• Birmingham City University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Dundee Featured Masters Courses
University of Manchester Featured Masters Courses
Cranfield University Featured Masters Courses
Swansea University Featured Masters Courses
"space"×
0 miles

Masters Degrees (Space)

We have 1,254 Masters Degrees (Space)

  • "space" ×
  • clear all
Showing 1 to 15 of 1,254
Order by 
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in… Read more

Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

About this degree

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:

  • spacecraft, satellite communications, the space environment, space operations and space project management
  • the electromagnetics of optical and microwave transmission, and of communication systems modelling
  • a range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules

  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering
  • Communications Systems Modelling Type
  • Group Project

Optional modules

  • At least one module from the following:
  • Spacecraft Design – Electronic Sub-systems
  • Mechanical Design of Spacecraft
  • Antennas and Propagation
  • Radar Systems
  • Space-based Communication Systems

  • At least one module from:
  • Space Instrumentation and Applications
  • Space Plasma and Magnetospheric Physics
  • Principles and Practice of Remote Sensing
  • Global Monitoring and Security
  • Space Data Systems and Processing

Dissertation/report

All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Further information on modules and degree structure is available on the department website: Space Science and Engineering: Space Technology MSc

Funding

STFC and NERC studentships may be available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

Recent career destinations for this degree

  • Chief Executive Officer (CEO), Pushtribe
  • Signal Processing Engineer, Thales UK
  • Junior Consultant, BearingPoint
  • Satellite Communication Engineer, National Space Agency of Kazakhstan

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.



Read less
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. Read more

This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. The programme aims to provide a broad understanding of all aspects of space science together with specialised training in research methods, directly applicable to a career in academia, the public and private sectors.

About this degree

The Space Science pathway is focussed on scientific research applications of space technology; it aims to equip participants with a sound knowledge of the physical principles essential to sustain careers in space research and related fields. Students develop a thorough understanding of the fundamentals of:

  • a range of space science fields
  • spacecraft, space science instrumentation, the space environment, space operations and space project management

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), three optional modules (45 credits), a group project (15 credits), and a research project (60 credits).

Core modules

  • Space Data Systems and Processing
  • Space Instrumentation and Applications
  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering
  • Group Project

Optional modules

  • Planetary Atmospheres
  • Solar Physics
  • High Energy Astrophysics
  • Space Plasma and Magnetospheric Physics
  • Principles and Practice of Remote Sensing
  • Global Monitoring and Security

Dissertation/report

All MSc students undertake an independent research project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examination, coursework, and the individual and group projects.

Further information on modules and degree structure is available on the department website: Space Science and Engineering: Space Science MSc

Funding

STFC and NERC studentships may be available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme aims to prepare students for further research degrees and/or careers in space research or the space industry.

Why study this degree at UCL?

UCL’s Space & Climate Physics Department, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space, as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in academic circles and beyond.



Read less
What is the Master of Space Studies all about?. The Master of Space Studies programme is designed to prepare scientists to respond to a myriad of challenges and opportunities. Read more

What is the Master of Space Studies all about?

The Master of Space Studies programme is designed to prepare scientists to respond to a myriad of challenges and opportunities. In addition to coursework in space sciences, the curriculum is enriched by a Master's thesis and a series of guest lecturers from international, national and regional institutions.

This is an advanced Master's programme and can be followed on a full-time or part-time basis.

Structure

The programme is conceived as an advanced master’s programme and as such it requires applicants to have successfully completedan initial master’s programme in either the humanities and social sciences, exact sciences and technology or biomedical sciences.

  • The interdisciplinary nature of the programme is expressed by the common core of 25 ECTS in introductory coursework. These courses are mandatory for every student. They acquaint the student with the different aspects that together form the foundation of space-related activities. The backgrounds of the students in programme are diverse, but all students have the ability to transfer knowledge across disciplines.
  • Depending on their background and interests, students have the opportunity to deepen their knowledge through more domain-specific optional courses, for a total of 20 ECTS, covering the domains of (A) Space Law, Policy, Business and Management, (B) Space Sciences and (C) Space Technology and Applications, with the possibility to combine the latter two. 
  • For the master’s thesis (15 ECTS), students are embedded in a research team of one of the organising universities, or in an external institute, organisation or industrial company, in which case an academic supervisor is assigned as the coordinator of the project. The master’s thesis is the final section of the interdisciplinary programme, in which the acquired knowledge and abilities are applied to a complex and concrete project.

