• Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cardiff University Featured Masters Courses
"particle" AND "physics"×
0 miles

Masters Degrees (Particle Physics)

We have 57 Masters Degrees (Particle Physics)

  • "particle" AND "physics" ×
  • clear all
Showing 1 to 15 of 57
Order by 
Goal of the pro­gramme. Read more

Goal of the pro­gramme

What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:

  • Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
  • Have good analytical, deductive and computational skills.
  • Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
  • Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
  • Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

 



Read less
Course description. You will learn from researchers who were part of the discoveries of the Higgs boson, the third neutrino mixing angle, and gravitational waves. Read more

Course description

You will learn from researchers who were part of the discoveries of the Higgs boson, the third neutrino mixing angle, and gravitational waves.

You’ll be able to take part in front-line experiments at the LHC, in neutrino physics, in the search for dark matter, and in gravitational waves.

You will develop the skills to make new discoveries at the frontiers of physics.

Core modules

  • Dark Matter and the Universe
  • Further Quantum Mechanics
  • The Development of Particle Physics
  • Advanced Electromagnetism
  • Research Skills in Physics
  • Research Project in Physics

Examples of optional modules

Choose from a range including:

  • Introduction to General Relativity
  • Particle Astrophysics
  • Advanced Particle Physics
  • Physics in an Enterprise Culture
  • Advanced Quantum Mechanics
  • Semiconductor Physics and Technology
  • Statistical Physics

Teaching and assessment

One-year individual programme of research.

Taught material is complemented by a 12-month research project in one of our world-leading research groups.

Depending on the subject of your project, it may be possible for you to complete your research at a laboratory outside the University of Sheffield – for example, at CERN.



Read less
The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Applied Physics and Materials, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Applied Physics and Materials

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Applied Physics and Materials Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Applied Physics and Materials degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Applied Physics and Materials programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Experimental Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Experimental Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Experimental Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Experimental Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Theoretical Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Theoretical Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Theoretical Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Theoretical Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
Explore modern experimental and theoretical particle physics. This course – delivered by our expert faculty – gives you a sound footing for further studies in this field. Read more
Explore modern experimental and theoretical particle physics.

This course – delivered by our expert faculty – gives you a sound footing for further studies in this field. You can take this MSc in an experimental or theoretical mode.

How will I study?

You’ll learn through lectures, seminars and personal supervision. Assessment is split equally between the project and modules. Your project culminates in a dissertation (with a contribution from a research talk).

The modules are assessed by problem sets, with either open-notes tests or unseen examinations. You’ll attend research seminars and contribute to your group’s discussions of the latest journal papers.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

Our graduates go on to doctoral study (theoretical or experimental), or take up employment in a range of industries in fields such as:
-Business/data analysis
-Computer programming
-Software development
-Teaching
-Research and teaching technical support

Read less
The study of Particle and Nuclear Physics brings together advanced experimental techniques, computational techniques, and theoretical understanding. Read more

The study of Particle and Nuclear Physics brings together advanced experimental techniques, computational techniques, and theoretical understanding. The experiments are typically large collaborations working at international laboratories using highly sophisticated detectors. These detector technologies also find applications in medical physics and other forms of position sensing. The computational aspects deal with large data sets and use machine learning and other advanced techniques in data science. Theoretical nuclear and particle physics aims to interpret the experimental results in terms of mathematical models of the structure and evolution of the physical world.

Programme structure

Taught Courses

The taught element of the programme includes two compulsory courses and a minimum of three specialist courses which will bring you to an advanced level in the required subject material. You will also have the opportunity to select courses from a range of options depending on your interests and career ambitions.

Dissertation

Following the taught component of the programme, you will undertake a three-month research project leading to a dissertation. You will be based within one of the projects of the Institute for Particle and Nuclear Physics as part of an international collaboration, and may have the opportunity to visit a leading research laboratory.

Learning outcomes

By engaging with and completing the MSc in Particle & Nuclear Physics, graduates will acquire core knowledge of current experiments in nuclear and particle physics and gain a theoretical understanding of nuclear and particle physics.

The programme aims to develop research and problem solving skills, with graduates gaining the skills to apply advanced data analysis techniques to large data sets, critically assess research activities and design future experiments.

Career opportunities

This programme provides an exposure to frontier activities in experimental nuclear and particle physics and develops general transferable skills related to data analysis, research and communication.

This provides a platform for employment in research, science-based industry, medical physics, education and a wide spectrum of professions that call for numeracy and data analysis skills.



