• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Leeds Featured Masters Courses
Newcastle University Featured Masters Courses
"wind" AND "engineering"×
0 miles

Masters Degrees (Wind Engineering)

  • "wind" AND "engineering" ×
  • clear all
Showing 1 to 15 of 127
Order by 
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
As a postgraduate student in the Department of Civil and Environmental Engineering, you will have the opportunities to make a world of difference by building knowledge at the forefront of the field, helping minimize environmental hazards and improving the quality of people’s lives. Read more
As a postgraduate student in the Department of Civil and Environmental Engineering, you will have the opportunities to make a world of difference by building knowledge at the forefront of the field, helping minimize environmental hazards and improving the quality of people’s lives.

The Civil Engineering field is developing rapidly. Almost any solution to a societal problem has some connection with civil engineering. Such solutions include the development, utilization and control of resources for the benefit of people. Broad-based and in-depth knowledge of the discipline together with an understanding of new design concepts and technologies is essential for those who wish to become leaders in this part of the engineering profession. The Department's postgraduate programs seek to develop such knowledge and skills and to relate research efforts closely to the interests and needs of the society so that our research is relevant and has practical value. Postgraduates may concentrate in structural, environmental, geotechnical engineering, water resources, transportation, construction engineering or infrastructure development. The Department also participates in the Environmental Engineering program.

There are 31 full-time faculty members and around 150 postgraduate students in the Department.

The MPhil program focuses on strengthening students' knowledge in certain areas of Civil and Structural Engineering and exposing them to the issues involved in the conception, design, construction, maintenance, and use of structures and facilities. Students are required to undertake coursework and successfully complete a thesis to demonstrate competence in research.

Research Foci

The Department's research lies in four broad areas with many sub-groups within each:

Infrastructure Development and Planning
Building-system design and analysis, monitoring and analysis of highway bridges, wind and seismic engineering, geotechnical engineering and soil-structure interaction, construction materials, transportation system modeling and operation, integrated risk and reliability assessment, and infrastructure system enhancement.

Green Building and Sustainable Development
This is an interdisciplinary area, with projects including the development of green building design standards, eco-friendly materials and technologies, recycling of construction materials, green retrofit and renovation technologies, and optimization of energy and water usage.

Intelligent Construction Materials
Development of advanced composite materials, cement-based functional materials and sustainable cementitious materials, application of composite materials for infrastructure repairs, and nanotechnology in concrete design.

Environmental and Water Resources Studies
Innovative physical, chemical and biological water and wastewater treatment processes, environmental quality management, remediation of contaminated soils and groundwater, mixing and transport phenomena of pollutants in natural and man-made systems, water resources management and engineering, stochastic optimization of water quality and resources, environmental fluid mechanics.

Facilities

The Department supports an excellent range of facilities comprising laboratories for structural engineering, construction materials, geotechnical engineering, environmental engineering, fluid mechanics, intelligent transportation systems, computation, and surveying. All are equipped to the highest standards with advanced instrumentation available. The Geotechnical Centrifuge Facility is equipped with a hydraulic biaxial shaking table and a 4-axis robotic manipulator. The CLP Power Wind-Wave Tunnel Facility, which assists projects in construction industry and environmental studies, is also managed by the Department’s professors.

The University’s central facilities include an electronic support shop, instrumentation pool, machine shop, CAD/CAM laboratory and the Materials Characterization and Preparation Facility. HKUST also maintains state-of-the-art computing facilities.

Read less
The Department of Mechanical and Aerospace Engineering (MAE) is one of the leading MAE departments in Asia. It offers rigorous academic and professional training in a wide range of areas, including both traditional and cutting-edge topics in energy, mechanics, advanced materials, nano/biotechnology, and manufacturing. Read more
The Department of Mechanical and Aerospace Engineering (MAE) is one of the leading MAE departments in Asia. It offers rigorous academic and professional training in a wide range of areas, including both traditional and cutting-edge topics in energy, mechanics, advanced materials, nano/biotechnology, and manufacturing.

The aim of the MAE Department is to produce high quality MAE graduates with competitive academic training, technology leadership, and/or entrepreneurship.

The Department has 26 full-time faculty members. Many of them are internationally renowned scholars in their fields. There are about 150 research postgraduate students. The MAE Department is also equipped with many state-of-the-art laboratory facilities. Our faculty and postgraduate students conduct research at the frontier of mechanical and aerospace engineering and collaborate closely with local industry.

