which allow you to become a confident researcher and give you experience of practical lab work in Semester 2. You’ll apply the knowledge and skills that you have gained throughout the course to a substantial piece of independent research, which you’ll submit by the end of the programme in September.

You’ll also have the chance to specialise in the aspects of textiles that interest you by selecting the appropriate pathway.

Textile Design Technology pathway

In the modules on this pathway you’ll learn how to view technology through the eyes of both the designer and the technologist. You’ll gain understanding of how to manipulate technology to design and produce new products and how to maintain and/or improve the desirability of current products.

Textile Technology pathway

You will gain in-depth knowledge of advanced textile technology, textile processes and quality management together with the science, technology and testing of functional textile materials, product development, coloration and finishing processes, medical textiles, nonwovens and performance clothing.

If you choose to study part-time, you’ll study over a longer period and take fewer modules in each year.

Course structure

Compulsory modules

  • Research Dissertation 60 credits
  • Laboratory Practicals and Case Studies 30 credits

Optional modules

  • Sustainability and Fashion 15 credits
  • Textile Design Technology 15 credits
  • Colour and the Design Process for Textiles 15 credits
  • Digital Printing 15 credits
  • Textile technology including nonwovens 15 credits
  • Coloration and Finishing Technology 15 credits
  • Technical Textiles 15 credits
  • Textiles in Medical Devices and Healthcare Products 15 credits
  • Textile Consultancy and Management 15 credits
  • Textile Product Design, Innovation and Development 15 credits

For more information on typical modules, read Textiles MSc Full Time in the course catalogue

For more information on typical modules, read Textiles MSc Part Time in the course catalogue

Learning and teaching

We use various teaching and learning methods, including practicals, lectures, seminars and tutorials. Independent study is also vital to this degree, allowing you to develop your skills and prepare for taught sessions so you can make the most of them.

Assessment

You’ll be assessed by a range of methods including essays and exams as well as practical and project work, reports, literature reviews and presentations.

Career opportunities

This degree is designed to equip you with a wide range of knowledge and skills to succeed in careers such as textile management, technical consultancy, and education and training. You’ll also be well prepared to continue with academic research in textiles at PhD level.

If you take the Textile Design Technology pathway, you could work in the industry as designers or in areas, which need an understanding of technology and design e.g. buying, textile product development for apparel, and in various third party testing houses. Moreover, you could work in various textile industries in managerial positions including the retail and supply chain management with major clothing companies and their suppliers.

The Textile Technology pathway will allow you to gain the skills to pursue a career in any of the following fields: technical consultancy; education and training; and academic research in technical textiles. You may also be employed as a product development technologist in specialist fields such as medical textiles, geotextiles and civil engineering materials, aerospace and transport engineering materials, and sport and performance clothing.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
CREATING FUNCTIONAL TISSUE MODELS WITH 3D PRINTING TECHNOLOGIES. Biofabrication. Read more

CREATING FUNCTIONAL TISSUE MODELS WITH 3D PRINTING TECHNOLOGIES

Biofabrication is an international, research-driven Master’s programme comprising a first year of coursework and research at Utrecht University / UMC Utrecht, followed by a research project and courses in Australia in the second year, at one of two universities which are at the forefront of 3D printing for medical applications. Upon completion, a double degree can be obtained, both from Utrecht University and the Australian host institution. Alternatively, for students who prefer to stay in Utrecht or to go abroad for a research project at another research institution a single degree from Utrecht University will be issued.

MULTIDISCIPLINARY RESEARCH

Biofabrication is a truly multidisciplinary area of research. It requires an understanding of chemistry, physics, biology, medicine, robotics and computer science. In this respect, few researchers entering the biofabrication field have been trained in such a diverse range of subjects. This Master’s programme is the right choice for you, if you’re motivated to become a multidisciplinary researcher. If you are interested to go abroad we offer the opportunity to obtain a double degree in Australia by following courses and a research project in your second year, or to gain an international experience at another international research institution across the globe.

WHY STUDY BIOFABRICATION AT UTRECHT UNIVERSITY?

  • World’s first Master’s programme in Biofabrication, opportunity to obtain an international double degree from Utrecht University & one of the partner institutions in Australia
  • As a student you will have the opportunity to carry out two hands-on research projects at renowned research groups.
  • Utrecht University is a leading institution in the field of Biofabrication and offers a unique combination of studying 3D printing technology with a biomedical approach
  • The Utrecht Biofabrication Facility at the Uithof gives students the opportunity to familiarize themselves with innovative science and technology and to collaborate with the scientists associated with it, both from the various departments in Utrecht as well as international researchers.
  • The Biofabrication programme provides ample opportunity to customise your curriculum to maximally benefit from the multiple educational options in Utrecht and Australia.

Biofabrication combines advanced fabrication techniques with biological systems to prepare designed tissue constructs. These can be applied for tissue engineering, as 3D in vitro biologic models or as medical therapeutic products. The Biofabrication programme will equip you with a toolbox to innovate within this multidisciplinary field. We will provide a thorough understanding as well as operational experience of processes such as 3D bioprinting and other fabrication technologies, biomaterials, 3D cell culturing, computer models and imaging.

