• University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cranfield University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University College Cork Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"statistical" AND "machin…×
0 miles

Masters Degrees (Statistical Machine Learning)

We have 92 Masters Degrees (Statistical Machine Learning)

  • "statistical" AND "machine" AND "learning" ×
  • clear all
Showing 1 to 15 of 92
Order by 
This MSc teaches advanced analytical and computational skills for success in a data rich world. Read more

This MSc teaches advanced analytical and computational skills for success in a data rich world. Designed to be both mathematically rigorous and relevant, the programme covers fundamental aspects of machine learning and statistics, with potential options in information retrieval, bioinformatics, quantitative finance, artificial intelligence and machine vision.

About this degree

The programme aims to provide graduates with the foundational principles and the practical experience needed by employers in the area of machine learning and statistics. Graduates of this programme will have had the opportunity to develop their skills by tackling problems related to industrial needs or to leading-edge research.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), four to six optional modules (60 to 90 credits), up to two elective modules (up to 30 credits) and a research project (60 credits). Please note that not all combinations of optional modules will be available due to timetabling restrictions.

Core modules

  • Supervised Learning (15 credits)
  • Statistical Modelling and Data Analysis (15 credits)

Optional modules

Students must choose 15 credits from Group One Options. Of the remaining credits, students must choose a minimum of 30 and a maximum of 60 from Group Two, 15 credits from Group Three and a maximum of 30 credits from Electives.

Group One Options (15 credits)

  • Graphical Models (15 credits)
  • Probabilistic and Unsupervised Learning (15 credits)

Group Two Options (30 to 60 credits)

  • Advanced Deep Learning and Reinforcement Learning (15 credits)
  • Advanced Topics in Machine Learning (15 credits)
  • Applied Machine Learning (15 credits)
  • Approximate Inference and Learning in Probabilistic Models (15 credits)
  • Information Retrieval and Data Mining (15 credits)
  • Introduction to Deep Learning (15 credits)
  • Machine Vision (15 credits)
  • Statistical Natural Language Processing (15 credits)

Group Three Options (15 credits)

  • Applied Bayesian Methods (15 credits)
  • Statistical Design of Investigations (15 credits)
  • Statistical Inference (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All MSc students undertake an independent research project, which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, discussions, practical sessions and project work. Student performance is assessed through unseen written examinations, coursework, practical application and the project assessment process.

Further information on modules and degree structure is available on the department website: Computational Statistics and Machine Learning MSc

Careers

There is a strong national and international demand for graduates with skills at the interface of traditional statistics and machine learning. Substantial sectors of UK industry, including leading, large companies already make extensive use of computational statistics and machine learning techniques in the course of their business activities. Globally there are a large number of very successful users of this technology, many located in the UK. Areas in which expertise in statistics and machine learning is in particular demand include: finance, banking, insurance, retail, e-commerce, pharmaceuticals, and computer security. Graduates have gone on to further study at, for example, the Universities of Cambridge, Helsinki, Chicago, as well as at UCL. The MSc is also ideal preparation for a PhD, in statistics, machine learning or a related area.

Recent career destinations for this degree

  • Data Scientist, Interpretive
  • Software Engineer, Google
  • Data Scientist, YouGov
  • Research Engineer, DeepMind
  • PhD in Computer Science, UCL

Employability

Scientific experiments and companies now routinely generate vast databases and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally. CSML graduates have been in high demand for PhD positions across the sciences. In London there are many companies looking to understand their customers better who have hired our CSML graduates. Similarly graduates now work in companies in, amongst others, Germany, Iceland, France and the US in large-scale data analysis. The finance sector has also hired several graduates recently.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Centre for Computational Statistics and Machine Learning (CSML) is a major European Centre for machine learning having coordinated the PASCAL European Network of Excellence.

Coupled with the internationally renowned Gatsby Computational Neuroscience and the Machine Learning Unit, and UCL Statistical Science, this MSc programme draws on world-class research and teaching talents. The centre has excellent links with world-leading companies in internet technology, finance and related information areas.

The programme is designed to train students in both the practical and theoretical sides of machine learning. A significant grounding in computational statistics is also provided.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
There is a high demand from industry worldwide, including from substantial sectors in the UK, for graduates with skills at the interface of traditional statistics and machine learning. Read more

There is a high demand from industry worldwide, including from substantial sectors in the UK, for graduates with skills at the interface of traditional statistics and machine learning. MRes graduates benefit from the department's excellent links in finding employment; this programme is also ideal preparation for a research career.

About this degree

The programme aims to provide graduates with the foundational principles and the practical experience needed by employers in the areas of computational statistics and machine learning (CSML). Students will have the opportunity to develop their skills by tackling problems related to industrial needs or to leading-edge research. They also undertake a nine-month research project which enables the department to more fully assess their research potential.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (30 credits), three optional modules (45 credits) and a dissertation (105 credits).

