• University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Cardiff University Featured Masters Courses

Postgrad LIVE! Study Fair

Edinburgh

University of Hertfordshire Featured Masters Courses
Birmingham City University Featured Masters Courses
University College London Featured Masters Courses
University of Leeds Featured Masters Courses
ETH Zürich Featured Masters Courses
"plant" AND "science"×
0 miles

Masters Degrees (Plant Science)

We have 236 Masters Degrees (Plant Science)

  • "plant" AND "science" ×
  • clear all
Showing 1 to 15 of 236
Order by 
In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more

In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This course will give you specialist training in the modern molecular aspects of plant science. A large part of your teaching will be delivered by academics from the University’s Centre for Plant Sciences (CPS) linked to the latest research in their areas of expertise.

You’ll explore the wide ranges of approaches used in biomolecular sciences as applied to plant science. This will cover theory and practice of recombinant DNA and protein production, bioimaging using our confocal microscope suite, practical bioinformatics and theories behind ‘omic technologies.

You’ll also learn how to design a programme of research and write a research proposal, read and critically analyse scientific papers in plant science and biotechnology and present the findings. A highlight of the course is your individual 80 credit practical research project.

The course is 100% coursework assessed (although some modules have small in course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Our Facilities

You’ll study in a stimulating environment which houses extensive facilities developed to support and enhance our faculty’s pioneering research. As well as Faculty operated facilities, the CPS laboratories are well equipped for general plant research. There is also a plant growth unit, including tissue culture suites with culture rooms, growth rooms and flow cabinets alongside transgenic glass-houses to meet a range of growth requirements.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular plant sciences.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based mini project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

A module on plant biotechnology will address current topics such as the engineering of plants, development of stress-tolerant crop varieties and techniques for gene expression and gene silencing through reading discussion and critical analysis of recent research papers.

You’ll learn from the research of international experts in DNA recombination and repair mechanisms and their importance for transgene integration and biotechnological applications; plant nutrition and intracellular communication; and the biosynthesis, structure and function of plant cell walls.

You’ll also explore the wide range of approaches used in bio-imaging and their relative advantages and disadvantages for analysing protein and cellular function. Bioinformatics and high throughput omic technologies are crucial to plant science research and you will take modules introducing you to these disciplines.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

Compulsory modules

  • Bioimaging 10 credits
  • Topics in Plant Science 10 credits
  • Practical Bioinformatics 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Plant Science and Biotechnology MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist plant science modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Plant Science and Biotechmology MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora.

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.



Read less
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Animal and Plant Science is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students must talk to their proposed supervisor about possible project areas (see below) and have a project approved by interview with the supervisor and Head of Discipline prior to application via http://www.pac.ie (PAC code: CKS81).

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

BL6010 Characteristics of the Marine Environment (5 credits)
BL6012 Marine Megafauna (10 credits)
BL6016 Marine Ecology and Conservation (10 credits)
BL6019 Ecological Applications of Geographical Information Systems (5 credits)
BL6020 Genetics and the Marine Environment (5 credits)
BL4004 Frontiers in Biology (5 credits)
BL4005 Research Skills in Biology (5 credits)
BL4006 Food Production (5 credits)
PS6001 Plant Genetic Engineering (5 credits)
PS4024 Crop Physiology and Climate Change (5 credits)
PS4021 Environmentally Protective Management of Plant Pests and Pathogens (5 credits)
ZY4021 Evolutionary Ecology (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Animal or Plant Science.

Current projects:

- The effect of lactation housing on the behaviour and welfare of pigs
- Understanding viral pathways in marine environments
- Distribution and diet of otters in a rural/urban streamscape
- Novel approaches in the use of freshwater macroinvertebrates for biomonitoring
- The ecology of Sika/Red/Fallow deer in Ireland
- Catching prey; the role of Ultraviolet radiation in attracting insects by carnivorous plants
- Birds as dispersers of plant propagules
- Does the phytotoxicity of nanoparticles depend on environmental parameters?
- The role of biochar as a sustainable soil amendment
- Effects of Eutrophication in shallow subtidal marine systems
- Use of Brachypodium sylvaticum as a model for growth regulation in perennial forage grasses
- Effect of temperature on spring growth of perennial ryegrass cultivars

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Animal or Plant Science.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Animal or Plant Science.
- Understand the basis and application of field and laboratory methods used in Animal and Plant Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills (e. g. biostatistics).
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication

How to apply

Students should consult the MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Read more
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

The aims of the programme are:
• To provide knowledge of the science of plant biology and its application in the commercial and research arena
• To introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
• To examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
• To allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Visit the website http://www.gre.ac.uk/pg/engsci/aps

Food and Agricultural Sciences

The Natural Resources Institute (NRI) has an internationally-recognised academic reputation and provides taught postgraduate courses in a wonderful environment for students.