Our course content will instruct you to:

  • Understand and apply knowledge from biofabrication technology to (re)generating various tissues;
  • Design, plan, conduct, and communicate scientific research;
  • Write a compelling research proposal;
  • Critically evaluate literature and presentations;
  • Function effectively in multidisciplinary, international groups.

CAREER IN BIOFABRICATION

As a graduate you will have a strong research background in Biofabrication and a broad basic knowledge of the field, which enables you to pursue a career in academic (PhD) or in industrial/commercial directions, including R&D, sales, consultancy. Your considerable research experience abroad and the obtained double degree will make you an attractive candidate for any Biofabrication-related position in the world.



Read less
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Read more
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Being in the heart of one of Europe’s highest concentration of high-tech businesses provides opportunities for industry-focused studies.You will take charge of your career by building on your undergraduate degree and developing your professional skills. It introduces you to research, development and practice in advanced engineering design and equips you for professional practice at senior positions of responsibility.You will gain the skills to take complex products all the way from idea to fully validated designs. Using the most advanced CAD packages, you will learn the techniques required to analyse and test your designs followed by full design implementation. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught by staff with exceptional knowledge and expertise in their fields, including world-leaders in research on sustainable engineering, materials and joining technology and design engineers leading development of novel products such as carbon and bamboo bike. Our research projects and consultancies are done with partners such as Siemens, Yasa Motors, Stannah Stairlifts, 3M etc. using our facilities including analytical and mechanical test equipment, scanning electron microscope and the latest 3D printing technology. Well-funded research programmes in areas of current concern such as modern composite materials, vehicle end-of-life issues and electric vehicles.

Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule. Our close industry links facilitate industrial visits, providing you with opportunities to explore technical challenges and the latest technology - to get a flavour of activities within our department see 2015 highlights.

You will have the opportunity to join our acclaimed Formula Student team (OBR), where you have a chance to put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the Dissertation.

Compulsory modules
-Advanced Mechanical Engineering Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules
-Computation and Modelling
-CAD/CAM
-Advanced Materials Engineering and Joining Technology
-Sustainable Engineering Technology
-Noise, Vibration and Harshness
-Vehicle Crash Engineering
-Engineering Reliability and Risk Management

The Dissertation (core, triple credit) is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing a high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Far-Axon, Clayex/Dymola, Tranquillity Aerospace, Norbar, etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work designed to demonstrate important aspects of theory or systems operation.

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in a wide range of industries.

Read less
The MSc in Motorsport Engineering course provides a unique preparation for work in the motorsport industry. Read more
The MSc in Motorsport Engineering course provides a unique preparation for work in the motorsport industry. Our location in the heart of UK motorsport valley with close proximity of the majority of Formula 1 teams and their supply chain gives our Department unrivalled access to motorsport companies.This informs and directs development and delivery of the programmes, benefiting from contribution by a range of experts with noteworthy track record in the motorsport industry. It also offers students opportunities to undertake industry-based projects, often in conjunction with our high-standing research based around state-of-the-art automotive test equipment in a purpose-designed engineering building.

Our students also have an opportunity to implement their theoretical knowledge by joining Oxford Brookes Racing, our acclaimed Formula Student team to gain an understanding of racing culture and an environment where winning race cars are built.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work with leading motorsport companies, including all of F1 teams, Formula E and major suppliers to motorsport industry. Our programme has been developed with and delivered in collaboration with the motorsport industry: you will be taught in laboratories that include a four-post test rig, four state-of-the-art engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Our staff have exceptional expertise in the field of motorsport engineering and include winning F1 race car designers and world-leading sustainable vehicle engineering researchers.

Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. They put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology - to get the flavour of activities at our department see 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and and The Institute of Engineering and Technology as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The Motorsport Engineering MSc is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the end of September.

To qualify for a master degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Advanced Vehicle Dynamics
-Advanced Vehicle Aerodynamics
-Laptime Simulation and Race Engineering
-Advanced Engineering Management

Optional modules (choose two):
-Vehicle Crash Engineering
-Computation and Modelling
-CAD/CAM
-Advanced Strength of Components
-Advanced Materials Engineering and Joining Technology
-Data Acquisition Systems
-Engineering Reliability and Risk Management

You also take:
The Dissertation is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Dallara, VUHL, Base Performance, McLaren, AVL), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures, seminars to provide a sound theoretical base, and practical work, designed to demonstrate important aspects of theory or systems operation. Visiting speakers from business and motorsport industry provide valuable insights.

Careers and professional development

The department’s employability record is consistently above 90%, which is significantly above sector average. Graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in the motorsport industry.

Many of our students go on to work with leading motorsport companies, including directly into F1 teams and their suppliers. Our notable alumni include William Morris, founder of Morris cars (Lord Nuffield) and Adrian Reynard, motorsport driver and entrepreneur whilst honorary graduates include Sir John Surtees, Adrian Newey and Dr Pat Symonds.

Read less
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. Read more
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. The programme is designed to produce highly-skilled graduates who are ready to undertake advanced design roles with major engine manufacturers and their supply chain.

The UK is a world leader in motorsport and high performance engines industry - many of the world's most advanced high-performance engines are designed not far from our location in the UK motorsport valley. The department’s unrivalled access to motorsport industry informs and directs development and delivery of the programme.