Core modules

  • Investigating Research
  • Researcher Professional Development

Optional modules

Student select three modules from the following:

  • Advanced Deep Learning and Reinforcement Learning
  • Advanced Topics in Machine Learning
  • Applied Bayesian Methods
  • Approximate Inference and Learning in Probabilistic Models
  • Graphical Models
  • Information Retrieval and Data Mining
  • Introduction to Deep Learning
  • Introduction to Machine Learning
  • Inverse Problems in Imaging
  • Machine Vision
  • Probabilistic and Unsupervised Learning
  • Selected Topics in Statistics
  • Statistical Computing
  • Statistical Inference
  • Statistical Models and Data Analysis
  • Supervised Learning

Dissertation/report

All students undertake an independent research project which culminates in a substantial dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars. Lectures are often supported by laboratory work with assistance from demonstrators. Students liaise with their academic or industrial supervisor to choose a study area of mutual interest for the research project. Performance is assessed by unseen written examinations, coursework and the research dissertation.

Further information on modules and degree structure is available on the department website: Computational Statistics and Machine Learning MRes

Careers

Graduates have gone on to further study at, for example, the Universities of Cambridge, Helsinki, and Chicago, as well as at UCL. Similarly, CSML graduates now work in companies in Germany, Iceland, France and the US in large-scale data analysis. The finance sector is also particularly interested in CSML graduates.

Employability

Scientific experiments and companies now routinely generate vast databases, and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally, while in London there are many companies looking to understand their customers better who have hired CSML graduates. Computational statistics and machine learning skills are in particular demand in areas including finance, banking, insurance, retail, e-commerce, pharmaceuticals, and computer security. CSML graduates have obtained PhD positions both in machine learning and related large-scale data analysis, and across the sciences.

Why study this degree at UCL?

The Centre for Computational Statistics and Machine Learning (CSML) is a major European Centre for machine learning, having co-ordinated the PASCAL European Network of Excellence which represents the largest network of machine learning researchers in Europe.

UCL Computer Science graduates are particularly valued by the world’s leading organisations in internet technology, finance, and related information areas, as a result of the department’s strong international reputation and ideal location close to the City of London.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The Machine Learning MSc at UCL is a truly unique programme and provides an excellent environment to study the subject. It introduces the computational, mathematical and business views of machine learning to those who want to upgrade their expertise and portfolio of skills in this domain. Read more

The Machine Learning MSc at UCL is a truly unique programme and provides an excellent environment to study the subject. It introduces the computational, mathematical and business views of machine learning to those who want to upgrade their expertise and portfolio of skills in this domain.

About this degree

Students develop an understanding of the principles underlying the development and application of new techniques in this area, alongside an awareness of, and ability to analyse the range and scope of algorithms and approaches available, and design, develop and evaluate appropriate algorithms and methods for new problems and applications.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (15 credits), five to seven optional modules (75 to 105 credits), up to two modules (30 credits) from electives, and a research project (60 credits).

Core modules

  • Supervised Learning (15 credits)

Optional modules

Students must choose 15 credits from Option Group One and a minimum of 60 credits from Option Group Two. Students must choose a further 30 credits from either Option Group Two or approved electives.

Option Group One (choose 15 credits)

  • Graphical Models (15 credits)
  • Probabilistic and Unsupervised Learning (15 credits)

Option Group Two (choose 60 to 90 credits)

  • Advanced Deep Learning and Reinforcement Learning (15 credits)
  • Advanced Topics in Machine Learning (15 credits)
  • Affective Computing and Human-Robot Interaction (15 credits)
  • Applied Machine Learning (15 credits)
  • Approximate Inference and Learning in Probabilistic Models (15 credits)
  • Bioinformatics (15 credits)
  • Information Retrieval and Data Mining (15 credits)
  • Introduction to Deep Learning (15 credits)
  • Machine Vision (15 credits)
  • Programming and Mathematical Methods for Machine Learning (15 credits)
  • Statistical Natural Language Programming (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

Students may select up to 30 credits from elective modules

A list of acceptable elective modules is available on the departmental website.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words in the form of a project report.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, class discussions and project supervision. Student performance is assessed though a combination of unseen written examination, coursework (much of which involves programming and/or data analysis), practical application, and the research project.

Further information on modules and degree structure is available on the department website: Machine Learning MSc

Careers

Graduates from this programme have an excellent employment record. Substantial sectors of UK industry, including leading, large companies already make extensive use of intelligent systems techniques in the course of their business activities, and the UK has a number of very successful developers and suppliers of the technology. Students also benefit from strong corporate and academic connections within the UCL Computer Science alumni network.

Graduates have taken machine learning research degrees in domains as diverse as robotics, music, psychology, and bioinformatics at the Universities of Basel, Cambridge, Edinburgh, Nairobi, Oxford and at UCL. Graduates have also found positions with multinational companies such as BAE Systems and BAE Detica.