NRI provide research, consultancy, training and advisory services to underpin sustainable development, economic growth and poverty reduction. The majority of our activities focus on the harnessing of natural and human capital for the benefit of developing countries, though much of our expertise has proved to be of growing relevance to industrialised nations.

What you'll study

• Molecular and plant biology principles for plant improvement
• Research methods in plant science
• Independent research project
• Plant growth and cropping technology

Options:
• Agroforestry
• Agronomy and crop physiology
• Applications and aspects of commercial crop science
• Food and markets
• Planning for personal and professional development
• Plant disease management

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Examinations, coursework, research project dissertation.

Specialist equipment/facilities

Molecular biology laboratories, horticultural and agricultural facilities

Career options

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we cannot do without plants.

Study Programme

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. It not only covers the technological aspects of crop production, but also deals with important environmental, quality, health and socio-economic aspects. Interdisciplinarity is a hallmark of the programme.

On the programme of Plant Sciences page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Sciences are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels, based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we can't do without plants. Modern molecular biology has opened up a whole new range of techniques and possibilities to scientists working in the different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology). The combination of these disciplines forms a challenging domain: Plant Biotechnology.

Study programme

Plant Biotechnology aims to impart understanding of the basic principles of the plant sciences and molecular biology, as well as the integration of these disciplines, to provide healthy plants in a safe environment for food, non-food, feed and health applications. Besides covering the technological aspects, Plant Biotechnology also deals with the most important environmental, quality, health, socio-economic and infrastructural aspects.

On the programme of Plant Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Biotechnology are university-trained professionals. Their main career focus will be on research and development positions at universities, research institutes and biotech or agribusiness companies. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Molecular Life Sciences 

MSc Plant Sciences

MSc Nutrition and Health

MSc Bioinformatics 

MSc Biology 



Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. Read more
MPhil students must submit a dissertation for examination within the maximum period of their study. All graduate students attend induction and safety training courses in the department. As well as undertaking your research, you will attend courses and lectures on some of the following: instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations. Termly reports are provided on your work.

The course enables students to initiate careers in a wide range of disciplines including plant genetic engineering, plant development, plant molecular biology, plant biophysics, plant biochemistry, plant-microbe interactions, algal microbiology, plant ecology, crop biology, plant virology, plant epigenetics, epidemiology, plant taxonomy, plant physiology, eco physiology and bioinformatics.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blpsmpbsc

Course detail

For students wishing to continue on to the PhD the MPhil provides suitable foundations. For students not wishing to continue the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group. This training also enables students from other scientific areas to proceed in a career in Plant Sciences and other allied areas. General training is also available and includes courses and lectures in instrumentation, sequencing and database use, statistics, experimental design, analysing data, writing reports and a dissertation, introduction to MIMAS (a national data centre run by the University of Manchester), and how to give effective scientific presentations.

Format

The Department has the overriding aim to provide all its Graduate Students with every opportunity for a broad education and a compatible environment in which they may complete a PhD or MPhil successfully. The Department will aim to provide guidance and, where appropriate, the facilities to allow Graduate Students to develop a number of different skills including:

- Research methodologies and the process of research including quantitative and qualitative methods and data analysis; project planning and management
- The effective use of learning resources including library and information technology
- Personal skills including oral and written communication, time management and team work skills, professional development and the preparation of curriculum vitae and employment applications
- A broad knowledge of the discipline in which the Student is working
- Technical training to enable the Student to undertake their research work effectively and efficiently
- Professional presentations

After the end of each term, the Graduate Education Committee will ask for a brief report on your progress from your Supervisor. This information will be made available to you and you will be invited to respond to comments made in a termly self-assessment. This will allow you to review your own progress and to highlight any difficulties you feel you are facing.

Assessment

A submission of a Masters dissertation, with a word limit of 20,000 words, is required within 12 months from a student's registration date.

A viva voce examination of the dissertation will normally then take place.

Continuing

On successfully passing their MPhil, students are welcome to apply to continue to a PhD. Continuation is dependent on the approval of the receiving Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Individual supervisors may hold grant linked or CASE studentships. It is best to contact supervisors directly to inquiry into availability.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
A core feature of the degree is the development of independent research skills, including the collection and analysis of data and critical review of the relevant literature. Read more

A core feature of the degree is the development of independent research skills, including the collection and analysis of data and critical review of the relevant literature.

