• University of Surrey Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Staffordshire University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Cardiff University Featured Masters Courses
"electrical" AND "power" …×
0 miles

Masters Degrees (Electrical Power Systems)

We have 178 Masters Degrees (Electrical Power Systems)

  • "electrical" AND "power" AND "systems" ×
  • clear all
Showing 1 to 15 of 178
Order by 
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!. Read more

The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The new 2-year MSc Electrical Power Systems with Advanced Research will give you the timely advanced skills and specialist experience required to significantly enhance your career in the electrical power industry. The programme builds on a very close involvement with the power industry, the education of power engineers and extensive research work and expertise as well as the successful experience on the 1-year MSc Electrical Power Systems at the University of Birmingham. The 2-year MSc Electrical Power Systems with Advanced Research will be able to fill in the gap of skills between the 1-year MSc and PhD research.

Some modules will be taught by leading industry experts, which will give you the exciting opportunity to understand the real challenges that power industry is facing, hence propose innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly. 

The new 2-Year MSc Electrical Power Systems with Advanced Research will run in parallel with the existing 1-Year MSc Electrical Power Systems. The taught credits in the 1st year of the 2 Year MSc are identical to that of the 1-Year MSc while the 2nd Year is mainly focused on a research project. 

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and advanced research methods. Year 1 of the programme is focussed on the taught modules covering:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets. 

While Year 2 of the programme will give you the opportunity to work on an advanced research project. For some suitable projects, in conjunction with joint industry supervisions, industry placement may be available.

It is envisaged there will be the opportunity for students to transfer between the two programmes using the University’s procedures for transfers between programmes, subject to programme requirements. This opportunity would take place at the end of the taught part of the programme.

Course details

Electrical Power Systems with Advanced Research Masters/MSc (Two Year): 

This 2-year MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy as well as advanced research skills. It aims to produce graduates of the highest calibre with the right advanced skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids as well as developing and managing R&D programmes.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and designing of sustainable electrical power systems and renewable energy with significant research training.

Related links

Learning and teaching

Patterns of study 

The majority of students study our Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus on one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment. 

Core modules 

These modules cover the advanced specialist topics required for your specific degree programme, such as Power System Operation and Control, HVDC and FACTS and Power System Economics. These technologies are at the heart of many current developments in electrical power systems. 

Cross-programme option modules 

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately. 

Individual project 

In Year 2, you will have 12-months to work on a dedicated research project to develop your comprehensive research skills, which would be helpful to fill in the gap between the 1-year MSc and PhD. This is an opportunity for you to develop advanced specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. 

Assessment and awards 

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.



Read less
Postgraduate degree programme. Electrical Power Systems Masters/MSc. The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Read more

Postgraduate degree programme: Electrical Power Systems Masters/MSc:

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The MSc Electrical Power Systems will give you the timely skills and specialist knowledge required to significantly enhance your career prospects in the electrical power industry. This programme will develop your power engineering skills through expert teaching and extensive research work undertaken in collaboration with power industry partners.

Some modules will be taught by leading industry experts, offering exciting opportunities to understand the real challenges that the power industry is facing and will work with you to develop and provide innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

Course details

This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and understanding of sustainable electrical power systems and renewable energy.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets.

Related links

Learning and teaching

Patterns of study

The majority of students study our taught Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment.

Overview module

There is a shared introduction to topics from communications engineering, requirements analysis and object-oriented design, and an introduction to and recap of C programming. For the communications engineering programmes there is an introduction to key issues in the design of antennas, radio frequency circuits and link budgets. For the computing programmes there is an introduction to object-oriented programming.

Core modules

These modules cover the advanced specialist topics required for your specific degree programme, such as statistical signal processing and coding and advanced digital design. These technologies are at the heart of many current developments in modern electronic systems. 

Cross-programme option modules

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately.

Individual project

This is an opportunity for you to develop specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. Typical projects include the development of hardware for automotive radar signal processing and the detection of leaks in landfill sites, wireless access systems, 3G mobile radio for light aircraft, the creation of 3D worlds for surgery simulation and wearable computing.