Recent career destinations for this degree

  • Computer Vision Engineer, ZVR
  • Data Analyst / Data Scientist, Deloitte Data Analytics Group
  • Programmatic Yield Manager and Data Analyst, eBay
  • Data Scientist, dunnhumby
  • PhD in Computer Science, UCL

Employability

Scientific experiments and companies now routinely generate vast databases and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally. Machine Learning graduates have been in high demand for PhD positions across the sciences. In London there are many companies looking to understand their customers better who have hired our graduates. Similarly graduates now work in companies in Germany, Iceland, France and the US, amongst other places, in large-scale data analysis. The finance sector has also hired several graduates recently.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Computer Science is recognised as a world leader in teaching and research, and our Master's programmes have some of the highest employment rates and starting salaries.

We take an experimental approach to our subject, enjoy the challenge and opportunity of entrepreneurial partnerships and place a high value on our extensive range of industrial collaborations.

This MSc is one of the few leading Master's programmes entirely dedicated to machine learning. It combines a rigorous theoretical academic framework along with specific knowledge of a variety of application fields to fast-track your commercial career or to prepare for PhD research.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Data Science brings together computational and statistical skills and machine learning for data-driven problem solving. Read more

Data Science brings together computational and statistical skills and machine learning for data-driven problem solving. This rapidly expanding area includes deep learning, large-scale data analysis and has applications in e-commerce, search/information retrieval, natural language modelling, finance, bioinformatics and related areas in artificial intelligence.

About this degree

The programme comprises core machine learning methodology and an introduction to statistical science, combined with a set of more specialised and advanced options covering computing and statistical modelling. Projects are offered both within UCL Computer Science and from a range of industry partners.

Students undertake modules to the value of 180 credits.

The programme consists of three compulsory modules (45 credits), four optional modules (75 credits) and a dissertation/report (60 credits).

Core modules

  • Applied Machine Learning (15 credits)
  • Introduction to Machine Learning (15 credits)
  • Introduction to Statistical Data Science (15 credits)

Optional modules

Students must choose 30 credits from Group One options. For the remaining 45 credits, students may choose up to 30 credits from Group Two options or up to 45 credits from Electives.

Group One Options (30 credits)

  • Advanced Deep Learning and Reinforcement Learning (15 credits)
  • Birkbeck College: Cloud Computing (15 credits)
  • Information Retrieval and Data Mining (15 credits)
  • Introduction to Deep Learning (15 credits)
  • Machine Vision (15 credits)
  • Statistical Natural Language Processing (15 credits)
  • Web Economics (15 credits)

Group Two Options (up to 30 credits)

  • Applied Bayesian Methods (15 credits)
  • Decision and Risk (15 credits)
  • Forecasting (15 credits)
  • Statistical Design of Investigations (15 credits)

Electives (up to 45 credits)

  • Affective Computing and Human-Robot Interaction (15 credits)
  • Bioinformatics (15 credits)
  • Computational Modelling for Biomedical Imaging (15 credits)
  • Graphical Models (15 credits)
  • Stochastic Systems (15 credits)
  • Supervised Learning (15 credits)

Please note: the availability and delivery of modules may vary, based on your selected options.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning

The programme is delivered though a combination of lectures, seminars, class discussions and project supervision. Student performance is assessed through a combination of unseen written examination, coursework (much of which involves programming and/or data analysis), practical application, and the research project.

Further information on modules and degree structure is available on the department website: Data Science and Machine Learning MSc

Careers

Data science professionals are increasingly sought after as the integration of statistical and computational analytical tools becomes more essential to organisations. This is a very new degree and information on graduate destinations is not currently available. However, MSc graduates from across the department frequently find roles with major tech and finance companies including:

  • Google Deepmind
  • Microsoft Research
  • Dunnhumby
  • Index Ventures
  • Cisco
  • Deutsche Bank
  • IBM
  • Morgan Stanley

Employability

Students gain a thorough understanding of the fundamentals required from the best practitioners, and the programme's broad base enables data scientists to adapt to rapidly evolving goals.

Why study this degree at UCL?

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

UCL Computer Science staff have research interests ranging from foundational machine learning and large-scale data analysis to commercial aspect of business intelligence. Our extensive links to companies provide students with opportunities to carry out the research project with an industry partner.

The department also enjoys strong collaborative relationships across UCL; exposure to interdisciplinary research spanning UCL Computer Science and UCL Statistical Science will provide students with a broad perspective of the field. UCL is home to regular machine learning masterclasses and big data seminars.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Computer Science

96% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Data science brings together computational and statistical skills for data-driven problem solving, which is in increasing demand in fields such as marketing, pharmaceutics, finance and management. Read more

Data science brings together computational and statistical skills for data-driven problem solving, which is in increasing demand in fields such as marketing, pharmaceutics, finance and management. This MSc will equip students with the analytical tools to design sophisticated technical solutions using modern computational methods and with an emphasis on rigorous statistical thinking.