Department

The mission of the Department of Physics and Astronomy is exploring, understanding and modelling physical realities using mathematical, computational, experimental and observational techniques. Fifteen teams perform research at an international level. Publication of research results in leading journals and attracting top-level scientists are priorities for the department.

New physics and innovation in the development of new techniques are important aspects of our mission. The interaction with industry (consulting, patents...) and society (science popularisation) are additional points of interest. Furthermore, the department is responsible for teaching basic physics courses in several study programmes.

Learning Outcomes

After the completion of the programme, students will have attained the following learning outcomes:

Knowledge and understanding

LO1: Are capable of analysing and understanding the main scientific, technological, political, legal and economical aspects of space activities.

LO2: Demonstrate an advanced knowledge in one of the following fields: A. Space Law, Policy, Business and Management; B. Space Sciences; C. Space Technology.

Skills

LO3: Are capable of discussing and reporting on the main scientific, technological, political, legal and economical aspects of space activities.

LO4: Can apply, in the field of space studies, the knowledge, skills and approaches they obtained during their previous academic master.

LO5: Are able to integrate their own disciplinary expertise applied to space related activities within their broad and complex multi-disciplinary environment, taking into account their societal, technological and scientific context.

LO6: Can communicate clearly and unambiguously to specialist and non-specialist audiences about space projects in general and their specific area of expertise.

LO7: Have the skills to commence participation in complex space projects in multi-disciplinary and/or multinational settings in the framework of institutions, agencies or industry. This includes information collection, analysis and drawing conclusions, individually and/or as part of a team.

LO8: Can undertake research in the space field individually, translate the findings in a structured fashion, and communicate and discuss the results in a clear manner (oral and written).

Approaches

LO9: Have a multi-disciplinary approach to complex projects, with special attention to the integration of the different and complementary aspects of such projects.

LO10: Understand and are able to contribute to exploiting the benefits of space for humanity and its environment and are familiarised with the broad spectrum of aspects of peaceful space activities, including the societal ones.

LO11: Have a critical approach towards the place of space activities in their societal framework, including ethical questions arising from space activities.

Career perspectives

Graduates will be in a position to develop a career in the space sector or in space research.

Depending on his/her previous degree, the student will find opportunities in the space industry (engineers, product developers and technical-commercial functions with a high degree of technical and financial responsibilities), research institutions with activities in space (researchers and project developers), (inter)governmental bodies with responsibilities in research and development programmes related to space (project managers and directors, policy makers on national, European and international levels). The spectrum of employment possibilities encompasses not only the space sector as such, but also the broader context of companies and organisations which use or are facilitated by space missions.



Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The space sector plays an important role in economic, social, technological and scientific developments. The future of the sector and its manifold applications require highly skilled experts with a broad interdisciplinary perspective. Read more

The space sector plays an important role in economic, social, technological and scientific developments. The future of the sector and its manifold applications require highly skilled experts with a broad interdisciplinary perspective. The development of innovative space technologies is fostered by an intense symbiosis between technological sectors and the challenges set by fundamental research in exact and biomedical sciences. Additionally, the economic and social valorisation of space technologies requires an efficient relationship between project developers and the economic sector.

The large scale of space projects imposes important constraints on management. The international character of the space sector and of its broad applications, including the relevance of space for security and defence, implies a need for European and international legal and political measures.

What is the Master of Space Studies all about?

The Master of Space Studies programme is designed to prepare scientists to respond to a myriad of challenges and opportunities. In addition to coursework in space sciences, the curriculum is enriched by a Master's thesis and a series of guest lecturers from international, national and regional institutions.

This is an advanced Master's programme and can be followed on a full-time or part-time basis.

Structure

The programme is conceived as an advanced master’s programme and as such it requires applicants to have successfully completedan initial master’s programme in either the humanities and social sciences, exact sciences and technology or biomedical sciences.

