• Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
FindA University Ltd Featured Masters Courses
Imperial College London Featured Masters Courses
Cardiff University Featured Masters Courses
Cardiff University Featured Masters Courses
"wastewater" AND "treatme…×
0 miles

Masters Degrees (Wastewater Treatment)

  • "wastewater" AND "treatment" ×
  • clear all
Showing 1 to 15 of 55
Order by 
The course is based in the Sustainable Environment Research Centre (SERC) a leading and internationally recognised centre for over 30 years. Read more
The course is based in the Sustainable Environment Research Centre (SERC) a leading and internationally recognised centre for over 30 years. SERC is home to The Wales Centre of Excellence for Anaerobic Digestion and the University of South Wales Centre for Renewable Hydrogen Research and Demonstration,

The UK Governments Low Carbon Transition Plan details how the Government plans to meet its 2020 GHG emissions targets. It predicts that as a result of its actions that 1.2 million green jobs will be created and 40% of electricity production will be from low carbon resources. It is predicted that £110bn of investment will be necessary to meet the targets as currently set out. The picture is similar across the EU and the rest of the world. There is a significant need for individuals with the expertise necessary to help meet those targets.

This MSc in Renewable Energy and Resource Management will provide the wealth of knowledge and skills needed for employment in a range of public and fast-growing commercial green sector roles. Your studies will increase your knowledge and understanding of the generation and provision of renewable energy, hydrogen, water, wastewater treatment and solid wastes management. You will become familiar with the impact of policy and legislation, renewable energy technologies, waste management hierarchy and techniques, and water and wastewater treatment. You will also train in relevant computing software, and analytical and monitoring equipment used by industry.

See the website http://courses.southwales.ac.uk/courses/374-msc-renewable-energy-and-resource-management

What you will study

Students will study the following taught modules:
- Renewable Energy I & Hydro, Tidal, Wave, and Bio-energy
- Renewable Energy II & Wind, Solar, and Geothermal
- Solids Resource Management
- Water and Wastewater Treatment Processes

Plus 2 from the following optional modules:
- Hydrogen& Fuel Vector for the Future
- Energy and Environmental Legislation and Policy
- Advanced Materials for Energy Applications
- Anaerobic Treatment Processes
- Analytical Science and the Environment

You will also complete a substantial project, usually in conjunction with industry, energy/environmental consultancy firms, governmental regulatory agencies, local authorities or within our Sustainable Environment Research Centre.

The subjects taught within the MSc are underpinned by high quality research which was rated as being mainly internationally excellent or world leading in RAE 2008. This included research in hydrogen energy, bio-energy, anaerobic digestion, process monitoring and control, combustion processes, and waste and wastewater treatment systems.

Learning and teaching methods

Full-time students spend about 12 hours in lectures, seminars, tutorials, and computing and laboratory-based practical sessions each week, plus research and background reading. We have an exciting programme of site visits and fieldwork trips.

Work Experience and Employment Prospects

This MSc is designed to develop cutting-edge knowledge and high-level practical skills relevant to many areas of postgraduate employment, particularly managerial, regulatory, scientific and technological roles related to energy and the environment. These include local authorities, government regulatory agencies, manufacturing industries, energy and environmental consultancy companies, waste management companies, water companies, environmental and energy advice centres, research centres, academia, and national and international non-governmental organisations.

Assessment methods

The taught modules are assessed by a mixture of coursework and examinations. The project is assessed by a written dissertation and an oral examination (viva voce).

Coursework involves individual and group mini-projects, fieldwork and visit reports, and poster and oral presentations. Part-time students attend generally one day per week, plus visits and fieldwork.

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Programme modules

Core modules:
- Water and Waste Engineering Principles
The aims of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 3):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Water Distribution and Drainage Systems
The aim of this module is for the student to understand the most important aspects of how to design, construct and maintain piped water distribution, drainage and sewerage systems.

- Short Project
The aim of this module is for participants to be able to undertake extended study of a subject of their own choosing which is related to their Postgraduate Programme to enable them to conduct an independent review and analysis to understand state of art issues or a topic.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships / Bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account. You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Read less
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. Read more
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide.

- A well respected programme. Many of our participants are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste-dl/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Case Study
The aims of this module are to give participants a basic understanding of a complete project cycle for infrastructure and services; and to consolidate and integrate material contained in earlier modules.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 4):
- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Urban Infrastructure
The aim of this module is for the student to understand the key issues in the planning and conceptual design of infrastructure improvements for low income urban communities.