About this degree

The programme combines training in core statistical and machine learning methodology, beginning at an introductory level, with a range of optional modules covering more specialised knowledge in statistical computing and modelling. Students choosing the statistics specialisation will take one compulsory module and up to two additional modules in computer science, with the remaining modules (including the research project) taken mainly from within UCL Statistical Science.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation/report (60 credits).

Core modules

  • Introduction to Statistical Data Science
  • Introduction to Machine Learning
  • Statistical Design of Investigations
  • Statistical Computing

Optional modules

At least two from a choice of Statistical Science modules including:

  • Applied Bayesian Methods
  • Decision & Risk
  • Factorial Experimentation
  • Forecasting
  • Quantitative Modelling of Operational Risk and Insurance Analytics
  • Selected Topics in Statistics
  • Stochastic Methods in Finance I
  • Stochastic Methods in Finance II
  • Stochastic Systems

Up to two from a choice of Computer Science modules including:

  • Affective Computing and Human-Robot Interaction
  • Graphical Models
  • Statistical Natural Language Processing
  • Information Retrieval & Data Mining

Dissertation/report

All students undertake an independent research project, culminating in a dissertation usually of 10,000-12,000 words. Workshops running during the teaching terms provide preparation for this project and cover the communication of statistics.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and classes, some of which are dedicated to practical work. Assessment is through written examination and coursework. The research project is assessed through the dissertation and a 15-minute presentation.

Further information on modules and degree structure is available on the department website: Data Science MSc

Careers

Graduates from UCL Statistical Science typically enter professional employment across a broad range of industry sectors or pursue further academic study. 

The Data Science MSc is a new programme with the first cohort of students due to graduate in 2017. Recent career destinations for graduates of the related Statistics MSc include:

  • Management Associate, HSBC
  • Statistical Analyst, Nielsen
  • PhD in Statistics, UCL
  • Mortgage Specialist, Citibank
  • Research Assistant Statistician, Cambridge Institute of Public Health

Employability

Data science professionals are likely to be increasingly sought after as the integration of statistical and computational analytical tools becomes essential in all kinds of organisations and enterprises. A thorough understanding of the fundamentals is to be expected from the best practitioners. For instance, in applications in marketing, the healthcare industry and banking, computational skills should should be accompanied by statistical expertise at graduate level. Data scientists need a broad background knowledge so that they will be able to adapt to rapidly evolving challenges. Recent graduates from the related Statistics MSc have been offered positions as research analysts or consultants, and job opportunities in these areas are increasing.

Why study this degree at UCL?

UCL Statistical Science has a broad range of research interests, but has particular strengths in the area of computational statistics and in the interface between statistics and computer science.

UCL's Centre for Computational Statistics and Machine Learning, in which many members of the department are active, has a programme of seminars, masterclasses and other events. UCL's Centre for Data Science and Big Data Institute are newer developments, again with strong involvement of the department, where emphasis is on research into big data problems.

UCL is one of the founding members of the Alan Turing Institute, and both UCL Statistical Science and UCL Computer Science will be playing major roles in this exciting new development which will make London a major focus for big data research.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Statistical Science

82% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Data Science brings together computational and statistical skills for data-driven problem solving. Read more
Data Science brings together computational and statistical skills for data-driven problem solving. This rapidly expanding area includes machine learning, deep learning, large-scale data analysis and has applications in e-commerce, search/information retrieval, natural language modelling, finance, bioinformatics and related areas in artificial intelligence.

Degree information

The programme comprises core machine learning methodology and an introduction to statistical science, combined with a set of more specialised and advanced options covering computing and statistical modelling. Projects are offered both within UCL Computer Science and from a wide range of industry partners.

Students undertake modules to the value of 180 credits.

The programme consists of three compulsory modules (45 credits), five optional modules (75credits) and a dissertation/report (60 credits).

Core modules
-Applied Machine Learning
-Introduction to Supervised Learning
-Introduction to Statistical Data Science

Optional modules - students choose a minimum of 30 credits and a maximum of 60 credits from the following optional modules:
-Cloud Computing (Birkbeck)
-Machine Vision
-Information Retrieval & Data Mining
-Statistical Natural Language Processing
-Web Economics

Students choose a minimum of 0 credits and a maximum of 30 credits from these optional Statistics modules:
-Statistical Design of Investigations
-Applied Bayesian Methods
-Decision & Risk

Students choose a minimum of 15 credits and a maximum of 15 credits from these elective modules:
-Supervised Learning
-Graphical Models
-Bioinformatics
-Affective Computing and Human-Robot Interaction
-Computational Modelling for Biomedical Imaging
-Stochastic Systems
-Forecasting

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning
The programme is delivered though a combination of lectures, seminars, class discussions and project supervision. Student performance is assessed through a combination of unseen written examination, coursework (much of which involves programming and/or data analysis), practical application, and the research project.