The MSc(Research) normally takes two years of full-time study to complete, but you have the option to complete on a part-time basis.  In the first year you will complete 120 points of taught papers with the second year spent doing a 120 point research thesis.

Study an MSc(Research) at Waikato University and you will enjoy more lab and field work, more one-on-one time with top academics and access to world-class research equipment. Our great industry contacts will also mean exciting collaborations with local, national and international companies and organisations.

Facilities

The University of Waikato’s School of Science is home to a suite of well-equipped, world-class laboratories.  You will have the opportunity to use complex research equipment and facilities such as NMR spectroscopyDNA sequencing and the University of Waikato Herbarium.

The computing facilities at the University of Waikato are among the best in New Zealand, ranging from phones and tablets for mobile application development to cluster computers for massively parallel processing. Students majoring in Computer Science, Mathematics and Statistics will have 24 hour access to computer labs equipped with all the latest computer software.

Practical experience

You will spend more time putting theory into practice in the laboratories and out in the field. Smaller class sizes in taught papers mean more one-on-one time with renowned academics.

The University of Waikato also boasts excellent industry collaborations with organisations such as NIWA, AgResearch, Plant and Food Research and Landcare Research. These strong relationships generate numerous research projects for MSc(Research) students, who are able to work on real issues with a real client.

Subjects

Students enrolling in an (MSc(Research) via the Faculty of Science & Engineering can study Biological SciencesChemistryEarth SciencesElectronicsEnvironmental SciencesMaterials and ProcessingPhysics or Psychology.

Students taking  Computer ScienceMathematics or Statistics will enrol through the Faculty of Computing & Mathematical Sciences.

Career opportunities

  • Local and Regional Council
  • Crown Research Institutes
  • Energy Companies
  • Environmental Agencies
  • Government Departments
  • Biomedical/Pharmaceutical Industries
  • Private Research Companies
  • Food and Dairy Industries
  • Agriculture and Fisheries


Read less
BioSciences comprises the biological sciences, including the overarching fields of plant science, genetics and zoology. As a student in the Master of Science (BioSciences), you will have the flexibility to build a degree to suit you, with world-renowned academics and researchers teaching across three discipline areas. Read more

BioSciences comprises the biological sciences, including the overarching fields of plant science, genetics and zoology.

As a student in the Master of Science (BioSciences), you will have the flexibility to build a degree to suit you, with world-renowned academics and researchers teaching across three discipline areas: ecology, evolution and environmental science; genetics, genomics and development; and plant science. You will complete a major research project in one of these areas, and pair this with complementary professional skills in communications, business and science application.

Students in the Master of Science (BioSciences) who have a weighted average mark of 80% or higher in the prerequisite undergraduate major, are eligible for consideration for the Graduate Research Program in Science. This is a five-year course of study comprising the Master of Science and the Doctor of Philosophy (PhD).



Read less
Food production has tripled in the last forty years, but one billion people still go hungry every year. On average 30% of all food produced is wasted in the pathway from ‘field to fork’. Read more

Food production has tripled in the last forty years, but one billion people still go hungry every year. On average 30% of all food produced is wasted in the pathway from ‘field to fork’. With the global human population set to rise from seven to over nine billion by 2050, we urgently need sustainable solutions that will allow us to increase the global food supply while preserving the integrity of agricultural and non-agricultural ecosystems.

Our trees and forests face new plant health threats which in turn threaten areas of great natural beauty and diversity, and affect both rural and urban landscapes. Our unique MSc Sustainable Plant Health will give you the opportunity to develop your understanding of the vital role of plant health, applying your skills by conducting laboratory and field studies.

This programme is primarily aimed at graduates wishing to pursue a career in plant protection in agriculture, horticulture, forestry or urban settings, and also careers in policy development and implementation, plant health inspection, academic and industrial research, consultancy and conservation management, and private industry.

Programme structure

This 12 month programme involves two semesters of classes followed by an individual research project. Students will take 80 credits of compulsory courses, with the opportunity to choose two optional courses. Field trips will also form a crucial part of this course.