- Water for Low-Income Communities
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small water supplies for low-income communities.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Low-Cost Sanitation
The aim of this module is to increase the student's knowledge of all aspects of low-cost human excreta disposal.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

Facilities

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

Facilities on campus include our laboratory which houses equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. Although Distance Learners will not normally have access to this equipment they can ask the advice of laboratory staff if they are carrying out fieldwork as part of their dissertation.

How you will learn

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

The programme comprises both compulsory core modules, and optional modules which may be selected. The Case Study module draws together material from across the programme. A research dissertation between 75 and 150 pages long on a chosen topic relevant to interests or career development concludes the programme. Many of the Distance Learning modules have web-based discussion forums, where Distance Learners can choose to interact with each other and Module Tutors.

The method of delivery for the learning materials is mainly portable and paper-based, to suit students who are living or working in areas of the world with poor internet connectivity, or those who travel frequently. We also arrange some webinars which are recorded for students who are unable to participate.

During the programme students build up an excellent library of well-produced bound module notes, additional resources and relevant text books. In addition to the printed version we are developing and planning to provide e-reader versions of some module notes to enhance portability.

- Assessment
For most modules, students are assessed by two written assessments (three items for core modules). The Case Study module relates to a given scenario for which the student has to produce pre-feasibility and feasibility reports. The individual research dissertation module is assessed on the basis of a written dissertation and an oral when a student discusses their submitted dissertation with their supervisor and a second member of staff. For students who cannot visit the UK this oral takes place over Skype.

Careers and further study

NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Distance Learning students already working in these sectors find their new skills to be directly relevant and readily applicable to their jobs.
Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Technical Adviser, Environmental Engineering Consultant and Civil Engineering Specialist

Scholarships

On occasion we offer specific full-fee and partial-fee scholarships for distance learning applicants.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste-dl/

Read less
This programme is designed to equip graduates with the knowledge and skills to work at a high level in the design and construction of major infrastructure projects. Read more

Programme Background

This programme is designed to equip graduates with the knowledge and skills to work at a high level in the design and construction of major infrastructure projects. Its structure allows students to choose from a broad range of courses including foundation engineering; safety, risk and reliability; water and wastewater treatment and project management, among others. This programme design allows students to select courses which best fit their personal and professional needs, ensuring maximum added value to each individual’s study aspirations. Delivered only by Independent Distance Learning (IDL) this programme is ideal for those in employment or with other commitments, providing flexible study options that fit around work or family.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Industry Links

This programme is supported by the Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, Arup, Atkins, Balfour Beatty, Halcrow, Jacobs and WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

Programme Structure

This programme is composed of eight optional courses for those studying at PGDip level, each assessed by examination. For those looking to complete the programme at MSc level two synoptically-linked research projects are also required.

Course Choice Semester 1

Environmental Geotechnics
Environmental Hydrology & Water Resources
Ground Engineering
Indeterminate Structures
Sustainability in Civil Engineering
Project Management: Theory & Practice

Course Choice Semester 1

Earthquake Engineering
Foundation Engineering
Safety, Risk and Reliability
Urban Drainage and Water Supply
Water and Wastewater Treatment
Project Management: Strategic Issues

Read less
Technical specialists with environmental skills and competencies are increasingly valued by the global oil and gas industry in the 21st century. Read more
Technical specialists with environmental skills and competencies are increasingly valued by the global oil and gas industry in the 21st century. Developed in consultation with the industry and delivered by the largest group of oil and gas specialists at Coventry University, Petroleum and Environmental Technology MSc offers a unique, comprehensive and advanced level introduction to the technical operation of the petroleum industry linked to an assessment of the most important emerging environmental issues of concern to the sector. This course is professionally accredited by the Energy Institute: the leading chartered professional body for the global energy industry.

WHY CHOOSE THIS COURSE?

