• Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Imperial College London Featured Masters Courses
University College London Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
University of Bath Featured Masters Courses
"software" AND "engineeri…×
0 miles

Masters Degrees (Software Engineering Management)

We have 765 Masters Degrees (Software Engineering Management)

  • "software" AND "engineering" AND "management" ×
  • clear all
Showing 1 to 15 of 765
Order by 
The MSc in Software Engineering Management is a taught programme designed for all graduates who want a management career in the software industry. Read more
The MSc in Software Engineering Management is a taught programme designed for all graduates who want a management career in the software industry. The programme is also suitable for those who have been in industry or other employment, possibly involving increasing recent work with IT, and now want to improve their career by means of formal training and a recognised qualification. The core modules focus on software engineering, the management of software production and a selection of other Internet-oriented modules.

Course Structure
Eight taught modules of 4 weeks each, some extraction from relevant level 3 undergraduate modules, and then a dissertation module of approximately 2.5 months over the summer.

Core Modules
- Advanced Java with UML or Object-Oriented Programming in Java and UML
- Software Engineering for the Internet
- Advances in Software Engineering
- Enterprise and Distributed Systems
- Research Methods and Professional Issues
- Web Technology
- New Initiatives in Software Engineering
- Advanced Project Management
- Dissertation.

Plus, by extraction from level 3 undergraduate programme:
- Advanced Software Engineering
- Project Management.

Read less
Are you keen to develop your existing engineering skills and knowledge to master’s level?. The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management. Read more
Are you keen to develop your existing engineering skills and knowledge to master’s level?

The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management.

You will build on your current knowledge of subjects such as solid modelling and prototyping, computer aided design and engineering data analysis, whilst developing management and entrepreneurial skills that will enhance your career opportunities within engineering and the broader business environment.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

With the increasing complexity of the engineering sector there is a requirement for engineering managers to be specialised not just in engineering, but also in wider business and management. This course has been specifically designed to meet the demands of today’s employers and provide a solid foundation for you to progress to management level.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The structure of this course has been designed to focus on engineering issues and processes, and how they apply to those in management positions.

This course incorporates six taught modules: research methods, project, programme and portfolio management; project change, risk and opportunities management; technology entrepreneurship and product development; engineering management data analysis and sustainable development for engineering practitioners.

Throughout the duration of this course you will build core skills in key areas such as management, business, finance and computing, providing you with a strong understanding of the day-to-day processes that underpin the smooth running of a successful organisation.

This course is primarily delivered by lectures and supporting seminars such as guided laboratory workshops or staffed tutorials. Assessments are undertaken in the form of exams, assignments, technical reports, presentations and project work. The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

On completion of all taught modules you will undertake a substantial piece of research around a subject of particular interest to you and your own career aspirations.

Module Overview
Year One
KB7030 - Research Methods (Core, 20 Credits)
KB7031 - Project, Programme and Portfolio Management (Core, 20 Credits)
KB7033 - Project change, risk and opportunities management (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7044 - Engineering Management Data Analysis (Core, 20 Credits)
KB7046 - Technology Entrepreneurship & Product Development (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by out team of specialist staff who boast a wealth of multi-dimensional expertise. The programme is designed to be research-led, delivering up-do-date teaching that is often based on current research undertaken by our team.

Our teaching team incorporates a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key engineering management practice and research.

You will be encouraged to undertake your own research–based learning, where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in general engineering.

Give Your Career An Edge

With the increasing complexity of the engineering industry there is a requirement for managers to be specialised not just in engineering, but also the general business and management aspects of a company.

This course has been specifically designed to allow you to update, extend and deepen your knowledge to further enhance your career opportunities in both industry and entrepreneurship.

The MSc Engineering Management course will equip you with skills, tools, techniques and methods that are applicable to engineering companies and many other businesses in the UK and abroad.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

On completion of this course you will possess a deep understanding of engineering data analysis, research and project management, programme and portfolio management, project risk management and technology entrepreneurship.