Careers

Data science professionals are increasingly sought after as the integration of statistical and computational analytical tools becomes more essential to organisations. A thorough understanding of the fundamentals required from the best practitioners, and this programme's broad base, assists data scientists to adapt to rapidly evolving goals. This is a new degree and information on graduate destinations is not currently available. However, MSc graduates from across the department frequently find roles with major tech and finance companies including:
-Google Deepmind
-Microsoft Research
-Dunnhumby
-Index Ventures
-Last.fm
-Cisco
-Deutsche Bank
-IBM
-Morgan Stanley

Why study this degree at UCL?

The 2014 Research Excellence Framework ranked UCL first in the UK for computer science. 61% of its research work is rated as world-leading and 96% as internationally excellent.

UCL Computer Science staff have research interests ranging from foundational machine learning and large-scale data analysis to commercial aspect of business intelligence. Our extensive links to companies provide students with opportunities to carry out the research project with an industry partner.

The department also enjoys strong collaborative relationships across UCL; and exposure to interdisciplinary research spanning UCL Computer Science and UCl Statistical Science will provide students with a broad perspective of the field. UCL is home to regular machine learning masterclasses and big data seminars.

Read less
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Read more
Machine learning, data mining and high-performance computing are concerned with the automated analysis of large-scale data by computer, in order to extract the useful knowledge hidden in it. Using state-of-the-art artificial intelligence methods, this technology builds computer systems capable of learning from past experience, allowing them to adapt to new tasks, predict future developments, and provide intelligent decision support. Bristol's recent investment in the BlueCrystal supercomputer - and our Exabyte University research theme - show our commitment to research at the cutting edge in this area.

This programme is aimed at giving you a solid grounding in machine learning, data mining and high-performance computing technology, and will equip you with the skills necessary to construct and apply these tools and techniques to the solution of complex scientific and business problems.

Programme structure

Your course will cover the following core subjects:
-Introduction to Machine Learning
-Research Skills
-Statistical Pattern Recognition
-Uncertainty Modelling for Intelligent Systems

Depending on previous experience or preference, you are then able to take optional units which typically include:
-Artificial Intelligence with Logic Programming
-Bio-inspired Artificial Intelligence
-Cloud Computing
-Computational Bioinformatics
-Computational Genomics and Bioinformatics Algorithms
-Computational Neuroscience
-High Performance Computing
-Image Processing and Computer Vision
-Robotics Systems
-Server Software
-Web Technologies

You must then complete a project that involves researching, planning and implementing a major piece of work. The project must contain a significant scientific or technical component and will usually involve a software development component. It is usually submitted in September.

This programme is updated on an ongoing basis to keep it at the forefront of the discipline. Please refer to the University's programme catalogue for the latest information on the most up-to-date programme structure.

Careers

Skilled professionals and researchers who are able to apply these technologies to current problems are in high demand in today's job market.

Read less
Whether you are looking to start a career in data science or wanting to further develop your current career, our innovative online Masters programme in Data Analytics provides you with vital data science skills. Read more

Whether you are looking to start a career in data science or wanting to further develop your current career, our innovative online Masters programme in Data Analytics provides you with vital data science skills. This skills-based, yet rigorous curriculum provides you both with a thorough foundation in the underlying principles of learning from data and practical technical expertise in data handling, visualisation and modelling. The programme uses cutting-edge learning technology to deliver an interactive and collaborative online learning experience. Community building and collaborative learning is a key focus of our online delivery and you will be encouraged and supported to interact with your fellow classmates and tutors in a variety of ways throughout the duration of the course.

Why this programme?

  • The University of Glasgow’s School of Mathematics and Statistics is ranked 3rd in Scotland and 16th in the UK (Complete University Guide 2018).
  • The Statistics Group at Glasgow is the largest statistics group in Scotland and internationally renowned for its research excellence.
  • You will obtain an MSc degree from a world renowned university while being in full-time employment (around 10 hours of study per week).
  • You can personalise your learning by having the freedom to work at your own pace.
  • You can take advantage of rich interactive reading material, tutor-led videos and computer-led programming sessions.

Programme Stucture

This flexible part-time programme is completed over three years. In the first two years you will be taking two courses each trimester. In the third year you will be working on a project and dissertation.

The courses are designed to allow you to work at your own pace, with milestones and assessment to be completed according to an agreed timetable.

Core courses

  • Stochastic Models and Probability
  • Learning from Data
  • Predictive Models
  • R Programming
  • Data Programming in Python
  • Data Management and Analytics using SAS
  • Advanced Predictive Models
  • Data Mining and Machine Learning I: Supervised and Unsupervised Learning
  • Data Mining and Machine Learning II: Big and Unstructured Data
  • Uncertainty Assessment and Bayesian Computation
  • High-performance Computing for Data Analytics
  • Data Analytics in Business and Industry

You will also carry out a 60 credit research project.