Uniquely at Coventry University, this course will give you the opportunity to study all major components of the upstream petroleum operation including reservoir technology and simulation, enhanced oil recovery, drilling and well completion, and petroleum processing and gas technology. It also combines this with the development of complementary expertise in key environmental issues such as oil spills trajectory simulation and remediation, environmental impacts of oil and gas, climate change, renewable energies and water/wastewater treatment. Particular highlights include training in industry standard PETREL and ECLIPSE reservoir simulation software (used by multinational oil companies like Shell, BP and ExxonMobil and kindly donated by Schlumberger to support your learning), and the opportunity to obtain a NEBOSH accredited Managing Safely Certificate. MSc PET students can also participate in a vibrant Student Chapter of the Society of Petroleum Engineers (SPE).

Upon successful completion of the course you should be recognised as a rounded and highly competent upstream technical oil and gas professional, with a distinctive and marketable environmental bias.

The course is professionally accredited by the Energy Institute. Obtaining Energy Institute accreditation involves a rigorous assessment, by a specialist visiting panel, of the quality of the course, the School, its facilities and its staff and students. On successful completion of this course, students will have met the entry requirement for working towards MEI chartered professional status for the Energy Institute. In summary, MSc Petroleum and Environmental Technology:
-Can prepare you for a rewarding career in the fast growing energy and hydrocarbon industry
-Will build your skills in all major technical components of the upstream petroleum industry linked to a distinctive and marketable understanding of the nature and management of relevant environmental issues;
-Is professionally accredited by the Energy Institute and offers the opportunity to obtain a NEBOSH accredited health and safety certificate on successful completion of the course

WHAT WILL I LEARN?

A wide range of subjects are available giving you a multidisciplinary approach to understanding the petroleum industries.

Mandatory subjects
-Drilling and Well Completion
-Reservoir Technology
-Oil and Gas Processing Technology
-HSE Management in the Oil and Gas Industry
-Oil Spill Science, Response and Remediation
-Petroleum Contracts and Economics
-Research Project

Optional subjects (choose two)
-Environmental Monitoring
-Water and Wastewater Treatment
-Impacts of Petroleum Exploration Production and Transportation
-Project and Quality Management in the Energy Industry
-Reservoir Simulation
-Clean Energy, Climate and Carbon

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

PET Equipment - TexasThe Petroleum and Environmental Technology MSc aims to equip graduates with the expertise required to confront the technological and environmental challenges confronting the oil and gas industry in the 21st century. The course is accredited by the Energy Institute and all students benefit from free membership of the Institute for the duration of their studies. The Energy Institute is the leading chartered professional membership body for the energy industry, supporting over 20,000 individuals working or studying within the energy sector worldwide. Membership of the EI provides access to extensive learning and networking opportunities to support professional, management, technical and scientific career development within the industry. On successful completion of the course, students will also have the opportunity to obtain a highly marketable NEBOSH accredited health and safety certificate.

Successful graduates could find employment in areas within the upstream technical oil and gas industry, and related fields in the chemical, environmental and energy sector.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering. Read more
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering.

This well-established programme is delivered by experienced University staff, together with practising engineers from consultancies and local authorities.

PROGRAMME OVERVIEW

You can access six study streams on this Masters programme:
-Bridge Engineering
-Construction Management
-Geotechnical Engineering
-Structural Engineering
-Water Engineering and Environmental Engineering
-Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation. This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment Optional
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The Civil Engineering programme aims to provide graduate engineers with:
-Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
-It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
-A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
-The properties, behaviour and use of relevant materials
-The management techniques which may be used to achieve civil engineering objectives within that context
-Some of the roles of management techniques and codes of practice in design
-The principles and implementation of some advanced design and management techniques specific to civil engineering
-Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
-The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
-The wider multidisciplinary engineering context and its underlying principles
-Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
-The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
-The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills
-Analyse and solve problems
-Think strategically
-Synthesis of complex sets of information
-Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
-Select and transfer knowledge and methods from other sectors to construction-based organisation
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Dynthesis and critical appraisal of the thoughts of others

Professional practical skills
-Awareness of professional and ethical conduct
-Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
-Evaluate and integrate information and processes in project work
-Present information orally to others
-Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
-Use concepts and theories to make engineering judgments in the absence of complete data
-Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change. Read more
Water and Environmental Management aims to provide students with a multi-disciplinary understanding of water resources and environmental issues through the development of knowledge and skills necessary for the planning and management of these resources to meet the needs of society and the environment within the context of climate change.

About the programme

On-campus (full-time/part-time) students study eight courses from a range of optional courses. Independent Distance Learning (IDL) students can also choose courses from a range of options in both Semester 1 and 2.