Assessment and awards

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.

Employability

This course meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre who will be much in demand due to their skills, knowledge and ability to lead in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.



Read less
Electricity is playing an increasing role as we look to develop low carbon sources of energy. The design of electrical power systems is becoming increasingly complex, to manage intermittent sources of generation, and increased levels of demand from new types of load such as electric vehicles. Read more

Electricity is playing an increasing role as we look to develop low carbon sources of energy. The design of electrical power systems is becoming increasingly complex, to manage intermittent sources of generation, and increased levels of demand from new types of load such as electric vehicles.

The Distance Learning MSc in Electrical Power Systems Engineering allows engineers working in the sector to enhance their skills. It provides them with the tools and techniques to keep pace with the rapidly evolving electricity industry. The course covers the latest developments in the electricity industry and delivers up-to-date training in all aspects of electrical power systems.

Aim

The course will develop your understanding of how these future electrical networks will be designed and operated. It will provide you with a solid understanding of the characteristics of components such as generators, lines, cables, transformers and power electronics devices. It will provide you with the skills you need to carry out power flow and fault calculations, learning how these techniques are used to study the behaviour of large systems. The course also covers a range of other topics such as HVDC, how renewable generation is integrated into a power system, the increasing importance of smart grids, and how to assess and remedy power quality problems.The course is based on the long-running MSc in Electrical Power Systems Engineering delivered by The University of Manchester. On graduation you will be a member of a network of global alumni, many in senior positions in the electricity supply industry.

The course has been designed to support those working in industry. Multiple entry points exist and the course can be completed in a timescale that suits your needs. Your dissertation project will ideally be based on a problem you and your company need to resolve, ensuring the programme delivers value for both you and your employer.

Teaching and learning

Once you register for the course, you will be assigned a Course Advisor, who will stay with you throughout your studies and can be contacted by phone or email whenever you have a question or a concern.

Your Course Advisor will be able to guide you through your choice of units and help you to schedule and register for them. They will be familiar with all aspects of your course and your own progress and timetable and will be able to provide support on a wide range of issues or refer you to University specialist support services if necessary - such as the Careers Service, Counselling Service or Disability Support.

For each technical unit, you will be assigned an Academic Tutor with expertise in the particular subject area you will be studying. Your tutor will introduce themselves at the start of each unit to outline the material and plans for assessment. They will host regular online group discussions to review the content being presented that week and to give you the opportunity to engage with other students. They will also maintain and monitor a range of other tools including forums, blogs and live chat sessions, in case you have any questions about the course content.

You will typically need to commit around 15 hours per week during each unit taken when studying for your distance learning MSc. It is important to make sure your employer supports you by allowing suitable time to be spent on your studies.

Coursework and assessment

Each unit will require you to submit one or more pieces of coursework and a final assessment. Your Tutor will provide the exact details of how each activity contributes to your final marks for a given unit. The coursework will often involve using specialist software packages which we will make available to you.

You will also be provided with regular opportunities to assess your progress through self-tests that do not count towards your final mark. Your Tutor will seek to support you if you are having difficulty with a particular subject area and your Course Advisor will be there to help if there are any other issues affecting your studies.

Career opportunities

This distance learning course is an extension of the longstanding full time Electrical Power Systems Engineering MSc at the University of Manchester. Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

Many of our applications are from people already working in industry (but this is by no means a requirement) who are aiming to use this course to further propel their career. The majority of our applicants have come from system/network operators, manufacturers of power system components, consultancies, the oil & gas industry, and large construction companies.



Read less
The course of study Master of Science Management and Engineering in Electrical Power Systems (MME-EPS) is an interdisciplinary program run by two European universities, both well-reputed in their specific fields. . Read more

The course of study Master of Science Management and Engineering in Electrical Power Systems (MME-EPS) is an interdisciplinary program run by two European universities, both well-reputed in their specific fields. RWTH Aachen University's Faculty of Electrical Engineering and Information Technology runs the engineering part of the program, whilst the Dutch Maastricht School of Management covers the business and management part.