Compulsory courses typically will be*:

  • Fundamentals of Plant Health
  • Forensic Plant Health
  • Plant Health in a Global Context
  • Research Skills and Field Trip
  • Dissertation

Option courses may include* (select two):

  • Applications in Ecological Economics
  • Atmospheric Quality and Global Change
  • Case Studies in Sustainable Development
  • Ecology of Ecosystem Services
  • Ecosystem Service Values
  • Environmental Impact Assessment
  • Forests and Environment
  • Foundations in Ecological Economics
  • Frameworks to Assess Food Security
  • Human Dimensions of Environmental Change and Sustainability
  • Interrelationships in Food Systems
  • Land Use/Environmental Interactions
  • Principles of Environmental Sustainability
  • Soil Ecology and Taxonomy
  • Soil Protection and Management
  • Soil Science Concepts and Application
  • Sustainability of Food Production
  • Understanding Environment and Development

*Please note: courses are offered subject to timetabling and availability and are subject to change each year.

Learning outcomes

On completion of this course our graduates will have gained:

  • Specialist knowledge and understanding of plant health, and its evaluation, impact and management
  • Skills to detect and identify agents detrimental to plant health
  • An understanding of the nature and diversity of plant health interactions
  • The ability to develop strategies for plant health management taking into account their impact on agricultural and non-agricultural ecosystems
  • Knowledge of the relevance of plant health to sustainability and food security
  • Improved analytical skills and critical thinking

Career opportunities

Plant health scientists are employed in a range of vocations: environmental consultancy, research, overseas development, agriculture, horticulture, forestry, urban planning, policy development, plant inspection and management. Long term career prospects are strong as agricultural scientists will continue to be needed to balance increased output with protection and preservation of ecosystems.

Our graduates will gain particularly valuable skills due to our programme's unique approach looking at impacts across ecosystems. They also benefit from the applied nature of the course allowing them to use their practical skills in a range of field trip environments with expert supervision.



Read less
Dig deeper into horticulture. Use Massey’s experts and world-leading facilities to develop your own ground-breaking research. Find out more about the . Read more

Dig deeper into horticulture

Use Massey’s experts and world-leading facilities to develop your own ground-breaking research.

Find out more about the Master of Science parent structure.

With Massey’s Master of Science (Horticultural Science) you can take advantage of Massey University’s 80 years of research and teaching experience in agriculture and horticulture to create your own innovative research project. Massey University’s horticultural science programme is the most research focussed in New Zealand.

Take advantage of our globally-renowned expertise

Let our experts help you develop your own expertise. You will learn from, and research with, highly-skilled internationally-recognised and active researchers in horticulture, with a huge depth of knowledge and experience. Our current specific areas of horticulture research expertise include fruit and vegetable innovation, high-value plant products and services, applied plant and horticultural science and seed science and technology.

You will also be able to take advantage of Massey’s expertise across the sciences. We have a wide and relevant group of expertise within the university, from engineering and fundamental sciences like microbiology and biochemistry, to agriculture, environmental management and food technology and innovation. 

This means no matter what your research interest you will have access to a broad range of experts to assist you develop your own research project.

Use world-leading equipment and facilities

As a horticulture student you will have access to our world-leading equipment and facilities such as our controlled environment plant growth facilities, the unique and extensive university orchards and state-of-the-art plant physiology and biology equipment.

Award–winning labs

Massey’s Manawatu campus hosts the only multi-function teaching laboratories in Australasia. The labs, built in 2010, won a Best Practice Award for Innovation at the Association for Tertiary Education Management conference in Australia and was shortlisted for the international UKS-Lab awards.

The facility is unique in Australasia in that it allows each laboratory to be tailored to accommodate a variety of disciplines. Technicians can do preparation in the dedicated technical area before moving this into the lab, which means students can spend more time doing lab practical work.

Be surrounded by the best

Massey University is a partner in the Joint Graduate School for Horticulture and Food Enterprise (with Plant&Food). Massey University is also home to ‘foodHQ’, New Zealand’s international centre for collaborative food research. FoodHQ is a collaboration between organisations including Massey University, AgResearch, AsureQuality, the Cawthorn Institute, SR, Fonterra, Plant & Food Research and the Riddet Institute. There is a breadth of horticultural research activities at Massey, including the work to understand the effects of light in improving crop production and quality, research on fruit crops such as kiwifruit and apples, Maori vegetable crop science, and plant disease.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. Massey has strong links with industry, used to help our students find relevant and topical research projects.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning and undertaking research.

Complete in 1.5 years

Massey University’s Master of Science is primarily a 180 credit master qualification. This is made up of 90 credits of taught courses and a 90 credit research project.

A 240 credit MSc is also available if you want to do more in-depth research. 