Read less
Master's specialisation in Particle and Astrophysics. A physics programme that covers the inner workings of the universe from the smallest to the largest scale. Read more

Master's specialisation in Particle and Astrophysics

A physics programme that covers the inner workings of the universe from the smallest to the largest scale

Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. In this Master’s specialisation you’ll dive into these extreme worlds and unravel questions like: What did our universe look like in the earliest stages of its existence? What are the most elementary particles that the universe consists of? And how will it evolve?

If you are fascinated by the extreme densities, gravities, and magnetic fields that can be found only in space, or by the formation, evolution, and composition of astrophysical objects, you can focus on the Astrophysics branch within this specialisation. Would you rather study particle interactions and take part in the search for new particles – for example during an internship at CERN - then you can choose a programme full of High Energy Physics. And for students with a major interest in the theories and predictions underlying all experimental work, we offer an extensive programme in mathematical or theoretical physics.

Whatever direction you choose, you’ll learn to solve complex problems and think in an abstract way. This means that you’ll be highly appealing to employers in academia and business. Previous students have, for example, found jobs at Shell, ASML, Philips and space research institute SRON.

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Why study Particle and Astrophysics at Radboud University?

- This Master’s specialisation provides you with a thorough background in High Energy Physics, Astrophysics, and Mathematical Physics and the interface between them.

- Apart from the mandatory programme, there’s plenty of room to adapt the programme to your specific interests.

- The programme offers the opportunity to perform theoretical or experimental research.

- During this specialisation it is possible to participate in large-scale research projects, like the Large Hadron Collider at CERN or the LOFAR telescope.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university, at an institute (think of ESA and CERN) or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned:

- Thinking in an abstract way

- Solving complex problems

- Using statistics

- Computer programming

- Giving presentations

Some of our alumni now work as:

- National project manager at EU Universe Awareness

- Actuarial trainee at Talent & Pro

- Associate Private Equity at HAL Investments

- Consultant at Accenture

- ECO Operations Manager at Ofgem

- Scientist at SRON Netherlands Institute for Space Research

- Technology strategy Manager at Accenture

Working at a company

Other previous students have found jobs at for example:

- Shell

- KNMI

- Liander

- NXP

- ASML

- Philips

- McKinsey

- DSM

- Solvay

- Unilever

- AkzoNobel

Researchers in the field of Particle and Astrophysics develop advanced detector techniques that are often also useful for other applications. This resulted in numerous spin-off companies in for example medical equipment and detectors for industrial processes:

- Medipix

- Amsterdam Scientific Instruments

- Omics2Image

- InnoSeis

PhD positions

At Radboud University, there are typically a few PhD positions per year available in the field of Particle and Astrophysics. Many of our students attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In the Particle and Astrophysics specialisation, you’ll discover both the largest and the smallest scales in the universe. Apart from Astrophysics and High Energy Physics, this specialisation is also aimed at the interface between them: experiments and theory related to the Big Bang, general relativity, dark matter, etc. As all relevant research departments are present at Radboud University – and closely work together – you’re free to choose any focus within this specialisation. For example:

- High energy physics

You’ll dive into particle physics and answer questions about the most fundamental building blocks of matter: leptons and quarks. The goal is to understand particle interactions and look for signs of physics beyond the standard model by confronting theoretical predictions with experimental observations.

- Astrophysics

The Astrophysics department concentrates on the physics of compact objects, such as neutron stars and black holes, and the environments in which they occur. This includes understanding the formation and evolution of galaxies. While galaxies may contain of up to a hundred billion stars, most of their mass actually appears to be in the form of unseen ‘dark matter’, whose nature remains one of the greatest mysteries of modern physics.

- Mathematical physics

Research often starts with predictions, based on mathematical models. That’s why we’ll provide you with a theoretical background, including topics such as the properties of our space-time, quantum gravity and noncommutative geometry.

- Observations and theory

The Universe is an excellent laboratory: it tells us how the physical laws work under conditions of ultra-high temperature, pressure, magnetic fields, and gravity. In this specialisation you’ll learn how to decode that information, making use of advanced telescopes and observatories. Moreover, we’ll provide you with a thorough theoretical background in particle and astrophysics. After you’ve got acquainted with both methods, you can choose to focus more on theoretical physics or experimental physics.

- Personal approach

If you’re not yet sure what focus within this specialisation would best fit your interests, you can always ask one of the teachers to help you during your Master’s. Based on the courses that you like and your research ambitions, they can provide you with advice about electives and the internship(s).