Industry practice and subject benchmarking have strongly influenced the design of this course to ensure you will leave equipped with the skills that are required by today’s employers.

Your Future

The broad range of subjects covered on this course will prepare you for an array of careers within the engineering sector or a general business environment.

You may decide to pursue a career within general engineering, or a more specialised engineering sector.

This course emphasises entrepreneurship and enterprise, developing and enhancing the management and strategic skills that will prepare you for running your own business, should this be your aspiration. These core business skills will also prepare you for management jobs within engineering or another sector.

This course also sets a solid foundation for those wishing to pursue further study or a career within research or teaching.

Read less
Are you keen to develop your existing engineering skills and knowledge to master’s level?. The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management. Read more
Are you keen to develop your existing engineering skills and knowledge to master’s level?

The MSc Engineering Management course has been specifically designed to allow you to update, extend and deepen your understanding of engineering and management.

You will build on your current knowledge of subjects such as solid modelling and prototyping, computer aided design and engineering data analysis, whilst developing management and entrepreneurial skills that will enhance your career opportunities within engineering and the broader business environment.

With the increasing complexity of the engineering sector there is a requirement for engineering managers to be specialised not just in engineering, but also in wider business and management. This course has been specifically designed to meet the demands of today’s employers and provide a solid foundation for you to progress to management level.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/engineering-management-msc-ft-dtfegx6/

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The structure of this course has been designed to focus on engineering issues and processes, and how they apply to those in management positions.

This course incorporates six taught modules: research methods, project, programme and portfolio management; project change, risk and opportunities management; technology entrepreneurship and product development; engineering management data analysis and sustainable development for engineering practitioners.

Throughout the duration of this course you will build core skills in key areas such as management, business, finance and computing, providing you with a strong understanding of the day-to-day processes that underpin the smooth running of a successful organisation.

This course is primarily delivered by lectures and supporting seminars such as guided laboratory workshops or staffed tutorials. Assessments are undertaken in the form of exams, assignments, technical reports, presentations and project work.

On completion of all taught modules you will undertake a substantial piece of research around a subject of particular interest to you and your own career aspirations.

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by out team of specialist staff who boast a wealth of multi-dimensional expertise. The programme is designed to be research-led, delivering up-do-date teaching that is often based on current research undertaken by our team.

Our teaching team incorporates a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key engineering management practice and research.

You will be encouraged to undertake your own research–based learning, where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in general engineering.

Give Your Career An Edge

With the increasing complexity of the engineering industry there is a requirement for managers to be specialised not just in engineering, but also the general business and management aspects of a company.

This course has been specifically designed to allow you to update, extend and deepen your knowledge to further enhance your career opportunities in both industry and entrepreneurship.

The MSc Engineering Management course will equip you with skills, tools, techniques and methods that are applicable to engineering companies and many other businesses in the UK and abroad.

On completion of this course you will possess a deep understanding of engineering data analysis, research and project management, programme and portfolio management, project risk management and technology entrepreneurship.

Industry practice and subject benchmarking have strongly influenced the design of this course to ensure you will leave equipped with the skills that are required by today’s employers.

Your Future

The broad range of subjects covered on this course will prepare you for an array of careers within the engineering sector or a general business environment.

You may decide to pursue a career within general engineering, or a more specialised engineering sector.

This programme emphasises entrepreneurship and enterprise, developing and enhancing the management and strategic skills that will prepare you for running your own business, should this be your aspiration. These core business skills will also prepare you for management jobs within engineering or another sector.

This course also sets a solid foundation for those wishing to pursue further study or a career within research or teaching.

Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Software engineers are in high demand, and Bristol is home to many high-tech companies seeking suitable graduates. The MSc Software Engineering gives you the latest knowledge and skills and guides you in applying them to develop different kinds of large, complex software systems. Read more
Software engineers are in high demand, and Bristol is home to many high-tech companies seeking suitable graduates. The MSc Software Engineering gives you the latest knowledge and skills and guides you in applying them to develop different kinds of large, complex software systems. The faculty's Software Engineering Research Group (SERG) reviews the course each year to ensure it provides what students and employees need. Students can link to SERG research and development activities and attend monthly research seminars from senior academics and key industrial professionals.

UWE Bristol's links with industrial partners encourage research and studies, and support the next step into PhD studies and further research. You will be taught by academics and professionals at the cutting edge of research and in collaboration with key partners such as Airbus, P3 Germany, SogeClair France, have the chance to develop advanced knowledge in the engineering of complex software systems, 'systems of systems' and critical aspects of the software development process. The course develops your knowledge and understanding of fundamental and advanced concepts of software engineering, using state-of-the-art techniques and research findings.

Key benefits

This course is accredited by the British Computer society (BCS) and fulfils the academic requirements for registration as a Chartered IT Professional. It also partially meets the academic requirements for CEng status.

Course detail

You'll learn the ethical issues involved in the engineering of software systems and undertake in-depth research in particular areas of software engineering. You'll also acquire the technical skills necessary for requirements engineering, architectural modelling of enterprise systems, implementation, configuration management, quality management, and effective project management applied in a group-based context.

You'll take a reflective and critical approach to your work and develop key transferable skills, such as critical thinking, problem management and research skills and methods underpinned by key emerging topics in software engineering and the MSc dissertation by research and development.

Modules

• Lifecycle Models and Project Management (15 credits)
• Requirements engineering (15 credits)
• Object-oriented analysis, design and programming (15 credits)
• Quality and Configuration Management (15 credits)
• Enterprise and System Architecture Modelling and Development (15 credits)
• Group Software Development Project (30 credits)
• Emerging Topics in Software Engineering (15 credits)
• Dissertation by Research and Development (60 credits)

Format

All modules are classroom-based, with extensive use of UWE Bristol's virtual learning environment, Blackboard. You also attend the campus to sit your exams.

Assessment

Most taught modules have written coursework and exam components. Coursework includes, but is not limited to, critical problem-solving components, advanced programming tasks, critical essays in relation to particular software engineering aspects, and group projects.

Careers / Further study

Graduates have a range of options for starting their software engineering careers, or for further advanced programmes of study. Possible industrial careers include senior roles as software engineers, requirements engineers, enterprise and software architects, configuration and quality managers, and software project managers.

This course paves the way for PhD research studies in software engineering at UWE Bristol, or elsewhere. If you take the PhD route at UWE Bristol, you will have opportunities to work with senior SERG researchers and use some of your MSc Software Engineering modules for some of the 60-credit requirements for the PhD degree.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles. Read more

About the course

The global shortage of qualified civil engineers includes specialists in water engineering and this MSc programme helps redress this imbalance by providing graduates with an advanced knowledge and skill base to equip them for senior industry roles.

Brunel’s MSc in Water Engineering is unique in providing specialist knowledge on the critical sub-topics of water and wastewater management and engineering, desalination systems, building water services engineering, industrial waste water management, and water in health care.

The programme demonstrates the links between theory and practice by including input from our industrial partners and through site visits. This is a key aspect for establishing a competitive and high added value course that provides adequate links with industry.

Features of the course include:

Students’ skills in gathering and understanding complex information from a variety of sources (including engineering, scientific and socio-economic information) will be developed in an advanced research methods module. 

Issues relating to risk and health and safety will be introduced in the research methods module and built on in specialist modules. 

Generic modules in financial and project management will underpin specialist modules focusing on water engineering topics.

Real problem-solving examples – starting from basic principles, to the identified problem, the solution, the implementation process and was implemented and the end result. 

Real case studies – demonstrating how environmental and economic sustainability is considered within civil engineering, particularly in water resources management.

