• University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
University of Manchester Featured Masters Courses
OCAD University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Surrey Featured Masters Courses
"bioeconomy"×
0 miles

Masters Degrees (Bioeconomy)

We have 8 Masters Degrees (Bioeconomy)

  • "bioeconomy" ×
  • clear all
Showing 1 to 8 of 8
Order by 
This programme responds to the rapid growth in the global bioeconomy by providing the core knowledge and skills needed to compete in a rapidly evolving, highly skilled workforce. Read more

This programme responds to the rapid growth in the global bioeconomy by providing the core knowledge and skills needed to compete in a rapidly evolving, highly skilled workforce.

The Masters in Management of Bioeconomy, Innovation and Governance (MSc BIG) is an innovative and dynamic postgraduate qualification designed to meet the increasing demand for skilled people in the growing global bioeconomy.

The MSc BIG programme responds to the central challenges of the bioeconomy, including: developing sustainable innovation in a responsible manner; identifying and exploiting value throughout innovation ecosystems; and bringing new technologies to existing and emerging markets.

To meet these modern challenges, MSc BIG provides students with a dynamic set of competencies, and knowledge about life science innovation, as highly desired by prospective employers in the public, private and not-for-profit sectors.

Areas covered by the programme include:

  • agricultural biotechnology
  • sustainable food and animal production
  • synthetic biology
  • pharmaceuticals and antimicrobial resistance
  • regenerative medicine and cell therapies
  • stratified medicine
  • industrial biotechnology
  • genetic databases
  • biofuels and energy-related developments

MSc BIG graduates will excel in strategic thinking that brings globally contextualised solutions to practical problems relating to innovation and firm strategy, policy and regulation, collaborative R&D models, and governance and intellectual property.

Programme structure

The MSc BIG programme draws upon real life case studies and the latest research findings from the Innogen Institute. Experiential learning is encouraged, and is accomplished through problem-based group work activities, presentations and interactive seminars, along with conventional lectures.

You will complete five compulsory courses (80 credits) and a selection of optional courses (40 credits), then work on an independently researched dissertation, which can be a conventional academic dissertation or a work-based project.

Career opportunities

Basic scientific knowledge is no longer sufficient for building a successful career in the growing bioeconomy. There is a high demand for trained professionals in this area, and this degree is an opportunity to impress prospective employers in the public, private and not-for-profit sectors with expertise in life science innovation.

You may also choose to continue your studies and pursue an academic career in this rapidly growing field.

The transferable skills you gain in areas such as communication and research will give you an edge in the employment market, whatever your eventual career.



Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

Do you want to affect the future of forests, a key natural resource and the wellspring of biodiversity? Have you ever wondered why forests are called the lungs of the Earth and how climate change relates to forests? Or how trees are grown and processed into products in a sustainable and efficient manner? And how are the economy and forests interrelated?

You can find answers to these questions when you study forest sciences. You will come to view forests not only as a setting for jogging trails or as a source of wood, but rather as a source of versatile renewable resources and as complex ecological systems that are closely connected to their environment. The relationship between humans and nature and between society and natural resources is a strong feature of these studies.

The Master’s Programme in Forest Sciences offers a broad and versatile perspective on forests and their use. The studies focus on and apply knowledge in biology, business economics, environmental sciences, logistics, geoinformatics and information technology. As a graduate in forest sciences you will be a professional in forest ecology, the management and use of forest resources, forest bioeconomy business and policy, with ample career opportunities in Finland and abroad.

Come and study forest sciences at the University of Helsinki, in one of the world’s foremost degree programmes in the field. For more information in Finnish about studies in forest sciences, the field of forestry and its opportunities, see http://www.metsatieteet.fi.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

General studies in the Master’s programme provide you with skills needed for the academic world and the labour market. In advanced studies, you focus on field-specific issues and develop your professional knowledge when writing your Master’s thesis and completing courses in your field of specialisation. In addition, the studies include elective courses that allow you to diversify and deepen your knowledge.

The Master's Programme in Forest Sciences comprises two study tracks: forest ecology and management and forest bioeconomy business and policy. These study tracks include a total of 10 fields of specialisation.

The specialisations in forest ecology and management focus on various types of forest and peatland ecosystems and their exploitation, examine the planning of forest use and the relevant collection of information, examine forest inventory models, wood harvesting and logistics as well as the processing of wood into bioeconomy products.

Topical issues include

  • climate change
  • the prevention of damage to forests caused by insects and fungi
  • the control of game populations
  • problems related to the exploitation of tropical forests
  • the application of new remote sensing methods in the planning of forest resource management
  • the combination of different values and targets in forestry and bioeconomy
  • various models of silviculture
  • increased efficiency in logging and transportation
  • generating added value in all areas of biorefining.

Studies in the forest bioeconomy business and policy are based on the sustainable use of a renewable natural resource and on the development of responsible business activities in a global environment. The focus of studies is on the globalisation of forest-based industry and business and its structural redevelopment into the bioeconomy. You will become familiar with forest-based issues of the bioeconomy in production, marketing and policy as part of the global operating environment.