See the website http://www.ru.nl/masters/physicsandastronomy/particle



Read less
The program deepens the knowledge of basic elements of modern physics (atomic and molecular physics, solid state physics, nuclear and particle physics, astrophysics) and of theoretical physics (analytical mechanics, quantum mechanics, mathematical and numerical methods). Read more

The program deepens the knowledge of basic elements of modern physics (atomic and molecular physics, solid state physics, nuclear and particle physics, astrophysics) and of theoretical physics (analytical mechanics, quantum mechanics, mathematical and numerical methods). It is possible to strengthen the knowledge of specific fields like biophysics, nanoscience, physics of matter, nuclear and particle physics, physics of the fundamental interactions, astrophysics. Finally, the program provides direct experience of the laboratory techniques and computer calculation techniques and data analysis.

The graduate in Physics will know and understand the most relevant phenomena of the physical world at different scales, starting from the macroscopic world down to the atomic physics, the physics of condensed matter, nuclear and subnuclear physics up to the physics of the universe. The understanding of the physical world will be based on experimental evidence and a proper use of the theoretical modelling and its mathematical instruments, including numerical techniques.

Course structure

The second-cycle degree in Physics is divided in three curricula to be chosen by the student: Physics of the fundamental interactions, Physics of matter and Physics of the universe. For further information please check: http://en.didattica.unipd.it

Career opportunities

The graduate in Physics can have jobs opportunities in Italy and abroad in industries involving new technologies regardless of the final products, in service companies aiming to innovation and, more generally, in all activities requiring understanding and modelling of processes and ability in analysis and testing. These include startups and high tech industries, software and consulting companies, research centers and public administration. They can also teach physics and mathematics in schools of different levels.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities. Read more

This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities: University of Kent, Queen Mary University of London, Royal Holloway University of London, University of Southampton, University of Surrey, and University of Sussex. This consortium consists of around 160 academics, with an exceptionally wide range of expertise linked with world-leading research.

The first year consists mainly of taught courses in the University of London; the second research year can be at Royal Holloway or one of the other consortium members. This is a unique opportunity to collaborate with physics research groups and partner institutions in both the UK and Europe. You will benefit from consortium led events as well as state of the art video conferencing. 

The Department of Physics at Royal Holloway is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and Biophysics, as well as other areas.

With access to some of the leading physics departments in the world, there is a wide choice of accommodation options, sporting facilities, international student organisations and careers services. South East England, with its close connections to continental Europe by air, Eurotunnel, and cross channel ferries, is an ideal environment for international students.

  • The course offers an incomparably wide range of options.
  • Royal Holloway's Physics Department has strong links with leading international facilities, including Rutherford Appleton and National Physical Laboratory, Oxford Instruments, CERN, ISIS and Diamond. 
  • We hold a regular series of colloquia and seminars on important research topics and host a number of guest lectures from external organisations.

Course structure

Year 1

All modules are optional

Year 2

  • Major Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

You will take six from the following:

  • Lie Groups and Lie Algebras
  • Quantum Theory
  • Statistical Mechanics
  • Phase Transitions
  • Advanced Quantum Theory
  • Advanced Topics in Statistical Mechanics
  • Relativistic Waves and Quantum Fields
  • Advanced Quantum Field Theory
  • Functional Methods in Quantum Field Theory
  • Advanced Topics in Classical Field Theory
  • Formation and Evolution of Stellar Clusters
  • Advanced Physical Cosmology
  • Atom and Photon Physics
  • Advanced Photonics
  • Quantum Computation and Communication
  • Quantum Electronics of Nanostructures
  • Molecular Physics
  • Particle Physics
  • Particle Accelerator Physics
  • Modelling Quantum Many-Body Systems
  • Order and Excitations in Condensed Matter
  • Theoretical Treatments of Nano-Systems
  • Physics at the Nanoscale
  • Electronic Structure Methods
  • Computer Simulation in Condensed Matter
  • Superfluids, Condensates and Superconductors
  • Advanced Condensed Matter
  • Standard Model Physics and Beyond
  • Nuclear Magnetic Resonance
  • Statistical Data Analysis
  • String Theory and Branes
  • Supersymmetry
  • Stellar Structure and Evolution
  • Cosmology
  • Relativity and Gravitation
  • Astroparticle Cosmology
  • Electromagnetic Radiation in Astrophysics
  • Planetary Atmospheres
  • Solar Physics
  • Solar System
  • The Galaxy
  • Astrophysical Plasmas
  • Space Plasma and Magnetospheric Physics
  • Extrasolar Planets and Astrophysical Discs
  • Environmental Remote Sensing
  • Molecular Biophysics
  • Cellular Biophysics
  • Theory of Complex Networks
  • Equilibrium Analysis of Complex Systems
  • Dynamical Analysis of Complex Systems
  • Mathematical Biology
  • Elements of Statistical Learning

Year 2

Only core modules are taken.