In the first year of the programme you will need to take three paper-based examinations, held on the second Monday of May and the following Tuesday. UK-based students will have to take these examinations in Glasgow. Students from abroad can choose to either travel to Glasgow or take the examination in a local test centre, such as British Council offices. Test centres are subject to approval by the University and the candidate is responsible for any local fees charged by the test centre.

Career prospects

Data is becoming an ever increasing part of the modern world, yet the talent to extract information and value from complex data is scarce. There is a massive shortage of data-analytical skills in the workforce. Statistical Analysis and Data Mining was listed by LinkedIn as the hottest skill in 2014 and came second in 2015 and 2016. This programme opens up a multitude of career opportunities and/or boosts your career trajectory.

Graduates from the programmes in our School have an excellent track record of gaining employment in many sectors including medical research, the pharmaceutical industry, finance, business consulting and government statistical services, while others have continued on to a PhD. 



Read less
Data is the driving force behind today's information-based society. There is a rapidly increasing demand for specialists who are able to exploit the new wealth of information in large and complex systems. Read more

Data is the driving force behind today's information-based society. There is a rapidly increasing demand for specialists who are able to exploit the new wealth of information in large and complex systems.

The programme focuses on modern methods from machine learning and database management that use the power of statistics to build efficient models, make reliable predictions and optimal decisions. The programme provides students with unique skills that are among the most valued on the labour market.

The rapid development of information technologies has led to the overwhelming of society with enormous volumes of information generated by large or complex systems. Applications in IT, telecommunications, business, robotics, economics, medicine, and many other fields generate information volumes that challenge professional analysts. Models and algorithms from machine learning, data mining, statistical visualisation, computational statistics and other computer-intensive statistical methods included in the programme are designed to learn from these complex information volumes. These tools are often used to increase the efficiency and productivity of large and complex systems and also to make them smarter and more autonomous. This naturally makes these tools increasingly popular with both governmental agencies and the private sector.

The programme is designed for students who have basic knowledge of mathematics, applied mathematics, statistics and computer science and have a bachelor’s degree in one of these areas, or an engineering degree.

Most of the courses included in the programme provide students with deep theoretical knowledge and practical experience from massive amounts of laboratory work.

Students will be given the opportunity to learn:

  • how to use classification methods to improve a mobile phone’s speech recognition software ability to distinguish vowels in a noisy environment
  • how to improve directed marketing by analysing shopping patterns in supermarkets’ scanner databases
  • how to build a spam filter
  • how to provide early warning of a financial crisis by analysing the frequency of crisis-related words in financial media and internet forums
  • how to estimate the effect that new traffic legislation will have on the number of deaths in road accidents
  • how to use a complex DNA microarray dataset to learn about the determinants of cancer
  • how interactive and dynamic graphics can be used to determine the origin of an olive oil sample.

The programme contains a wide variety of courses that students may choose from. Students willing to complement their studies with courses given at other universities have the possibility to participate in exchange studies during the third term. Our partner programmes were carefully selected in order to cover various methodological perspectives and applied areas.

During the final term of the programme, students receive help in finding a private company or a government institution where they can work towards their thesis. There they can apply their knowledge to a real problem and meet people who use advanced data analytics in practice.



Read less
In this digital and data-rich era the demand for statistics graduates from industry, the public sector and academia is high, yet the pool of such graduates is small. Read more

In this digital and data-rich era the demand for statistics graduates from industry, the public sector and academia is high, yet the pool of such graduates is small. The recent growth of data science has increased the awareness of the importance of statistics, with the analysis of data and interpretation of the results firmly embedded within this newly recognised field.

This programme is designed to train the next generation of statisticians with a focus on the newly recognised field of data science. The syllabus combines rigorous statistical theory with wider hands-on practical experience of applying statistical models to data. In particular the programme includes:

  • classical and Bayesian ideologies
  • computational statistics
  • regression
  • data analysis of a range of models and applications

Graduates will be in high demand. It is anticipated that the majority of students will be employed as statisticians within private and public institutions providing statistical advice/consultancy.

Programme structure

To be awarded the MSc degree you need to obtain a total of 180 credits. All students take courses during semester 1 and 2 to the value of 120 credits which will be a combination of compulsory and optional courses. Successful performance in these courses (assessed via coursework or examinations or both) permits you to start work on your dissertation (60 credits) for the award of the MSc degree. The standard dissertation will take the form of two consultancy-style case projects in different application areas.

The set of courses available is subject to review in order to maintain a modern and relevant MSc programme.