Aims

Problems associated with water resources, access, distribution and quality are amongst the most important global issues in this century. Water quality and scarcity issues are being exacerbated by rising populations, economic growth and climate change*.

Brunel's programme in Water Engineering aims to develop world class and leading edge experts on water sustainability who are able to tackle the industry’s complex challenges at a senior level. During the programme you will also learn about the development and application of models that estimate the carbon and water footprint within the energy and food sector.

The MSc is delivered by experienced industry professionals who bring significant practical experience to the course – and the University’s complete suite of engineering facilities and world-class research experience are set up for development and engineering of advanced systems, testing a variety of processes, designs and software tools.

*Recent figures indicate that 1.1 billion people worldwide do not have access to clean drinking water, while 2.6 billion do not have adequate sanitation (source: WHO/UNICEF 2005). 

Course Content

The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the water engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Specific aims are as follows:

- To provide education at postgraduate level in civil engineering. 
- To develop the versatility and depth to deal with new, complex and unusual challenges across a range of water engineering issues, drawing on an understanding of all aspects of water engineering principles. 
- To develop imagination, initiative and creativity to enable graduates to follow a successful engineering career with national and international companies and organisations. 
- To provide a pathway that will prepare graduates for successful careers including, where appropriate, progression to Chartered Engineer status.

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

- The principles of water engineering, including fluid mechanics, hydrology, and sustainable design. 
- Specialist areas that impact on the successful application of water engineering knowledge projects, e.g. sustainable construction management, financial management and risk analysis. 
- The interplay between engineering and sustainability in complex, real-world situations.

At the cognitive level students will be able to:

- Select, use and evaluate appropriate investigative techniques.
- Assemble and critically analyse relevant primary and secondary data.
- Recognise and assess the problems and critically evaluate solutions to challenges in managing water engineering projects.
- Evaluate the environmental and financial sustainability of current and potential civil engineering activities.

Personal and transferable skills that students develop will allow them to:

- Define and organise a substantial advanced investigation. 
- Select and employ appropriate advanced research methods. 
- Organise technical information into a concise, coherent document.
- Effectively employ a variety of communication styles aimed at different audiences. 
- Plan, manage, evaluate and orally-presented personal projects. 
- Work as part of, and lead, a team.

Typical Modules

Each taught module will count for 15 credits, approximating to 150 learning hours. The Master's programme can be taken full time, over 12 months. The first eight months of the full time course will eight taught modules. For the final four months, students will complete a dissertation counting for 60 credits. Modules cover:

Sustainable Project Management
GIS and Data Analysis
Water Infrastructure Engineering
Risk and Financial Management
Hydrology & Hydraulics
Water Treatment Engineering
Water Process Engineering
Research Methods
Civil Engineering Dissertation

Teaching

Our philosophy is to underpin theoretical aspects of the subject with hands-on experience in applying water engineering techniques. Although you may move on to project management and supervision roles, we feel it important that your knowledge is firmly based on an understanding of how things are done. To this end, industrial partners will provide guest lectures on specialist topics.

In addition to teaching, water engineering staff at Brunel are active researchers. This keeps us at the cutting edge of developments and, we hope, allows us to pass on our enthusiasm for the subject.

How many hours of study are involved?

Contact between students and academic staff is relatively high at around 20 hours per week to assist you in adjusting to university life. As the course progresses the number of contact hours is steadily reduced as you undertake more project-based work.

How will I be taught?

Lectures:
These provide a broad overview of the main concepts and ideas you need to understand and give you a framework on which to expand your knowledge by private study.
Laboratories:
Practicals are generally two- or three-hour sessions in which you can practise your observational and analytical skills, and develop a deeper understanding of theoretical concepts.
Design Studios:
In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.
Site visits:
Learning from real-world examples in an important part of the course. You will visit sites featuring a range of water engineering approaches and asked to evaluate what you see.
One-to-one:
On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Assessment

Several methods of assessment are employed on the course. There are written examinations and coursework. You will undertake projects, assignments, essays, laboratory work and short tests.