  • The interdisciplinary nature of the programme is expressed by the common core of 25 ECTS in introductory coursework. These courses are mandatory for every student. They acquaint the student with the different aspects that together form the foundation of space-related activities. The backgrounds of the students in programme are diverse, but all students have the ability to transfer knowledge across disciplines.
  • Depending on their background and interests, students have the opportunity to deepen their knowledge through more domain-specific optional courses, for a total of 20 ECTS, covering the domains of (A) Space Law, Policy, Business and Management, (B) Space Sciences and (C) Space Technology and Applications, with the possibility to combine the latter two. 
  • For the master’s thesis (15 ECTS), students are embedded in a research team of one of the organising universities, or in an external institute, organisation or industrial company, in which case an academic supervisor is assigned as the coordinator of the project. The master’s thesis is the final section of the interdisciplinary programme, in which the acquired knowledge and abilities are applied to a complex and concrete project.

Department

The mission of the Department of Physics and Astronomy is exploring, understanding and modelling physical realities using mathematical, computational, experimental and observational techniques. Fifteen teams perform research at an international level. Publication of research results in leading journals and attracting top-level scientists are priorities for the department.

New physics and innovation in the development of new techniques are important aspects of our mission. The interaction with industry (consulting, patents...) and society (science popularisation) are additional points of interest. Furthermore, the department is responsible for teaching basic physics courses in several study programmes.

Objectives

The objectives of the programme are to develop students' knowledge of all aspects of space studies generally and, specifically, to impart:

  • the ability to situate the relevance of students' own curriculum in the broad field of space studies
  • specialised knowledge and attitudes in specific fields relevant to space studies;
  • insight in the development and realisation of large international projects;
  • abilities necessary for the guiding of complex projects.

Career perspectives

Graduates will be in a position to develop a career in the space sector or in space research.

Depending on his/her previous degree, the student will find opportunities in the space industry (engineers, product developers and technical-commercial functions with a high degree of technical and financial responsibilities), research institutions with activities in space (researchers and project developers), (inter)governmental bodies with responsibilities in research and development programmes related to space (project managers and directors, policy makers on national, European and international levels). The spectrum of employment possibilities encompasses not only the space sector as such, but also the broader context of companies and organisations which use or are facilitated by space missions.



Read less
Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications. Read more

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Space Engineering aims to provide a high-level postgraduate qualification relating to the design of space missions using satellites. Study is taken to a high level, in both theory and practice, in the specialist areas of space physics, mechanics, orbits, and space-propulsion systems, as well as the system and electronic design of space vehicles.

This is a multi-disciplinary programme, and projects are often closely associated with ongoing space projects carried out by Surrey Satellite Technology, plc.

This is a large local company that builds satellites commercially and carries out industrially-sponsored research. Graduates from this programme are in demand in the UK and European Space Industries.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The space sector contributes £13.7bn per annum to the UK economy alone, and space activity across Europe and the world continues to thrive. Read more

The space sector contributes £13.7bn per annum to the UK economy alone, and space activity across Europe and the world continues to thrive. There is a continuing need for talented employees with a good understanding of spacecraft systems engineering, coupled with a broad range of technical skills. Evolving constantly since 1987, this course has prepared graduates for highly successful careers in the space sector.

Who is it for?

Suitable for graduates in engineering, physics or mathematics, this course will prepare you for a career in this exciting field, from earth observation to planetary exploration, launch vehicles to spacecraft operations, and much more.

Why this course?

This Masters is highly respected around the world, and many of our students obtain employment/research offers in the space sector before the course finishes. We encourage interaction between our students and potential employers at events such as the Group Design Project industry presentation, dedicated interview days, and Alumni Conferences. In many space companies and agencies within Europe you will find our former graduates, some in very senior positions. Many of them continue to contribute to the course, forming a valuable network of contacts for those entering the industry and this course will equip you with the skills required to join them in a successful career in industry or research.

This course is also available on a part-time basis for individuals who wish to study whilst remaining in full-time employment. Cranfield University is well located for part-time students from all over the world, and offers a range of support services for off-site students. This enables students from around the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course is directed by an Industrial Advisory Panel comprising senior representatives from leading space and associated sectors. This group makes sure that the course content equips you with the skills and knowledge required by leading employers.

The Industrial Advisory Panel includes:

  • Mr Andrew Bradford, Director of Engineering, SSTL
  • Dr John Hobbs, ex-EADS Astrium
  • Dr Adam Baker, Newton Launch Systems Ltd
  • Mr Steve Eckersley, EADS Astrium
  • Mr Richard Lowe, Group Manager, EO Systems and Operations, Telespazio Vega.