Previous compulsory courses for 2017-18:

  • Bayesian Data Analysis
  • Bayesian Theory
  • Generalised Regression Models
  • Incomplete Data Analysis
  • Statistical Programming
  • Statistical Research Skills

Previous optional courses for 2017-18 include:

  • The Analysis of Survival Data
  • Biomedical Data Science
  • Credit Scoring
  • Fundamentals of Operational Research
  • Fundamentals of Optimization
  • Genetic Epidemiology
  • Large Scale Optimization for Data Science
  • Machine Learning and Pattern Recognition
  • Machine Learning Practical
  • Nonparametric Regression Models
  • Object-Oriented Programming with Applications
  • Probabilistic Modelling and Reasoning
  • Python Programming
  • Scientific Computing
  • Statistical Consultancy
  • Statistical Methodology
  • Stochastic Modelling
  • Time Series

Learning outcomes

At the end of this programme you will have:

  • knowledge and understanding of statistical theory and its applications within data science
  • the ability to formulate suitable statistical models for new problems, fit these models to real data and correctly interpret the results
  • the ability to assess the validity of statistical models and their associated limitations
  • practical experience of implementing a range of computational techniques using statistical software R and BUGS/JAGS

Career opportunities

Trained statisticians are in high demand both in public and private institutions. This programme will provide graduates with the necessary statistical skills, able to handle and analyse different forms of data, interpret the results and effectively communicate the conclusions obtained.

Graduates will have a deep knowledge of the underlying statistical principles coupled with practical experience of implementing the statistical techniques using standard software across a range of application areas, ensuring they are ideally placed for a range of different job opportunities.

The degree is also excellent preparation for further study in statistics or data science.



Read less
The. MSc in Health Data Analytics and Machine Learning. at Imperial College London is a one-year full-time course aimed at building a solid and common background in analysing health data. Read more

The MSc in Health Data Analytics and Machine Learning at Imperial College London is a one-year full-time course aimed at building a solid and common background in analysing health data.

Your main objective is to develop skills in using appropriate cutting edge quantitative methods to fully exploit complex and high dimensional data.

The course is delivered by the School of Public Health in collaboration with the Data Science Institute, with teaching from both the School and Institute undertaken by international experts with strong methodological background and expertise in the application of these approaches to large-scale medical and clinical data.

Each module and the six-month research project includes project-based work. Projects are based on real data and will address real scientific questions from research staff within School of Public Health, Data Science Institute and industrial partners.

The programme is a full-time 12 month taught Master’s course, which runs from October-September.

The course is divided between six core taught modules and one six-month research project.

In term one, you share your first two modules with MSc Epidemiology and Master of Public Health students, ensuring a common foundation in epidemiology. The third core module is specific to this course.

You will also set and agree a research project focus in your first term.

In term two, you turn your focus to statistical methods in the three remaining core modules, as well as continuing in-depth planning for your research project.

Your third term is predominantly made up of the research project.

Graduates of this course will have acquired the strong methodological background needed to perform in-depth analysis of medical and epidemiological high throughput datasets.

You will graduate prepared to pursue further study at doctoral level, become an expert analyst in industry, and join large data companies.



Read less
Data analytics/science is the science of extracting insight from large amounts of raw data in order to enable better understanding of the processes that created it and so help in analysis, theory exploration and decision making. Read more

Overview

Data analytics/science is the science of extracting insight from large amounts of raw data in order to enable better understanding of the processes that created it and so help in analysis, theory exploration and decision making. These techniques can be applied in the natural science, social science and business domains.
The Higher Diploma in Data Analytics is a new, purpose designed course which has been carefully designed to address industry needs. The course is a collaboration between the Departments of Mathematics & Statistics, Computer Science and the National Centre for Geocomputation.
The modules are designed to give students the knowledge and skills to collect, process, analyse and visualise data in order to extract useful information, explore statistical patterns, test hypotheses, and explore the implications of models.

Course Structure

Students will gain skills in programming, statistics and databases, followed by an advanced module on statistical machine learning. The course includes material on the social and ethical consequences of the use of data and the implications for business and government. Applications from many industry sectors will be explored in our Case studies module. In the Project module, students will put these technical skills in to practice. They will also gain experience in report writing, presentations and teamwork. Our Workplace preparation module will help students transfer these skills to the workplace.

Career Options

The Data Analytics jobs market is expanding in Ireland. Jobs are available in any industry or sector that collects data, ranging from IT, to Healthcare, Finance, Food science and Travel.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHR66

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:
Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
The MSc in Data Science and Analytics is a 12 month conversion course (new in 2017) designed to give students the knowledge and skills to collect, process analyse and visualise data in order to extract useful information, explore patterns and evaluate models. Read more

Overview

The MSc in Data Science and Analytics is a 12 month conversion course (new in 2017) designed to give students the knowledge and skills to collect, process analyse and visualise data in order to extract useful information, explore patterns and evaluate models. The course is a collaboration between the Departments of Mathematics & Statistics, Computer Science and the National Centre for Geocomputation.

Course Structure

Students will gain skills in programming, statistics and databases, followed by an advanced module on statistical machine learning. The course includes material on the social and ethical consequences of the use of data and the implications for business and government. Applications from many industry sectors will be explored in our Case Studies module. In the Project module, students will put these technical skills in to practice. They will also gain experience in report writing, presentations and teamwork. Students also do a 30-credit thesis.