The MPhil program focuses on strengthening students' background in the fundamentals of mechanical and aerospace engineering and exposing them to the environment of academic research and development. Students are required to undertake coursework and complete a thesis to demonstrate their competence in engineering research.

Research Foci

The Department's research concentrates on energy and environmental engineering, mechanics and materials, and mechatronics and manufacturing. Research covers several major areas:

Solid Mechanics and Dynamics
These are two of the fundamental pillars of Mechanics research. The Department has a diverse faculty with expertise in these fields. Research activities range from applied to theoretical problems, and have a marked multidisciplinary nature. They involve: applied mathematics, solid mechanics, nonlinear dynamics, computations, solid state physics, material science and experiments for various kinds of solid materials/systems and mechanical behaviors. Faculty members work on problems of both static and dynamic natures with different types of evolutions. These problems also involve multi-field coupling on different scales of time and length, from micro-second to long time creep processes and from a very small carbon nanotube or a cell to macroscopic scale composite materials and electro-mechanical devices/systems.

Materials Technology
Materials engineering focuses on characterizing and processing new materials, developing processes for controlling their properties and their economical production, generating engineering data necessary for design, and predicting the performance of products. Research topics include: smart materials, biomaterials, thin films, composites, fracture and fatigue, residual life assessment, materials issues in electronic packaging, materials recycling, plastics flow in injection molding, advanced powder processing, desktop manufacturing, and instrumentation and measurement techniques.

Energy/Thermal Fluid and Environment Engineering
Research in energy, thermal/fluids and environmental engineering includes fuel cells and batteries, advanced renewable energy storage systems, thermoelectric materials and devices, nanoscale heat and mass transfer, transport in multicomponent and multiphase systems, innovative electronics cooling systems, energy efficient buildings, and contaminant transport in indoor environments.

Design and Manufacturing Automation
These elements lie at the heart of mechanical engineering in which engineers conceive, design, build, and test innovative solutions to "real world" problems. Research is being conducted in the areas of geometric modeling, intelligent design and manufacturing process optimization, in-process monitoring and control of manufacturing processes, servosystem control, robotics, mechatronics, prime-mover system control, sensor technology and measurement techniques, and bio-medical systems design and manufacturing.

Microsystems and Precision Engineering
Micro ElectroMechanical Systems (MEMS) is a multidisciplinary research field which has been making a great impact on our daily life, including various micro sensors used in personal electronics, transportation, communication, and biomedical diagnostics. Fundamental and applied research work is being conducted in this area. Basic micro/nanomechanics, such as fluid and solid mechanics, heat transfer and materials problems unique to micro/nanomechanical systems are studied. New ideas to produce microsystems for energy, biomedicine and nanomaterials, micro sensors and micro actuators are explored. Technology issues related to the micro/nanofabrication of these devices are being addressed.

Aerospace Engineering
Aerospace engineering is a major branch of engineering concerned with research, development, manufacture and operation of aircraft and spacecraft. Within the aerospace engineering group, fundamental and applied research is being conducted in areas such as aerodynamics, aeroacoustics, aircraft and engine noise and performance, combustion dynamics, thermoacoustics, atomization and sprays, and aircraft design and optimization. Advanced experimental facilities and high-fidelity computational methods are being developed and used. The group boasts two world-class anechoic wind tunnels for aerodynamics and aeroacoustics research, and is home to a major research center on aircraft noise technology.

Read less
This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry. Read more

Why this course?

This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry.

This course offers engineering graduates the opportunity to study at one of Europe's largest and leading University power and energy technology groups - the Institute for Energy & Environment.

The Institute is home to over 200 staff and researchers conducting strategic and applied research in key technical and policy aspects of energy systems. It houses the Centres for Doctoral Training in Wind & Marine Energy Systems, and Future Power Networks and Smart Grids, which are dedicated to pioneering research and advanced skills training.

On this course you'll develop and enhance your technical expertise of wind energy and deepen your understanding of engineering, political and economic contexts of wind power. This course will provide an advanced level of knowledge to address current and future challenges of this exciting and dynamic sector.

With links to key UK and global business and industry energy partners, you’ll have unique access to companies at the forefront of wind energy developments.

See https://www.strath.ac.uk/courses/postgraduatetaught/windenergysystems/

You’ll study

Two semesters of compulsory and optional classes, followed by a three-month specialist research project. There’s the opportunity to carry this out through our competitive MSc industrial internships.
The internships are offered in collaboration with selected department industry partners eg ScottishPower, Smarter Grid Solutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for MSc. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

Individual modules are delivered by academic leaders, and with links to key UK and global industry energy partners, you'll have unique access to companies at the forefront of wind energy developments. 