The programme is delivered by experts in the field of water and environmental management, covering a wide range of relevant disciplines.

Topics covered:
=============
• Environmental Hydrology and Water Resources
• Computational Simulation of River Flows
• Water Supply and Drainage for Buildings
• Water Conservation
• Environmental Geotechnics
• Urban Drainage and Water Supply
• Water and Wastewater Treatment
• Marine Waste Water Disposal
• Environmental Statistics
• Innovative Technologies and Global Water Challenges
• Environmental Planning (on-campus only);
• Flood Inundation Modelling (on-campus only);
• Irrigation Water Management.

Career opportunities

Training is provided in water resources engineering, environmental engineering, flood risk management, integrated water resources management, environmental implications of water engineering schemes, and industrial software packages. On completion, graduates will be able to offer employers a broad range of skills and advanced knowledge in a number of important areas of water engineering.

Primary employment destinations include:
- Leading UK and international consultants (e.g. Jacobs, HR Wallingford, JBA, Halcrow, Hyder Consulting and Fairhursts)
- Local and National Government (in the UK and elsewhere)
- Environmental regulators (e.g. SEPA & EA)
- Academic institutions (including PhD study and research associate posts)
- Non-Governmental Organisations

Professional recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Part-time and Distance Learning study options

This programme can be studied full-time, part-time or via Independent Distance Learning (IDL), ideal for those in employment or with other commitments, providing flexible study options that fit around work or family. As an IDL student you will not be required to attend any lectures, tutorials or other events at any of Heriot-Watt University’s campuses.

Industry Links

Where possible MSc dissertation projects are set up in collaboration with industry, the aim being to encourage contact between the student and industry, and to underpin the industrial relevance of the projects.

This programme is supported by the Civil Engineering Industry Advisory Committee, which includes representatives from major multi-national employers AECOM, ARUP, Balfour Beatty, Halcrow, Jacobsand WSP Group. This committee convenes regularly and advises on the programme content and structure, ensuring quality, up-to-date content and relevance to industry needs.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent.

We offer a range of English language courses: http://www.hw.ac.uk/study/english.htm

Read less
This fully accredited MSc programme from the Centre for Environmental and Health Engineering is highly popular and relevant to the needs of future engineers, scientists and professionals in the environmental-health, water, pollution-control, waste-management and environmental sectors. Read more
This fully accredited MSc programme from the Centre for Environmental and Health Engineering is highly popular and relevant to the needs of future engineers, scientists and professionals in the environmental-health, water, pollution-control, waste-management and environmental sectors.

PROGRAMME OVERVIEW

This MSc attracts UK and overseas graduates who wish to take advantage of the considerable global interest in water, wastewater, sanitation and waste to develop their careers.

Many graduates from the programme go on to work for consultancies, water utilities, contractors, relief agencies, regulatory bodies and international organisations.

Graduates from the programme also have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

In the past, scholarship students have been accepted from a range of schemes, including: Foreign Office and British Council Chevening, World Bank, Commonwealth, Thames Water, Commonwealth Shared Scholarships, and the Royal Academy of Engineering, together with students from numerous overseas national schemes.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry & Microbiology
-Pollution Control
-Groundwater Control
-Regulation & Management
-European Study Tour
-Water Resources
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive and robust understanding of key areas of water and environmental engineering
-Skills that will enable students to explore, critically assess and evaluate problems and produce systematic and coherent solutions integrating core engineering science with practical applications both independently and within a team structure
-An understanding of how this knowledge can be articulated around sustainable development practices
-A sound base for enhanced communication skills both oral and written
-A pathway that will prepare graduates for successful careers in the field including, where appropriate, progression to Chartered Engineer status

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

Knowledge and understanding
-The fundamental principles underpinning the key topics covered in the subject area
-Investigation and research techniques which provide a sound base for critical evaluation, selection and use of a wide range of scientific, technical and management processes relevant to the field
-The multidisciplinary nature of the subject area and its underlying principles and the importance of developing integrated approaches to solving complex problems
-The importance of identifying emerging trends to existing knowledge structures and theoretical frameworks and propose new alternative application and methodological approaches relevant to the student’ s research interests
-Management, organisation and communication skills including problem definition, project and experimental design, time management, decision making processes, independent and team work, knowledge transfer via written and oral presentations