Accreditation

The MSc in Astronautics & Space Engineering is accredited by the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements of Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The taught programme for the Astronautics and Space Engineering masters is generally delivered from October to September. A range of core modules allows you to gain a firm grounding in space engineering before opting for specialist modules to build your knowledge in a certain area.

Group project

This is a space mission design study conducted in teams of 10-15 students. It typically takes place from September to April and is assessed by written reports and presentations. It emphasises space systems engineering methodologies, and is designed to prepare our graduates for the project-based working environment often found in space companies and agencies. The topics chosen for the project are strongly influenced by industry.

Recent Group projects have included:

  • Asteroid Sample Return
  • Titan Exploration Mission
  • European Data Relay Satellite System.

Our part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Watch a past presentation video to give you a taster of our innovative and exciting group projects (YouTube).

Individual project

The individual research project is the largest single component of the course typically taking place between April and August. It allows you to develop specialist skills in an area of your choice by taking the theory from the taught modules and joining it with practical experience. A list of suggested topics is provided, and includes projects proposed by academic staff and industry.

Recent Individual Research Projects have included:

  • Thermal Analysis of a Google Lunar X-Prize Rover
  • Cubesat Ground Station Implementation
  • Responsive Space and Concurrent Engineering
  • Space Suit Performance During Seat Ingress/Egress
  • Radar Data Simulation for Soil Moisture Estimation.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Assessment

Taught modules 25%, Group project 30%, Individual research project 45%

Your career

Cranfield University is heavily supported by the space industry in the UK. Many of these companies provide case study lectures, concepts and thesis topics for the individual research projects, and some actively support the group design projects. They also provide a guide to the content of the course, so they are confident that Cranfield are training people with the industry skills employers require.

As a result, our graduates are regularly recruited by organisations including EADS Astrium, SSTL, Vega, ABSL, Tessella, OHB, Rutherford Appleton Laboratory and the European Space Agency in roles including Systems Engineer, Spacecraft Operations Engineer, Thermal Analyst and Space Robotics Engineer. We arrange company visits and interview days with key employers.

If your interests lie in research, many former students have gone on to pursue PhDs at Cranfield and other universities.



Read less
Uniting emergency response, disaster risk reduction and space technology this programme is designed to prepare students to work in the fields of satellite technology and disaster response to explore the management of risk and disaster losses from a range of perspectives, focusing on emerging risks posed to modern technology by space weather and the monitoring of hazards on Earth from outer space. Read more

Uniting emergency response, disaster risk reduction and space technology this programme is designed to prepare students to work in the fields of satellite technology and disaster response to explore the management of risk and disaster losses from a range of perspectives, focusing on emerging risks posed to modern technology by space weather and the monitoring of hazards on Earth from outer space.

About this degree

Students will learn about a wide variety of natural hazards, how to prepare and plan for emergencies and disasters and how to respond. Students will also learn practical aspects of designing, building and operating satellites and spacecraft including the challenges and risks posed by the environment of outer space.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules

  • Integrating Science into Risk and Disaster Reduction
  • Emergency and Crisis Management
  • Research Appraisal and Proposal
  • The Variable Sun: Space Weather Risks
  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering

Optional modules

Students choose two 15-credit optional modules from the following:

  • Decision and Risk Statistics
  • Emergency and Crisis Planning
  • Global Monitoring and Security
  • Mechanical Design of Spacecraft
  • Natural and Anthropogenic Hazards and Vulnerability
  • Risk and Disaster Research Tools
  • Space-Based Communication Systems
  • Space Instrumentation and Applications
  • Spacecraft Design - Electronic Sub-systems

Optional modules are subject to availability of places.

Dissertation/report

All students undertake an independent project culminating in a report of between 10,000 and 12,000 words.

Teaching and learning

Teaching is delivered by lectures, seminars and interactive problem sessions. Assessment is by examination, poster, presentation and written essay coursework.

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This programme aims to prepare students for careers in space research, space and defence industries as well as most industries with risk management requirements.

Why study this degree at UCL?

The unique selling point of the programme is the direct access to key government and business drivers in the field of space weather, with invited seminars and reserch projects supported by the UK Met Office, EDF, Atkins and other institutions interested in the hazards of space. 