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Atkins Global, BAE Systems, Iberdrola, National Grid, ScottishPower, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With the European Wind Energy Association (EWEA) forecasting UK/EU employment in wind energy related jobs to double to more than 500,000 by 2020, graduates of this course have excellent career prospects.

The UK electricity supply industry is currently undergoing a challenging transition driven by the need to meet the Government's binding European targets to provide 15% of the UK's total primary energy consumption from renewable energy sources by 2020.

Graduates of this course have unique access to key UK and global industry energy partners, who are committed to fulfilling these UK Government targets. These companies offer a diverse range of professional and technical employment opportunities in everything from research and development, construction and maintenance, to technical analysis and project design. Companies include Siemens Energy, Sgurr Energy, DNV GL, ScottishPower Renewables and SSE.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. Read more
Aerospace engineering has evolved and diversified since the early days of powered flight. Employers now require skills ranging from aerodynamics and flight control to space engineering simulation and design. This diversity means that engineers need to be able to operate and develop advanced devices, and understand complex theoretical and computational models.

* This programme will give you advanced skills in computational modelling, numerical techniques and an in-depth understanding in engineering approaches to aerospace problems
* After your degree, you will be well prepared to develop new computational and technological products for the aerospace industries
* You will join research groups working at the cutting edge of aerospace engineering, and computational modelling
* This is a well established course with variety and choice for students - there are a wide number of engineering modules, but also the chance to specialise on your own area

Why study with us?

The School of Engineering and Materials Science (SEMS) undertakes high quality research in a wide range of areas. This research feeds into our teaching at all levels, helping us to develop very well qualified graduates with opportunities for employment both in many leading industries as well as in research. Both Engineering and Materials are very well established at Queen Mary, with the Aerospace Department being the first established in the UK. Our aerospace teaching programmes were ranked number 2 in the UK in the 2011 National Student Survey.

Studying Engineering has taught me to think, plan, organise and execute tasks in a systematic and methodical manner. Osman Bawa

* This MSc programme is available to students from a variety of non-engineering backgrounds such as Physics, Maths, and Electronic Engineering
* It was the first of its kind in the country; offering some unique modules including, Aeroelasticity, Crash worthiness, and Space engineering
* Students will collaborate with researchers working in alternative fuels sources, so it is relevant and timely
* Aerospace Engineering is an employment related field which allows you to keep up-to-date with the latest developments in design, aerodynamics, propulsion and technology.

Facilities

You will have access to a range of facilities, including:

* Excellent computing resources such as a high-performance computing cluster, several high-performance PC clusters and parallel high-performance SGI computer clusters, an extensive unit of Linux and UNIX workstations.
* A wide range of experimental facilities from low speed wind tunnels with one of the lowest ever recorded turbulence level of 0.01% to supersonic wind tunnels, anechoic chamber dedicated to aeroacoustics problems, two new state-of-the-art electrospray technology laboratories, experimental propulsion, an advanced CueSim flight simulator and labs equipped with modern measurements techniques.
* Engineering and Materials Sciences postgraduates will also have access to the School's extensive experimental facilities used for materials, the latest electron microscopes and a brand new Nanovision centre.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Our Masters in Electrical and Electronic Engineering is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. Read more
Our Masters in Electrical and Electronic Engineering is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. The ever increasing pace of developments in all areas of electrical and electronic engineering, (and in particular in the systems that are related to energy and the environment), requires engineers with a thorough understanding of operation principles and design methods for various modern electrical and electronic systems. As a graduate you'll be able to not only respond to the latest changes but also to look ahead and help in shaping future developments.

The unique features of this course are that the traditional electrical and electronic engineering subjects are supported by the more modern topics of computer control and machine learning techniques, which are at the forefront of modern electrical and electronic systems in the industry today. This course offers an integrated systems approach to engineering, incorporating modules in advanced power electronics and renewable energy systems, advanced instrumentation and control with signal processing, real-time systems and machine learning techniques.

There is an increasing demand for skilled engineers who are able to design and maintain electrical and electronic systems that are at the forefront of current technologies. These positions cover many industries, hence graduates from this course can expect significantly enhanced job prospects in electrical, electronic as well as systems engineering.