In addition to the strong theory-based modules, graduates gain a comprehensive understanding of how winning engines are created. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work for most advanced high-performance engine manufacturers, such as Ferrari and Mercedes HPP, all of F1 teams and major suppliers to motorsport industry, such as Riccardo, Xtrac, Prodrive, and Hewland. Our programme has been developed with and delivered in collaboration with the automotive and motorsport industry: you will be taught by staff with many years of racing engine experience, from performance road cars, Rally, IRL, Kart and F3 right up to F1 and equipped with state-of-the-art equipment, that include four engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Industrial aspect of delivery is enhanced by our visiting speakers from business and industry, providing professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule.

Our close industry links can also be seen through research projects and consultancies that enable us to feed the latest technology and developments into our teaching as well as providing opportunities for students to undertake projects with neighbouring companies, also based in the UK Motorsport Valley, whilst our well-funded research programmes in areas of current concern such as vehicle end-of-life issues, modern composite materials and electric vehicles offer. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. You can put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. You will have an opportunity to work on our novel V-twin engine design and also select this as your dissertation topic, which may lead to the possibility of furthering their studies towards a PhD research degree.

Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology -- to get a flavour of the activities within our department see our 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Racing Engine Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules:
-Advanced Powertrain Engineering
-Computation and Modelling
-CAD/CAM
-Data Acquisition Systems

The Dissertation (core, triple credit) is an individual project on a topic from race engineering, offering an opportunity to specialise in a particular area related to high performance engines. In addition to developing your expertise in a highly specialised field, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. McLaren, AVL, VUHL etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation. .

Please note: As our courses are reviewed regularly, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work to demonstrate important aspects of theory or systems operation. Visiting speakers from business and industry provide valuable insights.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading motorsport companies, including directly into F1 teams and suppliers.

Read less
The Ceramics and Glasses research degrees are part of a progressive research area within the school; we have close links with industry and research councils and we work collaboratively with them on many areas of research within the subject. Read more
The Ceramics and Glasses research degrees are part of a progressive research area within the school; we have close links with industry and research councils and we work collaboratively with them on many areas of research within the subject.

Industrial application

Our research is concerned with the processing, characterisation and applications of structural and functional ceramic materials. Structural ceramics are used in engineering applications due to a combination of high strength, chemical / thermal resistance and extreme hardness. In contrast, functional ceramics exhibit unique electrical, magnetic and optical properties, which lead to applications in a diverse range of electronic components - filters in mobile telecommunications, exhaust gas sensors and pyroelectric thermal imaging cameras.

We are engaged in research to understand the structure-property relationships in a wide range of ceramic materials and to develop materials / components with enhanced properties. Materials are developed by conventional powder processing methods and by novel processing procedures.

Research projects

Active projects in this area involve a wide range of processing techniques for functional and structural materials - these techniques are employed in industries as diverse as power generation, mobile telecommunications, aerospace and medical implants. To understand the microstructure-property relationships for the ceramics, we make extensive use of specialist characterisation facilities available in the school and in partner institutions nationally and internationally.

Industrial links

Through our close relationship with industry, we ensure that the research we carry out is relevant and focused on the requirements of new technology. We currently collaborate on research with, amongst others, Rolls-Royce, British Nuclear Fuel, Xaar Printing Technology, Powerwave, Morgan Electroceramics, and BAE Systems. We are also supported by EPSRC, the European Commission, and British Energy.

Read less
The Ceramics and Glasses research degrees are part of a progressive research area within the school; we have close links with industry and research councils and we work collaboratively with them on many areas of research within the subject. Read more
The Ceramics and Glasses research degrees are part of a progressive research area within the school; we have close links with industry and research councils and we work collaboratively with them on many areas of research within the subject.

Industrial application

Our research is concerned with the processing, characterisation and applications of structural and functional ceramic materials. Structural ceramics are used in engineering applications due to a combination of high strength, chemical / thermal resistance and extreme hardness. In contrast, functional ceramics exhibit unique electrical, magnetic and optical properties, which lead to applications in a diverse range of electronic components - filters in mobile telecommunications, exhaust gas sensors and pyroelectric thermal imaging cameras.

We are engaged in research to understand the structure-property relationships in a wide range of ceramic materials and to develop materials / components with enhanced properties. Materials are developed by conventional powder processing methods and by novel processing procedures.

Research projects

Active projects in this area involve a wide range of processing techniques for functional and structural materials - these techniques are employed in industries as diverse as power generation, mobile telecommunications, aerospace and medical implants. To understand the microstructure-property relationships for the ceramics, we make extensive use of specialist characterisation facilities available in the school and in partner institutions nationally and internationally.

Industrial links

Through our close relationship with industry, we ensure that the research we carry out is relevant and focused on the requirements of new technology. We currently collaborate on research with, amongst others, Rolls-Royce, British Nuclear Fuel, Xaar Printing Technology, Powerwave, Morgan Electroceramics, and BAE Systems. We are also supported by EPSRC, the European Commission, and British Energy.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
Experiment, explore and discover your own creative identity while developing essential fashion design skills. You’ll benefit from our tutors’ extensive industry experience and contacts, equipping you for success in the competitive world of fashion. Read more

Experiment, explore and discover your own creative identity while developing essential fashion design skills. You’ll benefit from our tutors’ extensive industry experience and contacts, equipping you for success in the competitive world of fashion.