Career Options

The Data Analytics jobs market is expanding in Ireland. Jobs are available in any industry or sector that collects data, ranging from IT, to Healthcare, Finance, Food science and Travel.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code

MHR64

If you need any additional guidance, please contact the programme director, Dr Catherine Hurley ().
The following documents should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:
Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
This Masters in Statistics will provide you with knowledge and experience of the principles, theory and practical skills of statistics. Read more

This Masters in Statistics will provide you with knowledge and experience of the principles, theory and practical skills of statistics.

Why this programme

  • The Statistics Group at Glasgow is a large group, internationally renowned for its research excellence.
  • Our expertise spans topics including: biostatistics and statistical genetics; environmental statistics; statistical methodology; statistical modelling and the scholarship of learning and teaching in statistics.
  • Our Statistics MSc programmes benefit from close links lecturers have with industry and non-governmental organisations such as NHS and SEPA.
  • You will develop a thorough grasp of statistical methodology, before going on to apply statistical skills to solve real-life problems.
  • You will be equipped with the skills needed to begin a career as a professional statistician; previous study of statistics is not required.
  • You will be taught by world-leading experts in their fields and will participate in an extensive and varied seminar programme, are taught by internationally renowned lecturers and experience a wide variety of projects.
  • Our students graduate with a varied skill set, including core professional skills, and a portfolio of substantive applied and practical work.

Programme structure

Modes of delivery of the Masters across the Statistics programmes include lectures, laboratory classes, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses (compulsory)

  • Bayesian statistics
  • Generalised linear models 
  • Introduction to R programming 
  • Probability 1
  • Regression models 
  • Statistical inference 1
  • Statistics project and dissertation.

Optional courses (six chosen, but at least one course must be from Group 1)

Group 1

  • Data analysis 
  • Professional skills.

Group 2

  • Biostatistics 
  • Computational inference 
  • Data management and analytics using SAS 
  • Design of experiments 
  • Environmental statistics 
  • Financial statistics 
  • Functional data analysis 
  • Machine learning
  • Multivariate methods 
  • Spatial statistics 
  • Statistical genetics 
  • Stochastic processes 
  • Time series.

1 Any student who, in the course of study for his or her first degree, has already completed the equivalent of the Probability and/or Statistical inference courses can substitute these courses by any other optional course (including optional courses offered as part of the MRes in Advanced Statistics). The choice of substituting courses is subject to approval by the Programme Director.

Summer (May – August)

Statistics project and dissertation (60) - assessed by a dissertation.

Career prospects

Our graduates have an excellent track record of gaining employment in many sectors including finance, medical research, the pharmaceutical industry and government statistical services, while others have continued to a PhD.



Read less
The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science. Read more

The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science.

The rate at which we are able to create data is rapidly accelerating. According to IBM, globally, we currently produce over 2.5 quintillion bytes of data a day. This ranges from biomedical data to social media activity and climate monitoring to retail transactions. These enormous quantities of data hold the keys to success across many domains from business and marketing to treating cancer or mitigating climate change.

The pace at which we produce data is rapidly outstripping our ability to analyse and use it. Science and industry are crying out for a new generation of data scientists who combine the statistical skills of data analysis and the computational skills needed to carry out this analysis on a vast scale.

The MSc in Data Science provides you with these skills. 

Studying this Masters, you will learn the mathematical foundations of statistics, data mining and machine learning, and apply these to practical, real world data.

As well as these statistical skills, you will learn the computational techniques needed to efficiently analyse very large data sets. You will apply these skills to a range of real world data, under the guidance of experts in that domain. You will analyse trends in social media, make financial predictions and extract musical information from audio files. 

The degree will culminate in a final project in which you will you can apply your skills and follow your specialist interests. You will do a novel analysis of a real world data of your choice. 

The programme includes:

  • A firm grounding in the theory of data mining, statistics and machine learning
  • Hands-on practical real world applications such as social media, biomedical data and financial data with Hadoop (used by Yahoo!, Facebook, Google, Twitter, LinkedIn, IBM, Amazon, and many others), R and other specialised software
  • The opportunity to work with real-world software such as Apache

Modules & structure

You will study the following core modules:

You will also choose from an anually approved list of modules which may include:

Skills & careers

Data Science is one of the fastest growing sectors of employment internationally. Big Data is an important part of modern finance, retail, marketing, science, social science, medicine and government. 

The study of a combination of long established fields such as statistics, data mining, machine learning and databases with very modern and strongly related fields as big data management and analytics, sentiment analysis and social web mining, offers graduates an excellent opportunity for getting valuable skills in advanced data processing. 

This could lead to a variety of potential jobs including: 

  • Data Scientist
  • Data Mining Analyst
  • Big Data Analyst
  • Hadoop Developer
  • NoSQL Database Developer
  • R Programmer
  • Python Programmer
  • Researcher in Data Science and Data Mining

Find out more about employability at Goldsmiths.



Read less

Show 10 15 30 per page



Cookie Policy    X