The natural hazard of space weather is a "new" hazard which has only recently been identified as a significant risk to human society. As the first generation of researchers, practitioners and engineers in this field, students will be at the forefront of major new issues in an expanding sector of the economy. As disaster response comes to rely on more advanced technology aid, relief and disaster response agencies require experts trained in the technological infrastructure to innovate, explain, operate and understand the limitations of these novel systems and the help they can provide before, during and after disasters.

The programme will also provide students will advanced training in many transferable skills, such as computor programming, technical writing, oral and written presentation, the use of engineering design tools and graphic visualisation software.



Read less
The Space Physiology & Health MSc course is a unique study programme that provides training for biomedical scientists and physicians with an interest in the biomedical issues associated with space exploration. Read more

The Space Physiology & Health MSc course is a unique study programme that provides training for biomedical scientists and physicians with an interest in the biomedical issues associated with space exploration. International experts from academia, contractors and space agencies (including NASA) contribute to the course through lectures, seminars, extensive laboratory practicals and visits to the RAF and Space Agency (ESA & DLR) facilities. 

Key benefits

  • The course provides experiences with external partners including the Space Medicine Office at the European Astronaut Centre in Cologne.
  • Specialist subjects delivered by professionals from within the Space industry.
  • Highly specialist study pathway that's the first of its kind in Europe.

Description

The Space Physiology & Health MSc will provide you with advanced theoretical and practical training in the physiology, psychology and operational medicine of humans exposed to or working in the Space environment.

You will complete the course in one year, studying September to September and taking modules totalling 180 credits, including 60 credits from a research project and dissertation.

This course will provide opportunities for you to develop and demonstrate advanced knowledge, understanding and skills in the following areas:

  • The physiological effects of the space environment upon humans and of the methods employed to mitigate such effects.
  • Experimentation methods appropriate to investigate the physiological effects of the space environment.
  • Instrumentation, calibration, data acquisition and the analysis of results while applying the appropriate statistical methods.
  • The effect of the space environment upon human behaviour and performance.
  • The characteristics and practices associated with medical and life science research environments in space.

Course format and assessment

Teaching

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

Assessment

You are assessed through a combination of:

  • Unseen written examinations
  • Laboratory reports
  • Oral and Poster Presentations
  • Essay
  • Literature Review
  • Dissertation

The study times and assessment methods detailed above are typical and are designed to provide you with a good indication of what to expect. However, they are subject to change.

Location

This course is primarily taught at the King’s College London Guy’s Campus. We try to arrange trips to the European Space Agency, and other related facilities whenever possible to enhance your learning experience.

King’s and partner organisations organise summer research projects depending on applicability and availability.

Career prospects

The course provides a range of multidisciplinary skills and will help those wishing to pursue a career in human physiology in its broadest sense, either in academic research i.e. PhD, in industry, in Ministry of Defence research laboratories or National/International Space agencies including ESA.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
This postgraduate qualification is designed for those with an academic or professional interest in space science and the technology that underpins this discipline. Read more
This postgraduate qualification is designed for those with an academic or professional interest in space science and the technology that underpins this discipline. It equips students with the skills to carry out scientific investigations using space-based instrumentation, both individually and as a team. Students learn how to use a programming language in support of space science applications and develop other skills that are relevant to further research or employment in the space sector. The qualification also requires students to conduct an in-depth research project on a topic in space science or space technology.

Key features of the course

•Develops skills in conducting science in the space environment through the use of robotic experiments
•Explores current debates in space and planetary sciences using data from space missions
•Develops technical and professional skills according to individual needs and interests
•Culminates with an in-depth individual research project in space science or space technology.

This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see our fees and funding webpage.

Modules

To gain this qualification, you need 180 credits as follows:

60 credits from the compulsory module:

• Space science (S818) NEW

Plus

30 credits from List A: Optional modules

• Managing technological innovation (T848)
• Project management (M815)
• Strategic capabilities for technological innovation (T849)

Plus

30 credits from List B: Optional modules

• Finite element analysis: basic principles and applications (T804)
• Manufacture materials design (T805)
• Software development (M813)
• Software engineering (M814)

a 60-credit compulsory module:

Compulsory module

The MSc project module for MSc in Space Science and Technology (SXS810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. You should apply for credit transfer as soon as possible, before you register for your first module. For more details and an application form, visit our Credit Transfer website.