Read less
Biogenic resources are a central component of a sustainable economic system in Europe. Biorefinery engineers develop, plan and implement innovative, technical products and processes for using biogenic resources economically and in an ecologically sustainable manner. Read more

Biogenic resources are a central component of a sustainable economic system in Europe. Biorefinery engineers develop, plan and implement innovative, technical products and processes for using biogenic resources economically and in an ecologically sustainable manner.

You will acquire all the knowledge necessary for this from the very wide-ranging technical specialisations covered in the Master’s degree programme Biorefinery Engineering at the TU Graz: this expertise extends from process engineering to chemistry and biotechnology through to energy engineering and environmental engineering. The focus in all of this is on innovation orientation, a close link to practice and also international activities of the students.

Marlene Kienberger, Assistant Professor Biorefinery Engineering:

"The close link with practice and the orientation towards innovation of this degree programme enables students to carry out high-quality, structured research work and to develop innovative systems with a scientific basis to convert biogenic resources into energy and high-quality products economically and with great ecological responsibility as part of a modern bioeconomy."

Content

  • You will acquire the engineering sciences knowledge and skills necessary for the construction and operation of technical systems for the use of biogenic resources.
  • You will learn how to develop and optimise process engineering methods.
  • You will be able to evaluate the technical, logistic and economic challenges resulting from the use of biogenic raw materials along the entire chain of valued creation.
  • You will learn how to understand deal with complex problems in scientific and industrial contexts, to formulate these and to develop and present the solutions for them.
  • You will assess regional, economic, social and ecological framework conditions in the context of the bioeconomy.
  • You will learn how to recognise trends in bio-based industry.
  • You will acquire the scientific and analytic methods needed to evaluate and characterise biogenic resources.
  • You will carry out independently high-quality and structured research work.
  • You will carry out research-led traineeships at the university or with industry partners.

You can find each of the individual courses offered in the curriculum.

International activities

Students have optimal opportunities to prepare themselves for activities in an international environment with the numerous provisions on offer:

  • Courses in cooperation with international academic and industrial partners
  • International practical internships
  • Participation at international winter and summer schools at home and abroad
  • Semesters abroad


Read less
Programme description. This exciting MSc gives you the breadth and background to bridge disciplinary divides and tackle the environmental issues that face us all. Read more

Programme description

This exciting MSc gives you the breadth and background to bridge disciplinary divides and tackle the environmental issues that face us all.

This programme provides up-to-date knowledge of the contemporary issues and debates on the relationships between the environment, nature, culture and society.

This interdisciplinary programme draws on expertise from across the University, especially from geography, philosophy, theology, science, technology studies and development studies, providing a unique critical perspective.

You will develop the research skills and abilities to assess the importance and implications of geographical, philosophical and other theoretical debates which shape environmental policy and practice.

Our graduates are equipped to think critically, to generate new knowledge related to the environment, and to use this knowledge effectively to address urgent environmental challenges.

This programme is affiliated with the University's Global Environment & Society Academy.

Programme structure

This programme consists of six taught courses, including four option courses, studied over two semesters. In addition, students undertake an individual dissertation project.

Compulsory courses typically will be:

  • Values and the Environment
  • Political Ecology
  • Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses. We particularly recommend:

  • Archives: History, Geography, Politics
  • Culture, Ethics & Environment
  • Encountering Cities
  • Ethics in a Technological Society
  • Foundations in Ecological Economics
  • Foundations of the Bioeconomy
  • Global Environment: Key Issues
  • Research Design in Human Geography
  • Human Dimensions of Environmental Change and Sustainability
  • Understanding Environment and Development
  • Atmospheric Quality and Global Change
  • Distributed GIS
  • International Development in a Changing World
  • Key Concepts in Global Social Change
  • Soil Protection and Management
  • Principles of GIS
  • Principles of GIS for Archaeologists
  • Society and Development
  • Ecology, Ethics and Spirit
  • Marine Systems and Policies
  • Climate Change, Justice and Responsibility
  • Global Environmental Politics
  • Green Thoughts: Landscape, Environment and Literature
  • Methodological Debates in Human Geography
  • Urban Development
  • Biobusiness
  • Case Studies in Sustainable Development
  • Climate Change and Corporate Strategy
  • Environmental Impact Assessment
  • Forests and Environment
  • Global Environment and Society
  • ICT for Development
  • Interpreting Development: Institutions and Practices
  • Land Use/Environmental Interactions
  • Man and the Natural World in the Enlightenment
  • Management of Sustainable Development
  • Sustainability of Food Production

Courses are offered subject to timetabling and availability and are subject to change.

Career opportunities

Graduates have pursued careers in environmental policy, conservation, animal welfare, NGOs (environmental charities and development organisations), public consultation and PhD research.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less
Equip yourself with the knowledge and skills to be part of the new bio-economy. The focus of this MSc is on substituting plant material for mineral oil and you can choose from a range of modules which incorporate the latest thinking around this. Read more

Students can choose to start in September, May or January

About the course

Equip yourself with the knowledge and skills to be part of the new bio-economy.