Introducing your course

The MA Fashion Design programme gives you the freedom to pursue your creative ambitions through experimental practice, personal research and critical evaluation. Working in purpose-built studios, you’ll cover core topics such as sketchbook development, visual research, sustainability and design, construction techniques and materials, CAD (computer-aided design) and fashion portfolio skills. We focus on a combination of hand making skills and techniques alongside the use of cutting-edge technologies; our superb facilities include bespoke pattern-cutting tables and industry-standard machines, traditional print and textile facilities as well as the latest technical and 3D printing technology. You’ll learn from tutors with years of professional fashion design experience and strong industry connections. They will work closely with you to help you develop your individual strengths and to enhance your employability. You’ll benefit from professional skills workshops, exposure to industry through live briefs and guest lectures, and the opportunity to showcase your work in Winchester and London. The teaching team’s extensive contacts can also facilitate internship opportunities with leading fashion companies.

Overview

We welcome students from a range of backgrounds, including recent graduates and those with some professional experience who are looking to advance their career. You’ll study with talented students from around the world, developing a global network of friendships and professional contacts that will be invaluable as your career progresses. Co-location with MA Textile Design students creates a stimulating studio environment in which students share ideas and draw inspiration from one another’s work.

As you’d expect from a Russell Group university masters degree, there is a strong emphasis on research within the course. We encourage you to underpin your studio work with an understanding of ideas and contemporary issues in fashion and society – for example, past students have investigated the idea of sustainably produced wedding dresses, the issue of modesty and clothing, and zero waste in fashion. 

In addition, you’ll be able to attend lectures and conferences run by the School’s renowned research and special interest groups, such as the Winchester Luxury Research Group, In The Loop and the Fashion and Sustainability Forum.

Click here to download the full Programme Specification.

Career Opportunities

We produce creative, technically accomplished graduates with a professional approach, who are sought after by top employers. You will be able to choose from a range of fashion roles, including fashion designer, costume designer, pattern cutter, illustrator, fashion/photographic stylist, trend forecaster, fashion buyer, visual merchandiser, social media, blogger or fashion editor. This degree is also excellent preparation if you are interested in taking your studies to PhD level.

Past students have gone on to jobs as fashion designers and design teachers all over the world. Others have started their own labels; one former student who has established a label in Hong Kong recently brought her collection to the Pure trade show in London.

Many students have been successful in applying for internships, for example at Gareth Pugh, Roksanda Ilincic, Jasper Garvida for Ethologie and Thomas Tait. Two students who undertook internships at notjustalabel.com now have their own labels in Hong Kong and New Delhi.



Read less
This is a creative, project-based course focusing on the practical and theoretical study of product design and its relationship to interaction. Read more
This is a creative, project-based course focusing on the practical and theoretical study of product design and its relationship to interaction. As an advanced product designer, this course supports your continued development and will refine your practice in interaction and user-centred product design.

The course explores academic theories as well as industry practice within interactive media, digital arts, entertainment and product design; and is a combination of two separate fields: product design and interactive media.

In Interactive Product Futures you will focus on user-centred design processes and research and analyse “user interaction” as your primary focus. The emphasis is on technology-mediated communication between humans and objects or spaces, allowing you to apply design and apply technological solutions to people’s infinite needs. You will also examine how technology gives personality to objects, and thereby how to ensure technology and design are more empathetic to people and their behaviours.

In the early units of the course you will be given short project briefs in which to design, implement, test and evaluate solutions in the form of an interactive product. Each project brief may take the form of an online or offline product; for example: an online quiz, an e-commerce type application, a toy. This is also an opportunity to produce a series of creative works within the specialisation of rapid prototyping (3D printing), animation, game design, web design, installation art, projection mapping, creative coding, computation design and entertainment media. The aim is to provide you with the opportunity to develop a software solution to a given problem, or aspect of a larger problem.

You will be encouraged to experiment with new ways of working with objects/scenarios and their integration with technology both creatively and collaboratively, and to apply emerging and existing technological solutions through personal fabrication, research and the experimental application of technology.

The course promotes cross disciplinary thinking as an approach to product design, so that the relationship between interactivity, artefacts, environments and the systems and organisations in which they operate can be re-examined.

By studying the course you will develop your creative design skills to innovate and influence product and interaction design practice and realise the commercial potential of your design proposals.

- Collaborative project
'The Digital Gym' project, which allowed students to research how emerging technologies are applied and user behaviour enhanced to provide a distinct, immersive gym experience on the Greenwich Peninsula.

Study units

- Technology Issues
- Business and Innovation
- Research Process
- Concept and Prototyping
- Major project

Through the Business and Innovation unit you will have the opportunity to explore the generation of innovative new business models that will help to shape your emerging project concept.

The Technology Issues unit encourages you to engage and explore emerging new technologies as well as skills in scripting and coding, first within a group, then as a cross-disciplinary, and finally in an individual project.

Through the Research Process unit, you will explore academic theoretical frameworks and research methodologies and their application within industry practice.

In both the Technology Issues and Concept and Prototyping units, youwill explore the dialogue between product and user, the function, usability and forms, flow and creativity and user experiences.