Read less
Which laws govern the commercial use of outer space? Are States responsible for mitigating space debris? Who is liable for accidents that happen onboard an the aircraft? Learn how to deal with questions like these from both an international and a European perspective. Read more

Which laws govern the commercial use of outer space? Are States responsible for mitigating space debris? Who is liable for accidents that happen onboard an the aircraft? Learn how to deal with questions like these from both an international and a European perspective.

What does this master's programme entail?

This LL.M. programme combines public air law, private air law and space law. It has a clearly defined European and international dimension, making it unique in the world. In this intensive one-year master’s programme, you will gain a solid legal foundation in this exciting field, learning from some of the foremost experts in academia and legal practice.

You will learn how to address a wide variety of issues that affect society, such as:

  • passenger safety
  • accident investigation
  • environmental protection
  • the use of drones
  • fair competition
  • sustainability of space activities
  • militarisation of outer space

Reasons to choose Air and Space Law at Leiden University?

As a student of Advanced Studies in Air and Space Law, you will benefit from:

  1. International environment: In addition to the international focus of the curriculum, the unique blend of students and instructors that represent all continents makes our programme a truly global experience.
  2. Expert instructors: You will be taught by expert faculty from the International Institute of Air and Space Law, visiting international professors and distinguished legal practitioners specialised in specific aspects of air and space law.
  3. Excellent reputation: Leiden Law School has developed its reputation for excellence by combining a high level of academic teaching with acclaimed and innovative research. Its tradition of quality attracts prestigious professors and professionals from around the world who teach you in a challenging and supportive atmosphere.

Is Air and Space Law the right programme for you?

Are you fascinated by the myriad legal issues involved with aviation and aerospace activities? This programme will help you gain a thorough understanding of the international and European dimensions of this complex, cutting-edge field.

This programme is a good fit for you if you are a law graduate wishing to pursue a challenging master’s study or a legal practitioner wishing to specialise in air and space law who is currently working at for example a(n):

  • internationally operating law firm
  • private company (e.g. airline, aircraft parts manufacturer)
  • civil aviation authority
  • telecommunications organisation
  • governmental organisation.


Read less
MSE (M.Sc. in Space Engineering) is an international full-time Master’s programme in space engineering that starts at Technische Universität Berlin in April each year. Read more
MSE (M.Sc. in Space Engineering) is an international full-time Master’s programme in space engineering that starts at Technische Universität Berlin in April each year. The aim of the programme is to educate systems engineers equipped to become leaders in the space industry.

At the Chair of Space Technology of TU Berlin

The course is offered by the Chair of Space Technology at Technische Universität Berlin and combines excellent teaching in space technology with project management and intercultural skills. The entire programme, over four semesters, is taught in English.

Highly project oriented Master’s programme

The Master’s programme is highly project oriented and designed to prepare students for the requirements of the global space industry. Students have the chance to be involved in challenging satellite projects, working within intercultural teams. Especially, they benefit from the worldwide leading expertise and network of TU Berlin in the field of small satellites. Interdisciplinary skills, such as project management, innovation marketing and business will complement the curriculum.

Internship experience in the European space industry

Furthermore, the opportunity to gain internship experience in the European space industry will be provided. After graduation, students will be equipped with skills, experience and a strong network to boost their space career either in Europe, in their home country or anywhere else.

Read less
The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques. Read more

The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques.

Programme structure 

The structure is modular. All modules have 20 ECTS. Each specialisation track has two obligatory modules that contain the core material of the field. In addition, there is one thematic module that may be chosen from the other modules offered within this programme or other programmes at the University of Turku. The fourth module consists of freely chosen courses and an obligatory Finnish language and culture course (5 ECTS). An MSc thesis (30 ECTS) in addition to seminar, internship, and project work (10 ECTS) are also required, details of which depend on the specialisation. 

Academic excellence and experience

The aim of the Master’s education is to support you to become an independent expert who can evaluate information critically, plan and execute research projects to find new knowledge, and to solve scientific and technological problems independently and as part of a group.