Project work is commonplace and is usually completed in groups to imitate the everyday experience in an engineering firm, where specialists must pool their talents to design a solution to a problem.

In this situation you can develop your management and leadership skills and ensure that all members of the group deliver their best. Group members share the mark gained, so it is up to each individual to get the most out of everyone else.

Special Features

Extensive facilities
Students can make the most of laboratory facilities which are extensive, modern and well equipped. We have recently made a major investment in our Joseph Bazalgette Laboratories which includes hydraulic testing laboratory equipment and facilities such as our open channel flow flumes.

Personal tutors
Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

World-class research
The College is 'research intensive' – most of our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

Strong industry links
We have excellent links with business and industry in the UK and overseas. This means:
Your degree is designed to meet the needs of industry and the marketplace.
The latest developments in the commercial world feed into your course.
You have greater choice and quality of professional placements.
We have more contacts to help you find a job when you graduate.

Visting Professors 
The Royal Academy of Engineering - UK’s national academy for engineering has appointed senior industrial engineers as visiting professors at Brunel University London.
The Visting Professors Scheme provides financial support for experienced industrial engineers to deliver face-to-face teaching and mentoring at a host of institutions. Our engineering undergraduates will benefit from an enhanced understanding of the role of engineering and the way it is practised, along with its challenges and demands. 

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course has been designed in close consultation with the industry and is accredited as a designated 'technical' MSc degree by the Join Board of Moderators (JBM). The JBM is made up of Institution of Highways and Transport and the Institution of Highway Engineeres respectively.

1. This means this course provides Further Learning for a Chartered Engineer who holds a CEng accredited first degree (full JBM listing of accredited degrees).
2. As a designated ‘technical’ MSc, it will also allow suitable holders of an IEng accredited first degree to meet the educational base for a Chartered Engineer.

Read less
The Advanced Software Engineering with Management MSc is an advanced study pathway that aims to provide computer graduates with a thorough understanding of the role of IT in business, and how information systems impact on trade and organisational processes. Read more

The Advanced Software Engineering with Management MSc is an advanced study pathway that aims to provide computer graduates with a thorough understanding of the role of IT in business, and how information systems impact on trade and organisational processes. The course also introduces core management theories and essential problem-solving skills in preparation for senior roles in the IT industry.

Key benefits

  • Located in central London, giving access to major libraries and leading scientific societies, including the Chartered Institute for IT (BCS), and the Institution of Engineering and Technology (IET).
  • You will learn advanced software engineering skills preparing you for leading creative roles in the professional and research communities.
  • You will develop critical awareness and appreciation of the changing role of computing in society and motivating you to pursue further professional development and research.
  • Frequent access to speakers of international repute through seminars and external lectures, enabling you to keep abreast of emerging knowledge in advanced computing and related fields. 
  • The Department of Informatics has a reputation for delivering research-led teaching and project supervision from leading experts in their field.

Description

The Advanced Software Engineering with Management MSc course focuses on innovative techniques for the development of software systems, with an emphasis on the construction and management of internet-oriented, agent-oriented and large software systems. You will develop your expertise and skills in software engineering, preparing you for a career in software engineering, software maintenance and software testing. The programme will also equip you with essential research, analytical and critical thinking skills.

The course is made up of optional and required modules, and you will complete the course in one year, studying September to September. You must take modules totalling 180 credits to meet the requirements of the qualification, and 60 credits will come from an individual project of 15000 words. You will also participate in a group project that will provide you with invaluable experience of working in a team to design, implement and document a substantial software product.

Course purpose

For graduates with substantial experience of computer science, this programme will develop your expertise and skills in software engineering, preparing you for a career in software engineering, software maintenance and software testing. Research for your individual project will provide valuable preparation for a career in research or industry.