See the website http://www.lsbu.ac.uk/courses/course-finder/electrical-electronic-engineering-msc

Modules

- Digital signal processing
This module introduces the theory behind digital signal processing and how DSP can be implemented in real-time. You will gain an understanding of how to program hardware to perform fundamental DSP algorithms such as filtering and spectral analysis. You will gain a fundamental understanding of DSP algorithms and how to implement them in hardware for real-time applications.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based assignments to inculcate the basics of machine learning and classification. The module covers the fundamentals of pattern recognition and provides the essential background to machine learning and classification.

- Advanced instrumentation and control
This module develops advanced techniques in data acquisition and manipulation required for instrumentation and control applications. Further, it consolidates lectures with experimental computer-based assignments using industry standard hardware and software (NI DAQ and LabView). The module develops your knowledge and experience in data acquisition and virtual instrumentation used in Industry for control purposes.

- Advanced power electronics and renewable energy systems
The material in this module is divided into two parts. The first part covers the analysis and operation of power electronics and machines and their application in the areas of power conversion, power conditioners and electrical machine drives mostly, found on the 'load' side of the electrical power system but sometimes integrated into the supply network. This part will also include elements of computer control systems that are designed to produce non-sinusoidal waveforms and methods of dealing with undesirable harmonics and their effects on the power network. The second part of the module will focus on renewable energy and sustainability. This will include: solar cells, biomass, wind and wave power; intelligent environmental sensing and feedback (in areas of pollution, petroleum, energy consumption, etc.); and renewable design and effectiveness (solar, wind and wave).

- Technology evaluation and commercialization
In this module you will follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you will conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you will develop the appropriate commercialisation strategy and write the business plan for their high-tech start-up company.

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the module teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- MSc engineering project
This module requires you to undertake a major project in an area that is relevant to their MSc course. You will chose your project and carry it out under the guidance of your supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

The acquired skills in computer control and AI techniques offer additional scope for jobs in the design of decision support systems that cross traditional boundaries between engineering and other disciplines. (i.e. medical, finance). Successful graduates will enjoy exciting career opportunities from a wide range of industries, such as electrical energy supply and control, electronics and instrumentation products and services, intelligent systems and automation to include: automotive, aerospace, electrical and electronic consumer products, telecommunications. The students can also pursue PhD studies after completing the course.

Engineering management skills

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. Read more
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. It provides a thorough knowledge of the principles and techniques of this exciting field and has been developed in consultation with industry advisors to ensure it is relevant to today’s workplace.

Modules are block taught so can also be studied separately by working engineers as continuous professional development either to enhance their knowledge in particular subject fields or to widen their portfolio.

Core study areas include ASIC engineering, sensors and actuators, technology and verification of VLSI systems, embedded software development and an individual project.

Optional study areas include communication networks, information theory and coding, solar power, wind power, systems architecture, advanced FPGAs, DSP for software radio, advanced photovoltaics, mobile network technologies and advanced applications.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Programme modules

Compulsory Modules:
• ASIC Engineering
• Sensors and Actuators for Control
• Embedded Software Development
• Individual Project

Optional Modules (Choose five):
• Communication Networks
• Fundamentals of Digital Signal Processing
• Solar Power 1
• Wind Power 1
• Communications Channels
• DSP for Software Radio
• Imagineering
• Mobile Networks
• Advanced FPGAs
• Engineering Applications
• Systems Modelling for Control Engineering – new for 2015
• Radio Frequency and Microwave Integrated Circuit Design – new for 2015

Block-taught, individual modules are also highly suitable as CPD for professional engineers needing to fill a skills gap.

How you will learn

Compulsory modules provide a comprehensive understanding of modern microelectronics, embedded electronic systems, emerging technologies and their uses while the individual research project offers the chance to pursue a specialism in-depth. You’ll have access to advanced research knowledge and state of the art laboratories using industry standard software (Altera, Cadence, Mentor, Xilinx) so that you are prepared to enter a wide range of industry sectors on graduation.

- Assessment
Examinations are held in January and May, with coursework and group work assessments throughout the programme. The high practical content of this course is reflected in the inclusion of laboratory assessments and practical examinations. The individual research project is assessed by written report and viva voce in September.

Facilities

You’ll have access to laboratories, industry standard software (Altera, Cadence, Mentor Graphics, Xilinx) and hardware including equipment provided by Texas Instruments.

Careers and further study

Consultation with industry to craft the syllabus ensures that you’ll have an advantage in the job market. The in-depth knowledge acquired can be applied wherever embedded electronic systems are found including mobile phones (4/5G), acoustics, defence, medical instrumentation, radio and satellite communication and networked systems, control engineering, instrumentation, signal processing and telecommunications engineering.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X