The Astronomy and Space Physics track includes a solid grounding in theoretical aspects as well as providing opportunities for observational studies (e.g. of supernovae or accreting black holes); the space physics group performs experimental, theoretical and computational research on high-energy phenomena in near-Earth space.

Master's thesis and topics

The Master’s degree programme includes a compulsory thesis component (30 ECTS), which corresponds to six months of full time work. The thesis is to be written up as a report based on a combination of a literature review and an original research project that forms the bulk of the thesis.

The thesis is an independently made research project but the project will be carried out under the guidance of leading researchers in the field at the University of Turku. It is expected that the student will be embedded within an active research group or experimental team, thereby providing ample opportunity to discuss results and exchange ideas in a group setting.

Specialisation tracks

The Master’s Degree Programme of Physical and Chemical Sciences has four tracks. A short description of each specialisation track is given below. You can find more detailed information of tracks from the specific site of each track in this portal (UTU Masters).

Students specialising in Astronomy and Space Physics can choose among three lines of studies: theoretical astrophysics, observational astronomy and space physics. You will acquire knowledge of various astrophysical phenomena and plasma physics, from Solar system to neutron stars and onto galaxies and cosmology. You will also get hands-on experience with observational techniques, space instrumentation, numerical methods and analysis of large data sets.

The studies of Materials Physics and Materials Chemistry give you an ability to understand and to develop the properties of materials from molecules and nanoparticles via metals, magnetic and semiconducting compounds for pharmaceutical and biomaterial applications. After graduation, you will be familiar with the current methodologies, research equipment and modern numerical methods needed to model properties of materials used in research and technology. Note that there is a sister programme (Master’s Degree Programme in Biomedical Sciences) with a specialisation in medicinal chemistry.

In Theoretical physics you can specialise in various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Competence description

The Master of Science degree provides the skills to work in many different kinds of positions within areas such as research and development, education and management, and industry. The specialisations of Astronomy and Space Physics provide very good data analysis and programming skills, and thus many graduates have gone on to successful careers in the big data and finance sectors

During the master’s program in astronomy and space physics, you will study plasma physics and hydrodynamics, radiative processes, high-energy astrophysics and solar physics, galaxies and cosmology, astrophysical spectroscopy, radio astronomy and X-ray and gamma-ray astronomy, numerical techniques and programming, statistical methods and particle and photons detectors. You will carry-out hands-on exercises in observational techniques, space instrumentation, and analysis of large data sets. You will also be able to remotely use modern observational facilities and to participate in building space-qualified instruments. You may choose among three lines: space physics, observational astrophysics and theoretical astrophysics. These studies will prepare you for a career in research and development in industry or can often lead into PhD studies.

Job options

The prospects for employment at relatively senior levels is excellent for those trained in the physical and chemical sciences. Thanks to the broad scope of the programme, the skills and knowledge developed as part of this education at the University of Turku provide many employment opportunities in different areas.

Many of our graduates choose to continue their education by pursuing PhD studies in Finland or other European countries (e.g., Belgium, Estonia, Germany and Norway). Others have obtained employment in the software and high-tech industries, for example.

Career in research

The Master’s Degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees. The University of Turku Graduate School – UTUGS has a Doctoral Programme in Physical and Chemical Sciences, and covers all of the disciplines of this Master Degree programme. Postgraduate degrees can be completed at the University of Turku. Note that in Finland the doctoral studies incur no tuition fees, and PhD students often receive either a salary, or a grant to cover their living expenses. The Master’s programme is a stepping stone for PhD studies.



Read less
Our MSc in Space Systems Engineering draws extensively on the expert knowledge of the Astronautics group using content from the professional courses we run for the European Space Agency and spacecraft industry. Read more

Our MSc in Space Systems Engineering draws extensively on the expert knowledge of the Astronautics group using content from the professional courses we run for the European Space Agency and spacecraft industry. Led by the authors of the best-selling book "Spacecraft Systems Engineering", the course uses an integrated approach to the complete design of a total space system and shows how the various component subsystems function and interface with each other. The course is endorsed by the UK Space Agency (UKSA).

Introducing your degree

This postgraduate masters course emphasises the key aspects of spacecraft systems engineering, focusing on systems engineering, key spacecraft sub-systems, mission analysis and spacecraft design. It will suit graduates or similarly qualified individuals from engineering, scientific and mathematical backgrounds, with some experience of astronautics or aerospace engineering and who are aiming for further specialisation in spacecraft engineering.