The focus of this MSc is on substituting plant material for mineral oil and you can choose from a range of modules which incorporate the latest thinking around this.

This distance learning MSc is delivered by ‌IBERS, with some optional modules being drawn from Bangor University. Both universities have strong, industry focused biotech research portfolios.

Our uniquely structured-yet-flexible format allows you to:

· Study where (provided you have internet access) and when is convenient for you

· Stay focussed and motivated as you work through each module with a cohort of fellow students

· ‘Pick-n-Mix’ the modules which are most relevant to you

· Start in January, May or September

· Take as many or as few modules as you wish over your 5-year registration period

· Supplement your choices with optional modules from Bangor University

· Update your knowledge and develop your critical skills

· Embed your research project into your work

In most cases the research elements of our qualifications are carried out in your work place with regular academic supervision. However, there are also opportunities for research projects to be based at IBERS; ask us if that option would be of interest to you.

Who should take this course?

If you are working in the biotech industry or are developing policy for this sector; or if these are areas you would like to move into, this course is an ideal way to update your knowledge and gain postgraduate qualifications by studying part-time while you are working.

If you are a new graduate interested in pursuing a career in the biotech industry, you can study full or part-time to gain the qualifications and knowledge that you need to start your new career.

How is IBERS Distance Learning Delivered?

This MSc has been designed to be as accessible and flexible as possible, particularly for those in full time employment or living outside the UK. Each 20 credit, 14 week module includes recorded lectures from academics and industry experts, along with guided readings, discussion forums and two assignments. We work very closely with Bangor University, which means that you can also take relevant Bangor modules as part of your studies.

How much work will I need to do?

A typical master’s student is expected to study for 200 hours when taking a 20 credit module. Our students report spending 10 to 15 hours a week per module studying; obviously the more time and effort you can put in, the more you'll benefit from studying the module and the better your grades are likely to be.

How long will it take?

Part-time: From the initial start date you have a maximum of five years to fit in as many or as few modules as you wish. A part-time MSc cannot be completed in less than two years.

Full-time: You should choose your start time to ensure that you will cover the modules that interest you. You will be expected to take two or three modules at a time and complete within two years.

Students will be eligible for a UK Student Loan if the course is completed in 3 years.

Course Content

Students must complete six taught modules - including at least 3 subject specific modules and Research Methods PLUS a 60 credit dissertation (180 credits).

Subject Specific Modules:

Biorenewable Feedstocks
Biorefining Technologies
Biobased product development
Waste Stream Valorisation
Drivers of the Bioeconomy

Core Modules:
Research Methodologies
Work-Based Dissertation

Complementary Modules:

Genetics and Genomics
Carbon Footprinting and LCA
Anaerobic Digestion
Climate Change

Read less
The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists. Read more

Why this course?

The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists.

The course meets industrial needs and is at the forefront of developments in science and engineering. It combines the expertise of staff from 13 academic institutions across Scotland. Our industrial partners also provide input to the course.

This is an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

The course will provide you with a strong foundation in basic industrial biotechnology. You’ll also cover advanced state-of-the-art topics in a wide range of industrial biotechnology-related areas. A three-month placement is offered, giving students the opportunity to gain valuable experience working with one of IBioIC’s industrial partners.

See the website

You’ll study

The taught classes are designed to give you a thorough understanding of the current developments in industrial biotechnology.
Two semesters of formal teaching are followed by an intensive research project. You'll carry this out with an industrial partner.
The taught classes cover the following areas and are taught by the following partners:

Core classes include:
- Industrial Biotechnology, Governance and Importance to the Bioeconomy (The Innogen Institute, Edinburgh University)
- Bioprocessing (Strathclyde University)
- Synthetic Biology (Glasgow University)
- Practical Systems Biology (Edinburgh University)
- Downstream Processing (Heriot Watt University)
- Applied Biocatalysis (Strathclyde University)

Elective classes include:
- Blue Biotechnology (SAMS, University of Highlands & Islands)
- Renewable Energy Technologies (Abertay University)
- Advanced Project Management (Strathclyde University)
- Supply Chain Management (Strathclyde University)
- Production Management (Heriot Watt University)
- Resource Efficient Formulation (University of the West of Scotland)

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It is located in a new building with several laboratories. All are fitted with modern equipment.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333+44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Two semesters of formal teaching are followed by an intensive research project, carried out with an industrial partner.

Assessment

The final assessment will be based on performance in exams, coursework and the research project. If necessary there may be a formal oral exam.

Careers

The course provides an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

Our students enjoyed successful placements with the following companies:
- Qnostics
- GSK
- Xanthella
- SeaBioTech
- Marine Biopolymers
- AMT
- Ingenza
- Unilever
- Innogen
- CRODA
- CelluComp
- NCIMB

A total of 70% of our 2014 cohort have found full-time jobs or have undertaken further study as a result of the experience gained throughout their placement.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X