The program's main objective is to offer methodological and problem-oriented education, related to research as well as practice. The program will cover advanced topics in the areas of engineering, science, and economics. The course modules particularly focus on high voltage engineering, electrical machines and battery storage systems used to automatize and manage complex power systems. You will be exposed to topics such as the physical problems of energy storage and power electronics. You will also learn to solve faults and stability problems in power systems, as well as use computational engineering tools to automatize and manage complex power systems.

Our engineering graduates...

  • work at companies such as Anvis, BASF, Continental, Fiat, Ford, Kautex, Liebherr, Rolls Royce, Toyota and Volkswagen
  • are very successful on the job market: half of our graduates find employment within a month of graduating and two thirds within three months
  • increase their salary by more than 50% (about 40 %)

Our specialized graduates in Electrical Power Systems Engineering...

  • design, organize and manage virtual power plants, applying demand side management or dynamic demand management
  • design and operate peaking power plants, load following power plants, or virtual power stations to keep the electrical power systems in balance
  • improve the reliability of the supply by implementing sophisticated predictive simulation and computing techniques
  • optimize the cost balance between energy production and its environmental impact
  • develop investment strategies needed to improve electrical power systems
  • design and develop innovative smart grids

...to make a difference. Is this you?



Read less
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry. Read more
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry.

The course builds on a long-term involvement with the power industry, the education of power engineers and extensive research work and expertise within the Department of Electronic & Electrical Engineering.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

The MSc will equip you with the ability to make an immediate engineering contribution to industry in electrical power systems analysis, planning, operation and management.

You will be able to perform in-depth engineering work on defined tasks requiring research, personal project management and innovative thinking.

The course provides its graduates with the underpinning knowledge of business operation and project team working that leads to maximised impact within the industrial setting.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/power/index.html

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ee/ee-proglist-pg.html#C) for more detail on individual units.

Semester 1 (October-January):
- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects Covered

Professional skills for engineering practice
Power system plant
Power quality
Electrical energy systems & analysis
Control of power systems
Power electronics & machines
Power system protection

Career Options

Recent recruiters include:

- Guam Power Authority
- Scottish and Southern Energy
- Central Electricity Board
- Barbados Light & Power Co. Ltd.
- First Hydro
- National Grid
- British Power International
- Buro Happold

We also encourage the best of our MSc students to continue their studies with us to PhD level.

Accreditation:
Our course is accredited by the Institution of Engineering and Technology (IET) (http://www.theiet.org/academics/accreditation/). Individuals with awards from accredited programmes will avoid some or all of the detailed assessment of the educational requirements necessary for Incorporated Engineer (IEng) or Chartered Engineer (CEng) registration, making the registration process more straightforward.

About the department

The Department of Electronic & Electrical Engineering offers a broad spectrum of research expertise supported by state-of-the-art facilities. Its international reputation reflects substantial levels of research income and journal publication, and it offers outstanding opportunities in postgraduate research.

91% of our research activity was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014 (http://www.bath.ac.uk/research/performance/).

Postgraduate facilities:
The postgraduate laboratories are well-equipped with state-of-the-art equipment and instrumentation. Postgraduate facilities include PCs and powerful workstations which also give direct and ready access to the University’s central computer system and the internet. Additional specialist research facilities are available within the department’s three research centres.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more

Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. This course will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

In the first semester you learn how power systems are designed and operated. This involves studying not only the characteristics of the various components (generators, lines, cables, transformers and power electronics devices) but also how these components interact. Through lectures and computer based exercises you become familiar with power flow and fault calculations and you learn how the techniques used to study the behaviour of large systems. Experiments in our high voltage laboratory give you an appreciation for the challenges of insulation co-ordination.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

Prior to your summer break a preliminary study and the outline of your MSc dissertation project is completed, this is fully developed throughout the second year of the course. The yearlong enhanced individual research provides you great opportunities to develop advanced research skills and to explore in depth some of the topics discussed during the course. This includes training in research methods, and advanced simulation and experimental techniques in power systems and high voltage engineering as well as academic paper writing and poster and paper presentation.