The course will culminate in your final Major Project.

Programme Aims

All postgraduate courses at Ravensbourne provide students with the opportunity to develop advanced skills in the conceptualisation and practical realisation of innovative creative projects in their discipline area and provide them with the entrepreneurial skills to realise their commercial potential. These courses share the following common aims:

- to develop advanced creative practitioners with the potential to originate, innovate or influence practice in their discipline area;

- to equip students with a comprehensive understanding of the core principles and technology underpinning their creative project and the theoretical frameworks within which to locate it;

- to underpin students’ creative practice with the entrepreneurial skills and business awareness necessary to turn concepts into commercially viable realities;

- to develop students’ skills in independent learning, self-reflection and research skills necessary to sustain advanced creative practice and scholarship;

- to offer a stimulating environment for postgraduate students which is both supportive and flexible in relation to their learning needs and a creative space in which to incubate their ideas.

Read less
The Clean Technology MSc/PGDip aims to train the Environmental Sustainability Managers of the future. Read more
The Clean Technology MSc/PGDip aims to train the Environmental Sustainability Managers of the future. With a focus on industry and commerce, we look at how companies interact with the environment through the raw materials and utilities they use, the products and services they provide, and their impact on the environment and society.

Based in the School of Chemical Engineering and Advanced Materials the course covers a wide field of disciplines and should appeal to any engineer, pure or applied scientist.

A key feature of the course is the involvement of industry and the opportunity to carry out a project based at a local company. This experience is a valuable addition to your CV and has resulted in excellent job opportunities. The use of real life case studies involving group work and role play underpins the course.

You will hear about job opportunities from our Careers Service as well as our extensive network of alumni. The course is broad which makes a variety of career options available.

Examples of roles our recent graduates are now working in include:
-Energy Manager
-Environmental Manager
-Waste Manager
-Health and Safety Managers (public and private sector)
-Sustainability Manager (in industry, public sector, health service, councils, police and universities)
-Officers for the Environment Agency (in areas such as waste, permitting, ecology, air quality)

You will also get involved in making our campus more sustainable. We were recently awarded a 'first' by People and Planet.

The Degree Programme Director, Dr Sue Haile, was awarded the Vice Chancellor's Teaching Award in 2012 and currently holds the RAE ExxonMobil Teaching Fellowship in recognition of her achievements in Sustainability education.

Delivery

The MSc course starts in September and consists of seven months of taught modules followed by a project written up as a dissertation.

Semester one modules are taught across the semester with typically two to three hours of lectures per week, case studies and presentations for each module.

Semester two modules are blocked with each module taking place over an intensive one to two week period.

Placements

We have placed students in over 300 companies (and in several countries) for their dissertation projects. These range from multinationals like Nestle, Procter and Gamble and HSBC to small and medium sized enterprises around the North East.

Projects topics are diverse and have covered:
-Life cycle assessment
-Carbon and water foot printing
-Implementation of Environmental Management Systems
-Energy and waste management
-Pollution impacts and mitigation
-Biodiversity
-Corporate Social Responsibility reporting
-Options for renewable energy

Many of these projects inform our teaching and provide case study material for student workshops.

Facilities

The School occupies five floors in Merz Court where we provide a Student Common Room and a separate Student Study Space.

As a Clean Technology student, you have a dedicated room with material to assist with your course including past dissertations, reference books and posters.

Read less
Wearable Futures is a cross-disciplinary umbrella programme for designers who are interested in the cluster of technologies and experiences that have the human body and its covering as their centre of focus. Read more
Wearable Futures is a cross-disciplinary umbrella programme for designers who are interested in the cluster of technologies and experiences that have the human body and its covering as their centre of focus.

The course offers a holistic environment based on the integration of creative computing, digital craftsmanship and material cultures, while also incorporating the technologies and advances in hardware that are impacting on manufacturing techniques and associated applications. Wearable futures has come about as part of Ravensbourne’s current commitment to become creative leader in the field of wearable applications and body-centric design. Ravensbourne's digital research culture is contributing significantly in this context.

The main conceptual framework for the course will be provided by theories of digital craftsmanship, body-centric technologies and phenomenological readings and speculative philosophy. These will form an important research foundation for building Ravensbourne’s critical reach and will assist in helping you to sift and prioritise the current trends and thought relating to fashion and discussion around the body within data informed spaces. An interdisciplinary field of study will include interaction and experience design (UX), “making” and open source culture, design innovation and applied philosophy. You will be introduced to philosophical trends and these will tie in with your practice and help you to develop a critical view incorporating design fiction and other emerging theories. You will engage with research methods such as participatory, user study and user-centered design.

"One of the exciting things about the design industries today is that boundaries of former categories such as fashion, product or experience design have been broken down" - Alexa Pollman, Subject leader, MA Wearable Futures.

The course is a platform for investigation, dissemination and analysis around contemporary theory and practice in the wearable industries. The course’s core role will be to foster your understanding of this market and to identify latent demand within the commercial sphere and to highlight future applications and directions. The aim will be to help you to influence the decision makers so that wearable solutions will be accepted and meet the cultural and ethical expectations when designing for the human body and the garment-industry. You are expected to consider the cultural and social role inherent to fashion as a part of wearable futures.