Intellectual/cognitive skills
-An integrated and multidisciplinary approach to solving complex problems using professional judgment taking into consideration the engineering, economic, social and environmental impacts
-The ability to critically evaluate outcomes and accurately assess and report on own/others work with justification and relate them to existing knowledge structures and methodologies
-The ability to formulate, conduct and write-up a systematic and coherent research programme topic demonstrating in-depth knowledge and high level of problem solving skills

Professional practical skills
-Critical review of the scientific literature for effective justification and support of results and decisions
Acquisition of the necessary skills to collect as well as generate data via laboratory experiments or computer-based programmes
-Critical analysis of results/recommendations and their presentation in a concise and logical manner
-Preparation of technical reports and presentation of work to an informed audience
-Awareness of difficulties and ethical issues likely to arise in professional practice and an ability to formulate solutions in dialogue with peers, industry professionals, institutional professionals and others

Key/transferable skills
-Critical analysis, evaluation and synthesis of complex information and data
-Communication and knowledge transfer through oral presentations and written reports
-Selection and use of appropriate advanced research methods
-Integrated and multidisciplinary approach to problem solving
-Time and resource management
-Effective use of a range of communication and technology tools aimed at different audiences
-Effective learning and working, both independently and as a part of a team

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The Water and Wastewater Engineering programme is ideal for individuals who want to make a real difference to delivering reliable water supplies, or to maintaining and enhancing river and ground water quality. Read more
The Water and Wastewater Engineering programme is ideal for individuals who want to make a real difference to delivering reliable water supplies, or to maintaining and enhancing river and ground water quality. The programme is suitable for those from non-engineering and engineering disciplines alike: all we require is a science or engineering degree qualification combined with a keen interest in water and wastewater. Treatment processes play a key role in delivering safe, reliable supplies of water to households, industry and agriculture and in safeguarding the quality of water in rivers, lakes, aquifers and around coastal areas. Well educated, skilled and experienced graduates are required to operate and manage vital water and wastewater treatment services.

Read less
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. Read more
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of water, sanitation and environmental management. The programme focuses on the conditions and aspirations of communities in low- and middle-income countries.

Modules are delivered by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Participants have a mix of nationalities and past experiences, providing opportunities for learning from them and development of a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide.

- Excellent graduate prospects. Many of our participants are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management-dl/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module is for participants to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Environmental Assessment
The aim of this module is for participants to develop a broad understanding of both the needs for and the mechanisms of environmental assessment and management, with emphasis on aquatic environments, in low and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Case Study
The aims of this module are to give participants a basic understanding of a complete project cycle for infrastucture and services; and to consolidate and integrate material contained in earlier modules.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 2):
- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries.

- Water for Low-income Communities
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small water supplies for low-income communities.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Low-cost Sanitation
The aim of this module is to increase the student's knowledge of all aspects of low-cost human excreta disposal.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

Facilities

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

Facilities on campus include our laboratory which houses equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. Although Distance Learners will not normally have access to this equipment they can ask the advice of laboratory staff if they are carrying out fieldwork as part of their dissertation.

How you will learn

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities and the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

The programme comprises both compulsory core modules, and optional modules which may be selected. The Case Study module draws together material from across the programme. A research dissertation between 75 and 150 pages long on a chosen topic relevant to interests or career development concludes the programme. Many of the Distance Learning modules have web-based discussion forums, where Distance Learners can choose to interact with each other and Module Tutors.

The method of delivery for the learning materials is mainly portable and paper-based, to suit students who are living or working in areas of the world with poor internet connectivity, or those who travel frequently. We also arrange some webinars which are recorded for students who are unable to participate.

During the programme students build up an excellent library of well-produced bound module notes, additional resources and relevant text books. In addition to the printed version we are developing and planning to provide e-reader versions of some module notes to enhance portability.

- Assessment
For most modules, students are assessed by two written assessments (three items for core modules). The Case Study module relates to a given scenario for which the student has to produce pre-feasibility and feasibility reports. The individual research dissertation module is assessed on the basis of a written dissertation and an oral when a student discusses their submitted dissertation with their supervisor and a second member of staff. For students who cannot visit the UK this oral takes place over Skype.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Distance Learning students already working in these sectors find their new skills to be directly relevant and readily applicable to their jobs.
Graduate job titles include Technical Manager, Programme Engineer, Water and Sanitation Consultant, Project Manager, Environmental Health Officer and WASH Coordinator.