Teaching & assessment

This high quality European Masters programme follows the European method of study and involves a year of research working on pioneering projects.

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation.

Your future career

This course equips you with the subject knowledge and a solid foundation for continued studies in physics, and many of our graduates have gone on to study for a PhD. 

On completion of the course graduates will have a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights at the forefront of the discipline a comprehensive understanding of techniques applicable to their own research or advanced scholarship originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in the discipline.

Our graduates are highly employable and, in recent years, have entered many different physics-related areas, including careers in industry, information technology and finance.



Read less
The MASt in Physics is a taught masters level course in which candidates coming from outside Cambridge work alongside students taking the final year of the integrated Undergraduate + Masters course in Physics. Read more
The MASt in Physics is a taught masters level course in which candidates coming from outside Cambridge work alongside students taking the final year of the integrated Undergraduate + Masters course in Physics. It is designed to act as a top-up course for students who already hold a 3-year undergraduate degree in physics (or an equivalent subject with similar physics content) and who are likely to wish to subsequently pursue research in physics, either within the department or elsewhere.

The course aims to bring students close to the boundaries of current research, and is thus somewhat linked to the expertise from within the specific research groups in the Department of Physics. Candidates make a series of choices as the year proceeds which allow them to select a bias towards particular broad areas of physics such as condensed matter physics, particle physics, astrophysics, biophysics, or semiconductor physics. The emphasis can range over the spectrum from strongly experimental to highly theoretical physics, and a range of specialist options may be chosen.

All students also undertake a substantial research project, which is expected to take up one third of their time for the year. Details of the current Part III physics course can be found at http://www.phy.cam.ac.uk/students/teaching/current-courses/III_overview . Please note that the courses available to students do change from year to year (especially the Minor Topic courses taken in the Lent Term) and so this year's course listing should only be used as a guide to what courses might be available in future.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcphasphy

Learning Outcomes

By the end of the programme, students will have:

- reinforced their broad understanding of physics across the core areas studied in the Cambridge bachelors physics programme.
- developed their knowledge in specialised areas of physics bringing them close to the boundaries of current research.
- developed an understanding of the techniques and literature associated with the project area they have focussed on.
- demonstrated the application of knowledge in a research context and become familiar with the methods of research and enquiry used the further that knowledge.
- shown abilities in the critical evaluation of knowledge.
- demonstrated some level of self-direction and originality in tackling and solving research problems, and acted autonomously in the planning and execution of research.

Format

The course begins with taught courses offered in seven core areas: these "Major Topics" are lectured in the Michaelmas Term and cover substantial areas of physics. Students may choose to attend three or more of these for examination in the Lent term. In the Lent term, students take three or more shorter more specialised "Minor Topic" courses (from about twelve) for examination in the Easter Term. Substitutes for Major and Minor Topic courses are available from a small subset of courses taught by or shared with other departments. Throughout the year students also work on a research project that contributes to roughly a third of their mark and at the end of the year sit a three hour unseen paper on General Physics.

Depending on the lecturer for each course, students may be expected to submit work (i.e. problem sets) in advance of the small group sessions for scrutiny and/or present their work to those attending the sessions.

Assessment

The research project will be assessed on the basis of scrutiny of the student's project laboratory notebook and project report (typically 20-30 pages) and a short (approx 30 minute) oral examination with the project supervisor and another member of staff.

It is not usual for submitted work to be returned with detailed annotations. Rather, feedback will be predominantly oral, but lecturers are expected to submit a short written supervision report at the end of each term for each of their students.

Feedback on the research project will be be primarily oral, during the student/supervisor sessions, though a short written supervision report at the end of the Lent term will be provided by each supervisor

Candidates will normally take:

- A two hour unseen examination on three or more of the Major Topic courses. These will be taken at the start of the Lent Term.
- A one and a half hour unseen examination on three or more of the Minor Topic courses. These will normally be taken at the start of the Easter term.
- One three hour unseen General Physics Paper, taken towards the end of the Easter term.
- A number of additional unseen examination papers, if the candidate has chosen to take any of the interdisciplinary courses, Part III Mathematics courses, or other shared courses in lieu of any of the Major or Minor Topic papers.