Wearable futures students will focus their investigations on the key flashpoints of the body as an interface for what is a symbiotic, physical and digital exchange. As part of the design methodology of the course, you will be asked to develop future scenarios and narratives in order to help you and your clientele to understand the concomitant social, environmental or cultural challenges of designing for a matter as delicate as the human body.

"At the moment we’re still very much in the “task” piece of wearable computing, not in the symbolic “how do we make sense of it” piece. I think in the wearable space we are still bringing all the old metaphors of computation with us and still interpreting them in a somewhat literal way—that they are a smaller smartphone, or a little computer. It will become much more interesting when we let go of that and work out the promise that wearable computing will make to us." Genevieve Bell, Anthropologist at Intel

Get to know the subject leader: Alexa Pollman

- Tell us about yourself

For me, garments are social reactors and I like to challenge the current notion of ‘wear’. I have experienced the industry from different angles: my original profession was in fashion design, but I have also worked as a creative consultant and spent my fair share of time in showrooms, for both – big and small brands.

I completed the Design Interactions Programme at the Royal College of Art, and collaborating with various disciplines has enriched my perspective as a designer.

Luckily, I have been awarded different grants that have allowed me to pursue my own work - Peut-Porter is my design consultancy agency and platform which researches and provides forecasts on wear and fashion. Currently, I am Designer in Residence at the Design Museum London and will have new work on show from September 2015.

- What's your opinion on the current state of wearable futures?

We currently find a variety of opinions on wearables and truthfully spoken, I see a lot of problems occurring with their application. This is why it is important to train specialists who can engage with the topic in a much broader sense than is currently being done by the industry. Our wearable futures students will be asked to be highly innovative but at the same time engage with the cultural and social impacts of body-centric design. We need them to bridge the gap between artisans and material or textile specialists and the tech world.

The fashion system successfully uses technology in many experience-based ways and this seems like a very natural process to me as the narrative, experience-based aspect seems inherent to fashion. Wearable futures will not only produce gadgets and devices, it will help to define our relationship to technology when it enters our personal spheres, it will look at the moral and ethical side of data-capturing as well as its technological possibilities and ask students to research and design future aspects and needs of wear.

- Is this course right for me?

This course will focus on body-centric design – a topic which is currently being explored in a massive range of disciplines. We will ask for an extremely flexible mind, someone who is eager to work with various media and collaborate with science, engineers and artists to create their own definition of wearables.

Studying an MA should allow a student to find his or her very own position, strength and reason to design. Whether their work will have a technological, experiential , future or fashion focus will in the end be very much up to what they have decided to explore in the process. We want students to become ambassadors who understand not only the technological aspects and applications of wear but the medium that they will most closely be working with – the human body.

- Why are you so passionate about this course subject?

I think the course has potential to become a wake-up call – what are we doing to ourselves and our bodies? How much more obsessed with data capturing and monitoring will we become? We can’t ignore the trends and tendencies but we need to discuss and open up the field, get some creative minds together and talk about the cultural meaning of ‘wear’ and how that can work intriguingly when paired with technology.

For me, one of the big pluses of Ravensbourne is the fact that it doesn’t have a ‘traditional’ fashion orientation but instead is very interested in the digital and technological aspects of education. I especially feel that our MA courses have a lot to offer in terms of a general interdisciplinary approach, more so because they take in a small amount of people. Designers need one another to work and explore their role and as the MA’s share the same space, we will surely see a lot of cross overs with the other courses. Also, we have had quite some interest from big industries and I think we will see some exciting collaborations happening here in the future.

Course structure

1. Technology Issues – will ask you to engage and experiment with technologies used in the body-centric design sector. The three provided project briefs will explore such fields as data-capturing, 3D Printing and alternative production methods or sensory technology. You will work with fellow students and develop quick mock-ups to understand the mediums at hand and create wear with a focus on experiences.

2. Business and Innovation – will help you understand the business and innovative practices used in the creative industries. Could your idea become a successful product and how can you find a niche to place yourself in? Wearable Technology is one of the quickest growing markets of the industry and your contribution to the field could have manifold impacts.

3. Concept & Prototyping – will allow you to develop your personal design method and introduce you to an holistic design-strategy. You will be asked to present your concepts employing various media and design speculative, narrative and plausible futures in order to challenge and understand the needs, hopes and dreams related to wearables.

4. The Research Process – will help you to investigate and strengthen your concepts and ideas by teaching you the skills and methods needed to ground you personal project in an academic context.

5. The Major Project – represents the culmination of the design work and the research you conducted in your studies. In this unit, you will forge a specialist project and work self-managed and practice-based, seek advise from specialists outside the college and present your personal take on the future of wearables.

Read less
This is your chance to be at the forefront of the latest advances in 3D printing and advanced engineering design. Read more

Overview

This is your chance to be at the forefront of the latest advances in 3D printing and advanced engineering design. Whether you already hold a degree in engineering or have a related physical sciences, design or mathematical background, this course will develop your skills and knowledge in additive manufacturing to meet the demands of industry worldwide.

Covering a range of topics from product design to 3D CAD modelling, additive manufacturing strategy to engineering management, our course equips you with the end to end knowledge required to produce prototypes and products across a range of industries including the biomedical and aviation sectors.