Course format and assessment

Teaching

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

Assessment

The primary method of assessment for this course is a combination of written examinations, essays, coursework and individual or group projects and oral presentations. 

Extra information

Location

The majority of learning for this degree takes place at the Strand Campus, with occasional lectures and practical sessions taking place at the Waterloo Campus. Please note that locations are determined by where each module is taught and may vary depending on the optional modules you select.

Career prospects

Our graduates have continued on to have very successful careers working for software consultancy companies, specialised software development businesses and the IT departments of large institutions (financial, telecommunications and public sector). Recent employers include Ernst & Young, Accenture and M-Netics. While some of our graduates have entered into the field of academic and industrial research in areas such as software engineering, algorithms and computer networks.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
Competency in project management has become a key part of the skills-set of every construction professional and executive, with many construction project managers functioning in a strategic and co-ordinating role in the delivery of the client’s physical development and investment programme. Read more
Competency in project management has become a key part of the skills-set of every construction professional and executive, with many construction project managers functioning in a strategic and co-ordinating role in the delivery of the client’s physical development and investment programme.

Society continues to value and shape the built environment resulting in both public and private investment in construction assets and the successful completion of construction projects. As these projects become more socially and technically complex in a changing world dominated by a concern for sustainability, there has been a growing challenge to develop existing and new skills and expertise in construction project management. This challenge is not only national but global as the need for construction project management skills continues to grow internationally. Indeed, our student cohorts reflect this global challenge with students from across multiple continents.

We have been running programmes in MSc Construction Project Management for nearly 20 years. This arose from the need to extend the managerial remit to those activities that fall outside the construction phase to include areas such as financing, design and hand-over. The programme is therefore tailored for construction professionals looking for a more holistic perspective of construction project processes and the challenge of project management in complex building and infrastructure projects.

Accreditation of the programme is provided by the UK’s Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

Core study areas include: Building Information Modelling, Design Management and Sustainability in the Built Environment.

Key facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- Fully accredited by the UK's Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-project-management/

Programme modules

- ICT for Construction Projects
This module introduces managers to a wide range of tools and technologies appropriate for their role and projects. The module covers a range of topics including project information flows, e-business, database technologies, emerging technologies, building information modelling technologies, groupware and collaborative systems.

- Research and Communication
The aims of this module are to provide the student with an overview of sources of information in construction; to explain to students how to conduct a literature review and introduce students to the principal methods of investigation in construction research; and provide an opportunity for each student to develop professional and academic skills in oral and written communication.

- Principles of Design and Construction
This module teaches students the fundamental principles of managing a project during the design and construction phases. The module develops knowledge and understanding of the role and principles of the estimating, tendering and planning of construction projects and the importance of health and safety in relation to design and construction activities.

- Principles of Project Management
Students will gain an understanding of construction project management principles and theory. Specific areas covered include management responsibility for running construction projects; contemporary issues facing the construction industry; cultural complexity and the impact of behaviour and motivation on performance; and applying appropriate project management techniques for the different project phases.

- Design Management
This module introduces various Design Management techniques and approaches. These include process mapping techniques for design; ways to analyse and optimise the design process; and students will gain an understanding of the internal workings of a design office and their relationship with the construction team.

- Sustainability and the Built Environment
Students will gain an understanding of sustainability issues that relate to the built environment; ways in which these issues can be managed and effective communication of both strategic and technical information.

- Management of Construction Processes
This module introduces students to cutting edge contemporary management concepts and innovations; complexities of setting up and managing logistics on large construction sites; and essential project management techniques such as risk management.

- Postgraduate Research Project
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Construction Project Management.

Option Module (part-time students only)
- Management and Professional Development 1
The aim of this module is to enable students to plan, develop and demonstrate progress against a suitable professional development framework, such that they become equipped with a range of transferable management and professional development skills.

