• Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of Leicester Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Portsmouth Featured Masters Courses
  • Study Type

    Full time & Part time available

  • Subject Areas

    Engineering

  • Start Date

    September

  • Course Duration

    1 year full time, part time study available

  • Course Type

    MSc

  • Course Fees

    website

  • Last Updated

    24 January 2018

Course Content

Course content

Postgraduate degree programme: Electrical Power Systems Masters/MSc:

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The MSc Electrical Power Systems will give you the timely skills and specialist knowledge required to significantly enhance your career prospects in the electrical power industry. This programme will develop your power engineering skills through expert teaching and extensive research work undertaken in collaboration with power industry partners.

Some modules will be taught by leading industry experts, offering exciting opportunities to understand the real challenges that the power industry is facing and will work with you to develop and provide innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

Course details

This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and understanding of sustainable electrical power systems and renewable energy.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets.

Related links

Learning and teaching

Patterns of study

The majority of students study our taught Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment.

Overview module

There is a shared introduction to topics from communications engineering, requirements analysis and object-oriented design, and an introduction to and recap of C programming. For the communications engineering programmes there is an introduction to key issues in the design of antennas, radio frequency circuits and link budgets. For the computing programmes there is an introduction to object-oriented programming.

Core modules

These modules cover the advanced specialist topics required for your specific degree programme, such as statistical signal processing and coding and advanced digital design. These technologies are at the heart of many current developments in modern electronic systems. 

Cross-programme option modules

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately.

Individual project

This is an opportunity for you to develop specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. Typical projects include the development of hardware for automotive radar signal processing and the detection of leaks in landfill sites, wireless access systems, 3G mobile radio for light aircraft, the creation of 3D worlds for surgery simulation and wearable computing.

Assessment and awards

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.

Employability

This course meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre who will be much in demand due to their skills, knowledge and ability to lead in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.


Visit the Electrical Power Systems - MSc page on the University of Birmingham website for more details!

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University of Birmingham

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully




Cookie Policy    X