Aims

  • Provide an advanced education in electrical power engineering.
  • Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.
  • Give a sound understanding of the principles and techniques of electrical power engineering.
  • Give a broad knowledge of the issues and problems faced by electrical power engineers.
  • Give a solid working knowledge of the techniques used to solve these problems.
  • Educate students with advanced research skills necessary to address current and future technological advancements.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of coursework only.

The enhanced research project is assessed on the basis of a research poster, an extended abstract, a research papers and a dissertation of about 70 pages.

Course unit details

Course units typically include:

  • Electrical Power Fundamentals
  • Analysis of Electrical Power and Energy Conversion Systems
  • Power System Plant, Asset Management and Condition Monitoring
  • Power System Operation and Economics
  • Power System Dynamics and Quality of Supply
  • Power System Protection
  • Smart Grids and Sustainable Electricity Systems
  • Techniques for Research and Industry

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.

This course also provides the students with additional research skills necessary for starting a PhD degree or entering an industrial research and development career. 



Read less
Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. Read more

Power system engineering is about keeping things in balance. Not just the balance between generation and load or between production and consumption of reactive power. It is also about the balance between the cost of energy and its environmental impact or the balance between the reliability of the supply and the investments needed to develop the system. These programmes will teach you how to quantify both sides of these equations and then how to improve the balances through technological advances and the implementation of sophisticated computing techniques.

During the second semester the course units explore in more depth the 'operation' and the 'plant' aspects of power systems. For example, you will study how renewable generation is integrated in a power system or how to assess and remedy power quality problems.

During the summer, your MSc dissertation project gives you a chance to develop your research skills and to explore in depth one of the topics discussed during the course.

Aims

Provide an advanced education in electrical power engineering.

Give graduates the education, the knowledge and the skills they need to make sound decisions in a rapidly changing electricity supply industry.

Give a sound understanding of the principles and techniques of electrical power engineering.

Give a broad knowledge of the issues and problems faced by electrical power engineers.

Give a solid working knowledge of the techniques used to solve these problems.

Coursework and assessment

You are required to take seven examinations. In addition, course work (eg lab reports) accounts for typically 20% of the mark for each course unit. One course units is assessed on the basis of course work only. The summer research project is assessed on the basis of a dissertation of about 50 pages.

Course unit details

Course units typically include:

  • Electrical Power Fundamentals
  • Analysis of Electrical Power and Energy Conversion Systems
  • Power System Plant, Asset Management and Condition Monitoring
  • Power System Operation and Economics
  • Power System Dynamics and Quality of Supply
  • Power System Protection
  • Smart Grids and Sustainable Electricity Systems
  • Techniques for Research and Industry

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Over the last thirty years, hundreds of students from around the world have come to the University to obtain an MSc in Electrical Power Engineering or similar. After graduation, they went on to work for electric utilities, equipment manufacturers, specialised software houses, universities and consultancy companies.



Read less
This multi-university course has been developed with major companies to meet key challenges in the energy sector. Read more

This multi-university course has been developed with major companies to meet key challenges in the energy sector.

This two-year Erasmus Mundus masters course has been developed by 4 leading European universities in partnership with 16 major international companies/organisations to respond to key challenges facing the energy sector:

  • the development of new energy sources and understanding their implications on power systems
  • identifying methods to reduce CO2 emissions by increasing energy efficiency and using cleaner energy sources.


Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
This MSc programme in Sustainable Electrical Power aims to produce graduates capable of leading teams which will operate, control, design, regulate and manage the power systems and networks of the future. Read more

About the course

This MSc programme in Sustainable Electrical Power aims to produce graduates capable of leading teams which will operate, control, design, regulate and manage the power systems and networks of the future.

The course equips graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

-Power system engineering – using state-of-the-art computational tools and methods.
-Design of sustainable electrical power systems and networks.
-Regulatory frameworks for, and operation of, power systems and electricity markets.

The programme features practical workshops and the option of an industry-based dissertation. Students benefit from our high performance lab and computing facilities, including a grid-enabled cluster of processors. We’re also home to a world leading research group, the Brunel Institute of Power Systems.