Our impressive facilities will provide you with access to advanced computer based analysis and modelling software, together with leading-edge engineering facilities including 3D printers and a metal direct metal laser sintering machine.

Throughout the course, emphasis is placed on the development of problem-solving skills, together with those critical, analytical, interpersonal and computational skills, which are directly applicable to additive manufacturing engineering.

Recognising the importance of teamwork to the success of organisations and projects, the Course includes the development of the knowledge and skills required to effectively lead and manage teams. It also recognises the growing importance of environmental influences and the demands of health and safety.

Careers

Our course will help you develop a career in engineering, or give you an additional skills boost if you’re already working in the industry. You may want to work as a production or research engineer, mechanical designer or technical lead working directly in engineering and design or, use this degree as a step towards a career in operations, project management or consultancy. You’re also in the perfect position to continue your research with our Professional Doctorate in Science and Technology - http://www.anglia.ac.uk/study/postgraduate/professional-doctorate-in-science-and-technology

Assessment

You’ll be assessed in a variety of ways, including written assignments, portfolios, presentations, analysis reports and an Industry Based Project.

Where you'll study

Your faculty -

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Visit your faculty - http://www.anglia.ac.uk/science-and-technology

Where can I study?

Chelmsford - http://www.anglia.ac.uk/student-life/life-on-campus/chelmsford-campus

Read less
The course philosophy is that of experimentation, offering a challenge to conventional notions of medium - specificity in order to properly facilitate your ‘style' of expression and your inherent interests. Read more
The course philosophy is that of experimentation, offering a challenge to conventional notions of medium - specificity in order to properly facilitate your ‘style' of expression and your inherent interests.

Course Overview

MA Textiles within the Contemporary Dialogues portfolio offers an exciting and innovative re-thinking of Postgraduate provision that reflects the strategic thinking of Swansea College of Art. The portfolio facilitates migration between diverse thematic disciplines, exploring new ideas and conceptual approaches to allow young artists and designers to confront the issues that face society today and into the future.

The portfolio’s ethos of collaborative dialogues through material practices provides an innovative model of design, fine and applied arts education. This development allows students from all pathways to experience and share creative practices and innovative mind-sets through inter-disciplinary and trans-disciplinary dialogues. This ethos is enhanced within each programme to stimulate ‘collaborative’ practices and experimentation across a broader spectrum of specialist fields, developing graduates with the contextual awareness, creative thinking and technical skills to operate at the forefront of their discipline.

During the course of your studies you will be supported by specialist staff, leading professionals and practicing artists through lectures, seminars, workshops and tutorials. We have exceptional traditional and digital facilities, housed in spacious purpose-build workshops. Through these, we encourage creative freedom within all of our students and support you in challenging conventional thinking and established practices and facilitate new technological advances across a broad range of disciplines. We have found that through collaborative experimentation and innovative design thinking our students are able to produce work that meets the challenges and respond to the demands of the 21st century.

Facilities include:
-Firing kilns for glass and ceramics
-Printmaking, Screen Printing and Digital Textile Technologies
-Traditional and Digital Stitch
-Wood, Metal, Clay
-Cutting Etching and Engraving Technologies - Waterjet, Laser, Plotter
-3D Printing and CNC
-Chemical and Digital Darkrooms
-Specialist computer facilities with commercial standard software

Modules

-Collaborative Dialogues (20 credits)
-Co-Existent Perspectives (20 credits)
-The Thought Experiment (20 credits)
-Explorative Research Praxis (60 credits)
-Confirmative Praxis (60 credits)

Key Features

Students use the Masters Programme for all kinds of reasons; to gain an extra qualification, to achieve a higher and more sophisticated level of practice, as well as to have supported research and development time in order to elevate themselves to a more professional plateau with their artwork. Students from the Masters Programme have gone on to many varied careers in teaching and lecturing positions, in community arts and the cultural industries in general. Lots have continued to practice as artists and some have progressed to PhD study.

The programme has access to well equipped workshops including a resin, plaster, wood, metal and ceramic.
Beyond this specialist equipment, you will also have access to an extensive range of facilities including an excellent library, open-access computer suits and workshops in other areas within the art school. 
We currently have two research centres within the faculty.These research centres provide staff with research opportunities and access to high technology resources, they provide students with placement opportunity whilst also developing the creative industries infrastructure in the region, which will benefit graduating students.

CIRIC The Creative Industries Research and Innovation Centre was established in 2005 and is a knowledge transfer centre for projects that support the creative industries in Wales.

Current projects include Moving Image Wales, which supports the digital media industry, the Textiles Technologies Project, which supports the textiles and apparel industries, CIME, which supports business through creative intervention and SATnet, which provides a link between artists and businesses in the science and technology sectors. In addition, IPCRES is also based in CIRIC and is developing and disseminating research about durational and event based practices.

Alongside the numerous projects operating within CIRIC, there is also a Design Bureau, with water jet cutting, laser cutting and fabric printing services.

 The Centre for Lens Arts and Science Interaction is a research centre based within The Dynevor Centre for Art, Design, and Media at Swansea Metropolitan University. CLASI aims to encourage and promote interdisciplinary research projects, which stimulate research, innovation, and experimentation across photographic, digital and electronic arts. A strong emphasis is placed on research strands where the histories, philosophies and practices of art and science intersect. The definition of art and science is intentionally broad and the centre is aligned with SATnet and CIRIC.