Option Modules One
Choose one from
- Strategic Management in Construction
The aim of this module is to introduce students to the fundamental concepts of strategic management and the tools for formulating and implementing strategies within the construction sector. The application of strategic management tools to develop appropriate change strategies will be explored and fundamental skills in communication, negotiation and leadership will be developed.

- People and Teams
Students will gain a knowledge and understanding of the key fundamental management principles and theory (such as motivation, teamwork, leadership, task management) and how they can be applied to managing people within the context of the construction project environment. Students will also be able to analyse current theoretical approaches to people management, appreciate importance of ethics and cultural issues and evaluate the key factors driving HRM systems.

- Procurement and Contract Procedure
This module aims to develop students understanding of procurement methods, different forms of contract and contract practice. The module is designed to give students key practical skills including advising clients on appropriate procurement and tendering methods; selecting the most appropriate form of construction contract; and manage a construction contract effectively.

- Business Economics and Finance
Students will gain a sound understanding of macro, meso and micro economics and types, sources and management of finance relating to construction organisations and projects. This will allow students to analyse the policies and operations of construction organisations and projects from an economic perspective to determine likely performance consequences and analyse corporate financial data for investment prospects and business management decisions.

- Federated 3D Building Information Modelling (BIM)
The creation, deployment and use of aggregated and integrated models are key goals of collaboration through BIM. This module aims to deliver hands-on practical skills on the use of BIM technologies (i.e. design software and collaboration tools) for real-time co-creation and data sharing of federated/aggregated 3D BIM models. The concept of shared situational awareness within design teams/processes will be explored.

Careers and further study

Previous students have gone on to work for a variety of organisations nationally and internationally. These include Arup, Atkins, BAM Nuttall Ltd, Balfour Beatty, Kier Group, Morgan Sindall, Skanska and Transport for London. Many of these organisations engage with the University in both collaborative research and in delivering lectures on the courses. This provides an ideal opportunity for students to engage in discussions about employment opportunities.

Scholarships and bursaries

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Accreditation

This degree is accredited as meeting the requirements for further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.
The course is also accredited by the UK's Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-project-management/

Read less
Applicants to this programme are numerate and logically-minded, and it is likely that they will have previously studied software engineering, programming, computer science, maths or physics. Read more
Applicants to this programme are numerate and logically-minded, and it is likely that they will have previously studied software engineering, programming, computer science, maths or physics. Such students will seek more specialised, technical programming and software engineering skills. They would learn in-depth, a range of programming concepts, languages and software development techniques to develop sophisticated and complex programs. Graduates will seek positions as software developers, systems engineers, software testers, programmers, etc.

Course Overview

The main themes of the programme are:
-Current and emerging Software Engineering principles and practices
-Current and emerging programming practices
-Large scale software project management

This programme will equip students with those skills at a high academic level and also crucially enable them to practically implement their knowledge because of the ‘hands-on’ emphasis of the programme.

The Current and emerging Software Engineering principles and practices includes aspects of generic programming.

The Current and emerging programming practices theme covers advanced topics in modules such as Generic Programming and aspects of Scientific Computing and Virtualisation

The Large scale project management theme will concentrate on management and systems analysis skills to be developed by the students both of which are in great demand by employers.

Modules

Part 1
-Agile Software Development (20 credits)
-Generic Programming (20 credits)
-Leadership and Management (20 credits)
-Managing Information Systems and Projects (20 credits)
-Research Methods and Data Analysis (20 credits)
-Scientific Computing & Virtualisation (20 credits)

Part 2
-Major Project (60 credits)

Key Features

Software Engineering as a subject evolved from a desire to incorporate engineering practices including, analysis, design, testing and project management to the process of creating computer programs. As a discipline, software engineering is as broad as the software created, with applications as diverse as plant control (real-time critical systems) to commercial trading software (database driven software) to image processing applications for mobile phones (computer graphics based mobile applications).

Assessment

The School of Applied Computing aims to produce graduates that help shape the future of computing and information systems development. The course content is contemporary and shaped for employability through close links with local and national employers.