Candidates who have chosen to substitute a Minor Topic paper with an additional External Project, will be assessed on that work via scrutiny of the student's project report (typically 20-30 pages) and a short (approx 30 minute) oral examination with two members of staff.

Candidates who have taken the Entrepreneurship course, in lieu of a Minor Topic, will be assessed on the basis of the course assignments set by the course co-ordinator.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The course is run jointly by the. Mathematical Institute. and the. Department of Physics. It provides a high-level, internationally competitive training in mathematical and theoretical physics, right up to the level of modern research. Read more

The course is run jointly by the Mathematical Institute and the Department of Physics. It provides a high-level, internationally competitive training in mathematical and theoretical physics, right up to the level of modern research. It covers the following main areas:

  • quantum field theory, particle physics and string theory
  • theoretical condensed matter physics,
  • theoretical astrophysics, plasma physics and physics of continuous media
  • mathematical foundations of theoretical physics

The course concentrates on the main areas of modern mathematical and theoretical physics: elementary-particle theory, including string theory, condensed matter theory (both quantum and soft matter), theoretical astrophysics, plasma physics and the physics of continuous media (including fluid dynamics and related areas usually associated with courses in applied mathematics in the UK system). If you are a physics student with a strong interest in theoretical physics or a mathematics student keen to apply high-level mathematics to physical systems, this is a course for you.

The course offers considerable flexibility and choice; you will be able to choose a path reflecting your intellectual tastes or career choices. This arrangement caters to you if you prefer a broad theoretical education across subject areas or if you have already firmly set your sights on one of the subject areas, although you are encouraged to explore across sub-field boundaries.

You will have to attend at least ten units' worth of courses, with one unit corresponding to a 16-hour lecture course or equivalent. You can opt to offer a dissertation as part of your ten units. Your performance will be assessed by one or several of the following means: 

  • invigilated written exams
  • course work marked on a pass/fail basis
  • take-home exams
  • mini-projects due shortly after the end of the lecture course.

The modes of assessment for a given course are decided by the course lecturer and will be published at the beginning of each academic year. As a general rule, foundational courses will be offered with an invigilated exam while some of the more advanced courses will typically be relying on the other assessment methods mentioned above. In addition, you will be required to give an oral presentation towards the end of the academic year which will cover a more specialised and advanced topic related to one of the subject areas of the course. At least four of the ten units must be assessed by an invigilated exam and, therefore, have to be taken from lecture courses which provide this type of assessment. A further three units must be assessed by invigilated written exam, take-home exam or mini-project. Apart from these restrictions, you are free to choose from the available programme of lecture courses.

The course offers a substantial opportunity for independent study and research in the form of an optional dissertation (worth at least one unit). The dissertation is undertaken under the guidance of a member of staff and will typically involve investigating and write in a particular area of theoretical physics or mathematics, without the requirement (while not excluding the possibility) of obtaining original results.



Read less
This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts. Read more

This MSc programme is designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts.

The MSc programme is a core part of the Higgs Centre for Theoretical Physics, which has been created to mark the start of a new era in theoretical physics research, following the discovery of the Higgs boson at CERN. You will take part in the centre’s activities, including weekly seminars, colloquia and workshops involving physicists from around the world, and you will be involved in research-level projects as part of your dissertation.

The partnership between mathematics and physics is an essential one. In theoretical physics we attempt to build abstract constructs that rationalise, explain and predict physical phenomena. To do this we need mathematics: the language of physics. The underlying structure of the physical world can be understood in great detail using mathematics; this is a never-ending source of fascination to theoretical physicists.

Programme structure

Taught courses

You will take two compulsory courses plus a selection of courses that will bring you to an advanced level in subjects such as general relativity, cosmology, statistical physics, condensed matter physics, quantum field theory and the standard model of particle physics. You may also take courses drawn from a wider pool including specialist courses in mathematics, computing and climate science. For the MSc in Mathematical Physics, mathematics courses can account for almost half of the taught course element.

Dissertation

Following the taught component of the programme, you will undertake a three-month research project, which leads to a dissertation.

Learning outcomes

By engaging with and completing the MSc in Mathematical Physics, graduates will acquire core knowledge of theoretical physics subjects and the research methodologies of modern theoretical and mathematical physics.

The programme aims to develop research skills and problem solving skills, especially in mathematics. It also aims to develop an attitude of mind conductive to critical questioning and creative thinking and the capacity to formulate ideas mathematically.