Overview

This one-year advanced course draws on the international expertise of our Astronautics Research Groupand content from the courses we run for the European Space Agency. The course provides an integrated approach to the design of a total space system and describes how the various component subsystems function and interface with one another, giving you advanced knowledge of space systems engineering.

The year is divided into two semesters. Each semester, you will have the option to undertake specialist space engineering modules; including spacecraft structural and engineering design and propulsion.

You will work under the guidance of world-class experts in this area and benefit from our cutting edge facilities, including an autonomous systems testbed and shaker table. You will engage in experimental study and complete a critical research project. We offer a range of potential projects, from spacecraft self-healing structures to creating your own moon orbiter.

View the specification document for this course



Read less
This MSc programme aims to further the understanding of architecture and urban design in the development of building cities and the social groups that inhabit them. Read more

This MSc programme aims to further the understanding of architecture and urban design in the development of building cities and the social groups that inhabit them. It offers an increased specialism to those interested in the research and design of the built environment intending to take either an academic pathway or a specific direction within their current professional practice.

About this degree

The programme addresses the study of architecture and cities using the theoretical and analytical framework of space syntax as well as wider theoretical and analytical approaches. Students learn to specialise in one of several streams related to contemporary world challenges: architecture and computing, sustainable urbanism, social inclusion and exclusion, informal settlements, spatial cognition, the physical and immaterial dimensions of social networks and design innovation.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (90 credits), optional modules (30 credits) and a dissertation (60 credits).

Core modules

  • Design as a Knowledge-Based Process
  • Buildings, Organisations and Networks
  • Space Syntax Methodology and Analytical Design
  • Spatial Cultures
  • Architectural Phenomena
  • Spatial Justice

Optional modules

  • Analytical Design Research Project
  • E-Merging Design and Analysis
  • Spatial Dynamics and Computation

Dissertation/report

All MSc students submit a 10,000-word dissertation related to the main themes of the programme, typically involving a directed research project on a building or urban site.

Teaching and learning

The programme is delivered through seminars, lectures, design studios, hands-on computer workshops, a variety of field trips in and around London and an international trip (optional). Assessment is through essays, written and take-home examinations, oral presentations, project reviews, debates, group and individual projects, classroom exercises and the dissertation.

Fieldwork

The E-merging analysis and design studio (optional module) is usually accompanied by an international trip.

The cost to the student is not exceeding £500 per person, based on standard costs as specified by the school.

Further information on modules and degree structure is available on the department website: Space Syntax: Architecture and Cities MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates of the programme go on to many different careers: some have progressed to PhD degrees and have obtained academic positions in top universities worldwide, others have found teaching positions on architectural programmes; some go into policy-making; and many have ploughed their knowledge back into furthering their architectural/design careers. In the past few years an increasing number of graduates have obtained jobs at Space Syntax Limited.

First destinations of recent graduates include roles with leading design and architecture practices, as well as academic or research positions at prestigious international universities or research centres.

Recent career destinations for this degree

  • Architect, Psomas Architects
  • Consultant, Space Syntax
  • Junior Account Executive, ING Media
  • PhD in History and Theory of Architecture, UCL

Employability

This programme enhances students' intellectual and design abilities in the field of urban/architectural theory, architectural/urban morphology and the social aspects of the urban environment. Graduates of this programme can be involved in both professional and academic activities. Graduates who choose to go into practice will have a leading edge in evidence-informed and research-based design. Those who choose an academic path will have the advanced knowledge and skills required for high-level academic positions.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The programme provides a unique approach to the study of architecture and cities worldwide, equipping students with exceptional theoretical and analytical skills. It is located at The Bartlett, one of the UK's largest multidisciplinary built environment faculties, bringing together scientific and professional specialisms required to research, understand, design, construct and operate the buildings and urban environments of the future.

The programme is unique in integrating architecture and urbanism, and adopting a user-centred approach. Students receive advanced and exceptional training in theories, data analysis and their creative integration with design thinking.

The degree draws on the rich design industries in London including Space Syntax Ltd and provides networking opportunities to help advance students in their academic and professional capacities both during and after the programme.



Read less

Show 10 15 30 per page



Cookie Policy    X