Scholarships

On occasion we offer specific full-fee and partial-fee scholarships for Distance Learning applicants.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management-dl/

Read less
Study fundamental engineering and scientific principles at postgraduate level on this Masters at Liverpool John Moores University. Read more
Study fundamental engineering and scientific principles at postgraduate level on this Masters at Liverpool John Moores University. The course provides CIWEM accreditation as an environmental engineer and has close links with industry.

•Course available to study full time (1 year) and part time (2 years)
•Curriculum informed by the School’s close partnerships with industry and knowledge of professional practice
•Extensive industry partnerships in the public and private sectors
•Internationally acclaimed research carried out by Built Environment and Sustainable Technologies Research Centre (BEST)
•Several graduates have won CIWEM sponsored national prizes for excellence and achievement reflecting the high quality of the course

The Masters programme in Water Energy and the Environment is designed to help you become a competent environmental engineer and manager, by giving you a sound knowledge of the fundamental engineering and scientific principles, together with the ability to apply these to design, construction, assessment, analysis, operation and management.

The programme has two principal aims. First, to equip you with the necessary competencies and skills to analyse, assess and manage all principal aspects within the fields of water, energy and the environment. Second, to give you the professional skills, knowledge and experience to both meet the current demands of industry and influence possible future trends.

You will develop enhanced analytical and technical skills as well as developing the higher level managerial and decision-making skills necessary to ensure that sound judgements are carried through into the relevant operational activities.

As a result of your studies, you can expect to develop an adequate and sound understanding of the relevant engineering and scientific principles as well as the relevant legal processes and their related legislation. You will also develop a critical awareness of current environmental thinking in the context of water, energy and land. You will also gain:

•an understanding of the principles of operational management and sound decision taking and begin exploring the complex situations that may be encountered
•advanced logical and analytical abilities, plus an enhanced sense of enquiry and ability for original and creative thought
•the conceptual tools to cope both with rapid technological change and unpredictable situations
•the capacity to manage your own development and apply prior knowledge and experience within the programme

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Research methodology
Research project/dissertation
Environmental policy and management
Sustainable infrastructure in developing countries
River basin management
Water and wastewater treatment
Energy management
Environmental systems

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
This course provides consultants, operators, regulators and managers with the professional skills and training to contribute to the provision of environmentally sound and economically sustainable systems in the fields of clean water supply, wastewater treatment, and the management of solid waste, including wastes from the oil industry. Read more
This course provides consultants, operators, regulators and managers with the professional skills and training to contribute to the provision of environmentally sound and economically sustainable systems in the fields of clean water supply, wastewater treatment, and the management of solid waste, including wastes from the oil industry.

It is intended for those who find themselves in management positions with little experience of the techniques necessary to manage the range of projects for which they have responsibilities, or people with a background in management who feel they lack up-to-date technical knowledge in the rapidly changing field of environmental engineering.

You’ll build your knowledge of key issues such as water resource, solid waste or health management. Taught by experts in a research-intensive environment, you’ll gain an insight into the latest developments in this exciting field and prepare to meet the challenges they bring.

You’ll study a broad programme informed by an employers’ group and our Industrial Advisory Board, ensuring that we equip you with the skills you need in the modern engineering industry.

You’ll also benefit from using our specialist facilities, such as our public health labs with separate areas for solid waste, water and wastewater, and a class II microbiology lab and clean room. We have all the specialist software you’ll need for your programme, and you’ll have access to a dedicated study suite for Masters students.

Read less
The Advanced Chemical Engineering (ACE) course allows students to undertake advanced study in chemical engineering coupled with appropriate background study in basic sciences, mathematics and computing techniques, while the specialised MSc streams (BIO, PSE or SPE) give you the opportunity to explore one area of chemical engineering in more depth. Read more
The Advanced Chemical Engineering (ACE) course allows students to undertake advanced study in chemical engineering coupled with appropriate background study in basic sciences, mathematics and computing techniques, while the specialised MSc streams (BIO, PSE or SPE) give you the opportunity to explore one area of chemical engineering in more depth.

The Biotechnology course provides a firm foundation in the science and engineering of biological processes, ranging from metabolic engineering and tissue engineering to wastewater treatment.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X