Career opportunities

These degrees are designed to prepare you for a research career by introducing advanced ideas and techniques that are applicable to a wide range of research areas and sectors including academia, industry, education and finance.

Scholarships and funding

Find out more about scholarships and funding opportunities:



Read less
Why choose Sussex?. The University of Sussex has a prestigious international reputation and is ranked in the top 20 in the UK and our Department of Physics and Astronomy is ranked 15th (The Guardian University Guide 2018). Read more

Why choose Sussex?

• The University of Sussex has a prestigious international reputation and is ranked in the top 20 in the UK and our Department of Physics and Astronomy is ranked 15th (The Guardian University Guide 2018).

• The Department is a founder member of SEPnet, the South East Physics Network of physics departments, which supports vital research, teaching and development in the South East.

• Our research lies at the forefront of fundamental physics – from quantum information processing, through top-rated particle physics experiments to the theoretical understanding of space, time and matter. 

Why choose this course?

This MSc has been specially designed to give the skills needed for a career in physics higher education. It combines cutting edge subject knowledge with the theory of education, as well as hands-on practical opportunities to carry out physics education research.

This course has a strong vocational component with an emphasis on transferrable skills.

You will have graduated from a physics- or applied mathematics-based degree with a substantial physics component.

How will I study?

You’ll learn through lectures, workshops and personal supervision. Your time is split between the project and modules with the project culminating in a dissertation. You start work on your project at the beginning of the spring term. In the summer term, you focus on examinations and project work.

The Physics modules are assessed by problem sets, with either open-notes tests or unseen examinations. The Education modules are assessed by essays or oral presentations. You'll also be encouraged to attend research seminars where the latest developments in research are discussed.

Research project

Your project will be on some aspect of physics education. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. Often the projects form the basis of research papers that are later published in journals.

Careers

The course’s focus on transferrable skills, such as communications and research skills, will help enhance your employability and support your career aspirations. It will be of particular interest to teachers who want to deepen their Physics knowledge and/or become a Lecturer or Tutor in Physics within higher education.

Funding

We offer a range of scholarships to enable talented students to study at Sussex. Find out more about our fees and scholarships.



Read less
This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field. Read more

This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field.

About this degree

Students develop insights into the techniques used in current projects, and gain in-depth experience of a particular specialised research area, through project work as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits.

The programme consists of a choice of three core modules (45 credits), three optional modules (45 credits), a research essay (30 credits) and a dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered.

Core modules

  • Advanced Quantum Theory
  • Particle Physics
  • Atom and Photon Physics
  • Order and Excitations in Condensed Matter
  • Mathematics for General Relativity
  • Climate and Energy
  • Molecular Physics
  • Please note: students choose three of the above.

Optional modules

Students choose three from the following:

  • Astrophysics MSc Core Modules
  • Space and Climate Science MSc Core Modules
  • Medical Physics MSc Core Modules
  • Intercollegiate fourth-year courses
  • Physics and Astrophysics MSci fourth-year courses
  • Selected Physics and Astrophysics MSci third-year courses
  • Plastic and Molecular (Opto)electronics
  • Biophysics MSc Core Modules

Dissertation/report

All students submit a critical research essay and MSc students undertake an independent research project which culminates in a substantial dissertation and oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and practical, laboratory and computer-based classes. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Further information on modules and degree structure is available on the department website: Physics MSc

Funding

Candidates may be eligible for a Santander scholarship.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Physics-based careers embrace a broad range of areas e.g. information technology, engineering, finance, research and development, medicine, nanotechnology and photonics.

Recent career destinations for this degree

  • Management Consultant, OpenSymmetry
  • Management Consultant, PwC

Employability

A Master's degree in Physics is highly regarded by employers. Students gain a deep understanding of both basic phenomena underpinning a range of technologies with huge potential for future development, e.g. quantum information, as well as direct knowledge of cutting-edge technologies likely to play a major role in short to medium term industrial development while addressing key societal challenges such as energy supply or water sanitisation.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Physics & Astronomy is among the top departments in the UK for this subject area.

The department's participation in many international collaborations means we provide exceptional opportunities to work as part of an international team. Examples include work at the Large Hadron Collider in Geneva, and at the EISCAT radar instruments in Scandinavia for studying the Earth's upper atmosphere.

For students whose interests tend towards the theoretical, the department is involved in many international projects, some aimed at the development of future quantum technologies, others at fundamental atomic and molecular physics. In some cases, opportunities exist for students to broaden their experience by spending part of their time overseas.



Read less

Show 10 15 30 per page



Cookie Policy    X