Aims

Sustainable energy is a vital, growing sector and this newly designed MSc programme meets industry’s demand for engineers with advanced knowledge of sustainable electrical power and energy generation systems.

The course is suitable for:
- Graduates in power or electrical engineering, physical sciences, or related disciplines who aspire to work in the electrical power industry, especially within the renewable energy sector.
- Industrially experienced graduate engineers and managers who recognise the importance of developing new analytical and critical skills, and state-of-the-art methodologies associated with the development sustainable electrical power systems.

Course Content

Compulsory Modules:

Energy Economics and Power Markets
Power System Operation and Management
Power Electronics and FACTS
Power System Analysis and Security
Sustainable Power Generation
Power System Stability and Control
Project Management
Sustainable Electrical Power Workshop
Project & Dissertation

Special Features

All students enrolled in the course have the opportunity to develop real-world skills with the best globally available, cutting-edge power analysis software and tools. The course is also supported by a wide range of application oriented power engineering experiments carried out in a modern well-equipped practical power systems laboratory.

The Brunel Institute of Power Systems is an internationally leading research group specialising in the optimal design, operation and modelling of power systems, as well as in the economics of electricity markets.

Our high performance computing capability is considerable including a recently installed grid-enabled cluster of processors consisting of 20 dual processor nodes with dual Gigabit Ethernet interfaces.

Major power system software are available including MATLAB/SIMULINK, Orcad, PSCAD, DigSILENT, IPSA, ETAP, and PowerWorld.

Electronic and Computer Engineering is one of the largest disciplines at Brunel University, with a portfolio of research contracts totalling £7.5 million and strong links with industry.

Our laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.

We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:

-Media Communications
-Wireless Networks and Communications
-Power Systems
-Electronic Systems
-Sensors and Instrumentation.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. In this accredited and prestigious program you will gain. Read more

EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

In this accredited and prestigious program you will gain:

- Skills and know-how in the latest and developing technologies in electrical systems

- Practical guidance and feedback from experts from around the world

- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college

- Credibility and respect as the local electrical systems expert in your firm

- Global networking contacts in the industry

- Improved career choices and income

- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 25, 2018.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

Professional Recognition

This Master's Degree is an academically accredited program by the Australian Government agency Tertiary Education Quality and Standards Agency (TEQSA) and provisionally accredited by Engineers Australia under the Sydney and Washington accords. This EIT Master's Degree is internationally recognised under the International Engineering Alliance (IEA) accords and the various signatories (http://www.ieagreements.org/accords/washington/signatories/).

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

Who Would Benefit

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers



Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy systems, giving you a good understanding of the latest developments and techniques within the electrical power industry. Read more

This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy systems, giving you a good understanding of the latest developments and techniques within the electrical power industry.

Course details

The programme is centred around three major themes:

  • electrical power networks with emphasis on conventional networks, smart grids, high voltage direct current transmission and asset management of network infrastructure
  • renewable energies with emphasis on wind and solar power
  • power electronics with emphasis on power electronic convertors in converting and controlling power flows in electrical networks and renewable energy systems.

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Electrical Power and Energy Systems – one year full time
  • MSc Electrical Power and Energy Systems – two years part time
  • MSc Electrical Power and Energy Systems (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.The MSc Electrical Power and Energy Systems (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

  • Asset Management
  • Data Acquisition and Signal Processing Techniques
  • Emerging Transmission Systems
  • Power Electronics
  • Practical Health and Safety Skills
  • Project Management and Enterprise
  • Renewable Energy Conversion Systems
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Smart Power Distribution

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

As an electrical power and energy systems engineer you can be involved in designing, constructing, commissioning and lifecycle maintenance of complex energy production, conversion and distribution systems. 

Your work can include energy storage systems, management and efficient use of energy in building, manufacturing and processing systems. You can also be involved in work relating to the environmental and economic impact of energy usage.