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
The Master of Applied Science (MAppSc) is a 180-point, coursework postgraduate degree. A candidate would normally be a graduate but the degree is also open to those with other relevant qualifications. Read more

The Master of Applied Science (MAppSc) is a 180-point, coursework postgraduate degree. A candidate would normally be a graduate but the degree is also open to those with other relevant qualifications.

The MAppSc is designed for students who wish to pursue an interdisciplinary programme of study underpinned by science that delivers versatile skills relevant to multiple end-users. Optional paths are available that enphasize commercialisation, workplace-based projects or independent study.

The MAppSc can be completed in 12 months or in stages, providing flexibility for recent graduates and those currently employed.

Subject areas

View the list of subjects offered for the Master of Science (MSc) and the Master of Applied Science (MAppSc).

Structure of the Programme

The programme of study:

-shall consist of approved papers at 400-level or higher worth at least 180 points, selected from the papers specified in Science Schedule D for the Master of Applied Science subject concerned, and including at least one of APPS 596-598

-shall normally include papers from more than one subject.

-may, with the approval of the Head of Department or Course Director concerned, include papers worth up to 60 points from 400- and 500-level papers other than those specified in Schedule D.

-A candidate who has completed the requirements for the Postgraduate Certificate or the Postgraduate Diploma in Applied Science shall be exempted from those papers in the programme for the degree which have previously been passed for the certificate or diploma.



Read less
Our MSc Bioscience course gives you the opportunity to develop a broad scientific base on which to build your future career. On this course you’ll study core research training modules designed to equip you with the expertise needed to work at the forefront of the modern bioscience sector. Read more

Our MSc Bioscience course gives you the opportunity to develop a broad scientific base on which to build your future career.

On this course you’ll study core research training modules designed to equip you with the expertise needed to work at the forefront of the modern bioscience sector. You can specialise in exciting contemporary topics in the areas of human disease, bioinformatics, biotechnology and plant science, and choose from a range of optional modules, including those associated with the specialisms we offer. This means you can study the topics that interest you and match your career aspirations.

You’ll also carry out an independent research project in an area related to your course options.

The course is 100% coursework assessed (although some modules have small in-course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Course content

This course is designed to equip you with the expertise necessary to work at the forefront of the modern bioscience sector. We’ll offer you a combination of practical training and theoretical modules to help you build your knowledge and skills.

The practical experience you gain during this degree is a vital part of your career preparation. You’ll receive substantial training in practical methods and technologies currently being used to advance the biological sciences.

During the course you’ll apply yourself through core research training modules. You’ll undertake a laboratory-based mini-project providing a hands-on experience in molecular biology techniques. You’ll also carry out a laboratory-based independent research project on an innovative topic related to your course options.

Importantly, we’ll also give you a strong foundation of theoretical teaching to enhance your practical training. You’ll develop your knowledge through research planning exercises and by studying methodologies underpinning contemporary bioscience, with many optional modules available to choose from, including Advanced Immunology, Plant Biotechnology, and Medical Diagnostics.

Course structure

Compulsory modules

  • Practical Bioinformatics 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

Optional modules

  • Bioimaging 10 credits
  • Advanced Immunology 10 credits
  • Topics in Plant Science 10 credits
  • Infectious & Non-infectious Diseases 10 credits
  • Drug and Chemical Toxicology 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • Medical Diagnostics 10 credits
  • Treatment of Infectious Disease and Cancer 10 credits

For more information on typical modules, read Bioscience MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

The learning context has a strong research ethos, preparing you for academic (PhD and post-doctoral), industrial or public sector research. Taught modules address problems at the forefront of the subject, and learning activities (such as group work and mini-research projects) are designed to develop your subject-specific knowledge and research skills.

Your major project will involve cutting edge research with potential for publication in peer reviewed literature.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Bioscience MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.

Professional and career development

We take personal and career development very seriously. We have a proactive Industrial Advisory Board who advises us on what they look for in graduates and on employability related skills within our courses.

Our dedicated Employability and Professional Development Officer ensures that you are aware of events and opportunities to increase your employability. In addition, our Masters Career Development Programme will support you to:

  • explore career options and career planning
  • understand the PhD application process and optimise PhD application
  • learn how to use LinkedIn and other social media for effective networking and career opportunities
  • practice interviews for both job and PhD applications

You will also have access to seminars and presentations from industry professionals (including our alumni) at faculty led career events. We also have regular research seminars presented by leading academics from around the world on their specialist subjects.



Read less

Show 10 15 30 per page



Cookie Policy    X