Assessment

Our students have access to a diverse range of equipment and resources, which in most cases are sufficient to complete their programme of study. We provide the basic materials necessary for students to develop their practical work within our extensive workshop and studio facilities. However, it is likely that art and design students will incur some additional costs to extend their investigation of their personal practice. For example, purchasing their own specialised materials and equipment, joining in optional study trips, and printing.

Read less
Channel your creativity and join a multi-skilled team to develop the next generation of video games. On our arts-based MA, you’ll join the vibrant games and technology community based here in Cambridge that includes Guerrilla, ARM, Frontier Developments, Jagex and Ninja Theory. Read more
Channel your creativity and join a multi-skilled team to develop the next generation of video games. On our arts-based MA, you’ll join the vibrant games and technology community based here in Cambridge that includes Guerrilla, ARM, Frontier Developments, Jagex and Ninja Theory.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

See the website http://www.anglia.ac.uk/study/postgraduate/computer-games-development-art

If you have a degree in an art and design or computer games-related subject, our course will allow you to specialise in games art at Master's level.

Based in the inspiring environment of our new Compass House Games Centre, you’ll learn all about best practice in the games industry. We’ll encourage you to work in design production teams, tackling a series of creative and technical challenges with programmers and industry professionals. You'll develop your design skills and learn how to create and publish successful games across a range of platforms.

Cambridge accounts for nearly 20% of the UK computer games industry, so it's a great place to study as we enjoy excellent links with the major games developers in the area. What's more, our Computer Games Centre offers studio space to local indie developers, who'll share their knowledge and experience with you.

We're partners with the Global Science & Technology Forum, allowing our students access to cutting-edge research materials.

While you're studying, we'll encourage you to take on work placements and collaborate on live projects with the games industry. You’ll also have the chance to enter games events, such as Brains Eden, which Anglia Ruskin hosts every year.

This course runs in parallel with our MSc Computer Games Development (Computing), reflecting the multidisciplinary nature of games creation.

See the website http://www.anglia.ac.uk/study/postgraduate/computer-games-development-art

Careers

Our MA gives you the chance to specialise in the design and technical implementation of computer games, whether you already have a games-related degree, or you're a recent graduate of a non-games-related degree who's looking to move into this area. Our course is also suitable if you work in another creative industry and are looking to move into games design and creation.

The skills you'll learn on this course are relevant to other forms of games - including board games and educational games - allowing you to consider a number of career options.

Interactive computer games is a relatively new medium; as the industry grows, you’ll find more and more opportunities to use the computing and creative skills you'll hone while studying here.

Modules & assessment

Core modules:
Process and Practice as Research
Games Development 1
Games Development 2
Digital Arts - Experimental Practice
Master's Project: Art and Design

Assessment

You’ll show your progress through a combination of written and practical work, carried out individually and as part of a team.

What you'll study

Cambridge School of Art has been inspiring creativity since 1858 when it was opened by John Ruskin.

Engaging with current debates surrounding contemporary practice and with the state-of-the-art facilities, Cambridge School of Art houses light, bright studios, industry-standard film and photographic facilities, and 150-year-old printing presses alongside dedicated Apple Mac suites. Our digital art gallery, the Ruskin Gallery, exhibits both traditional shows and multimedia presentations, from national and international touring exhibitions and our own students.

We are the only university in Cambridge offering art and design courses at higher education level. A tight-knit community of artists, academics and over 900 students, we collaborate across our University, the creative industries, and other sectors. Cambridge is a centre for employment in the creative industries and there are rich opportunities for collaboration with the city’s entertainment, technological, scientific, arts and heritage industries.

Our graduates have a history of winning national and international awards and an excellent employment record. They include Pink Floyd's Syd Barrett and Dave Gilmour, Spitting Image creators Peter Fluck and Roger Law, and illustrator Ronald Searle, the creator of St Trinian's.

We’re part of the Faculty of Arts, Law and Social Sciences, a hub of creative and cultural innovation whose groundbreaking research has real social impact.

Facilities

Based at the new Compass House Computer Games Centre, a three-minute walk from our main Cambridge campus, you’ll have 24-hour access to a hub space with group work naturally forming a part of your studies.

The centre includes a start-up lab for small games companies, supported by Games Eden, the Cambridge Computer Games industry network. This will give you excellent opportunities to work in an entrepreneurial games environment.

All students on our Computer Games courses – undergraduate and postgraduate – have access to industry-standard PCs running Maya, 3DS Max, ZBrush, Mudbox, Motion Builder, After Effects, Unity 3D, and UDK. You’ll be able to use motion capture equipment, 3D monitors, VR equipment, graphics tablets, a render farm, HD cameras and digital SLRs (for HDRI capture).

Links with industry

Cambridge is home to nearly 20% of the UK’s computer games industry, including Sony’s Guerrilla Studios, ARM, Jagex, Ninja Theory, Frontier, Geomerics and a host of smaller indie developers. Our Computer Games Art department is a member of TIGA, the Business & University Games Syndicate, and a partner of the Global Science & Technology Forum, giving you access to cutting-edge research materials.

Read less

Show 10 15 30 per page



Cookie Policy    X