Examples of the types of jobs you could be doing include:

  • designing new electrical transmission and distribution systems
  • managing maintenance and repair
  • managing operations of existing systems
  • managing operations of a wind turbine farm
  • analysing the efficiency of hydroelectric power systems
  • evaluating the economic viability of new solar power installations
  • assessing the environmental impact of energy systems.


Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018, with the following intake starting October 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less
This one-year programme is designed to equip graduates and professionals with a broad and robust training on modern power engineering technologies, with a strong focus on renewable energy conversion and smart grids. Read more

This one-year programme is designed to equip graduates and professionals with a broad and robust training on modern power engineering technologies, with a strong focus on renewable energy conversion and smart grids. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment.

In semesters 1 and 2, the programmes comprises a mixture of taught courses, workshops and a group design project, led by leading experts in the field, covering the key topics in power systems, electrical machines and power electronics. The final part of the programme is an individual dissertation, which provides a good opportunity for students to apply their acquired skills to real problems in electrical power engineering.

This one year programme at the University of Edinburgh will immerse the students in the most current developments in the area of Electrical Power Engineering, through a combination of taught modules, workshops, a research dissertation, and a range of supporting activities delivered by internationally leading experts in the field. The programme develops through the year from advanced fundamental topics and research tools and techniques in electrical power engineering, to specialist courses on emerging technologies and advanced numerical methods for power engineering problems, and culminates in the summer dissertation project where the acquired skills in various areas are put into practice in application to an actual power engineering problem.

Topics covered within the individual courses of the programme, include (but are not limited to):

  • Fundamental and emerging power engineering technologies
  • Advanced numerical methods in application to electrical power engineering problems
  • Modern power conversion components & systems
  • Integration of renewable energy in the power system
  • Distributed energy resources
  • Electrical engineering aspects of energy storage
  • Power, telecommunications & control aspects of smart grids
  • Research and innovation management techniques.

In addition, our MSc students actively engage in research as part of their dissertation projects either within the Institute for Energy Systems or with industry, with some joining our PhD community afterwards.

Programme structure

This programme is delivered over 12 months, with two semesters of taught courses, followed by a research project leading to the submission of a Master’s Thesis.

Semester 1

  • Power Electronics, Machines & Systems
  • Power Engineering Research Techniques
  • Energy & Environmental Economics
  • Technologies for Sustainable Energy

Semester 2

  • Power Conversion and Control
  • Power Systems Engineering & Economics
  • Distributed Energy Resources and Smart Grids

Research Project

  • Electrical Power Engineering Dissertation

The above courses correspond to 120 credits of taught material, plus 60 credits of a research project.

Learning outcomes

The main objective of the programme is to train the next generation of electrical power engineers who:

  • are aware of the most recent, cutting edge developments in power engineering;
  • have skills and training needed in both industrial and academic settings;
  • are able to tackle the global energy trilemma of supplying secure, equitable and environmentally sustainable energy, while appreciating the technical, social and economic challenges faced in both developed and developing countries.

Career opportunities

Governments worldwide are putting in place plans to decarbonise and modernise their electricity sector. A transition to a green economy will require a highly skilled workforce led by electrical power engineers with a solid academic background, an appreciation of the trajectory of the industry and an understanding of the challenges and implications brought about by the introduction of new power technologies.

According to the Institution for Engineering & Technology (IET): “The business of managing and distributing power in the UK is beginning to undergo revolutionary changes and [power] engineers are the people who will play a pivotal role in keeping the lights on”. This also holds true in many other developed and developing countries in the world.

Power engineers are employed in public/governmental organisations as well as in the private sector and cover areas spanning from generation, to conversion and transmission of electrical power, design and manufacturing of power components and systems, and energy policy and commerce. In the UK, experienced, chartered power engineers can earn around £45,000 a year on average*.

The programme will run in a close association with other activities within the broader Electrical Engineering programme within the School, including networking events, industrial presentations and seminars. It will benefit from the current strong connections with industry (coordinated by the Student Industry Liaison Manager, and existing research associations and consortia (such as the EPSRC Centre for Energy Systems Integration).



Read less

Show 10 15 30 per page



Cookie Policy    X