Students are assessed through a combination of worksheets, practicals, presentations, projects and examinations. Module assessment is often by assignment, or assignment and examination. The final mark for some modules may include one or more pieces of course work set and completed during the module. Project work is assessed by written report and presentation.

Students are encouraged to use our links with Software Alliance Wales and Go Wales to work on commercial schemes for their Major Project module. Go Wales provides the opportunity of paid work placements with local businesses.

Career Opportunities

Graduates from this programme will be skilled and knowledgeable in the technical aspects of software development, and are likely to find employment either within specialist software organisations, or within organisations which commit resources to developing highly technical software systems. They are likely to have to work as a member of a team, conceiving, designing, developing and implementing complex software systems. Graduates from this programme would expect to be initially employed as software engineers. Those employed by SMEs are likely to work in smaller teams or perhaps as sole developers. Students finding employment with larger companies are most likely to work in larger teams building a variety of large-scale applications.

It is expected that graduates would seek positions such as:
-Software Engineers
-Senior software Engineers
-Software Developers
-Application Developers
-System Engineers
-Software Technical Lead
-System Analyst
-Version control manager
-Project lead/manager

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure

Finite Element Computational Analysis

Advanced Structural Design

Fluid-Structure Interaction

Entrepreneurship for Engineers

Computational Plasticity

Numerical Methods for Partial Differential Equations

Computational Case Study

Reservoir Modelling and Simulation

Dynamics and Transient Analysis

Coastal Engineering

Coastal Processes and Engineering

Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering



Read less
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
In the MEngSc Information Technology in Architecture, Engineering, and Construction (Bauinformatik) you will learn how to apply computer science technologies to sustainable design, facilities management, energy management, and construction management. Read more
In the MEngSc Information Technology in Architecture, Engineering, and Construction (Bauinformatik) you will learn how to apply computer science technologies to sustainable design, facilities management, energy management, and construction management.

The course is designed for professionals as well as young graduates from all computer science and engineering disciplines who want to improve their knowledge of customising information and communication technologies to support the design, commissioning and operation of civil engineering systems.

The course addresses the increasing need for engineers and architects with advanced knowledge and skills in the application of information and communication technologies to support sustainable design and operation of buildings and energy systems, facilities management, virtual construction, building information modelling (BIM) and structural engineering.

Lecturers are broadcast through the web, and can be attended either in UCC or from a remote location. Experts from six European universities contribute their knowledge to the course.

Visit the website: http://www.ucc.ie/en/ckr29/

Course Details

You will get hands-on experience in planning, customising, and maintaining state-of-the-art software systems for the needs of the AEC and FM sectors with an emphasis on complex engineering systems such as smart buildings. The course consists of four pillars:

- the acquisition of new knowledge and practical skills in selected engineering disciplines
- the acquisition of knowledge and skills in selected areas of computer science
- the application of the newly-acquired knowledge in two projects
- the development and submission of a minor research thesis.

In the first teaching period students acquire knowledge of:

- Smart Buildings, Facilities and Energy Management
- Software Engineering
- Knowledge Management or Computer Mediated Communication.
- Building Information Modelling (BIM), Data Warehousing, and E-business
- Virtual Construction, Automation in Construction or Finite Element Analysis (electives)

The two projects focus on:

- Software Engineering
- Information Technology for Energy Systems in Buildings.

The course is based on the principle of research-led teaching, ie. project work will be based on practical examples. Researchers and PhD students from UCC will be involved in mentoring and supervising assignments and projects. On completion of the course, you will be extremely attractive to employers who need engineering with a strong IT-background, working in the following areas:

- civil and energy-engineering consultancy
- facilities management
- energy service provision (ESCO)
- construction management
- building operations
- software engineering
- project management.

You will develop skills in:

- applying information modelling
- software engineering
- data processing
- data analysis techniques
- facilities and energy management
- structural analysis
- project and supply chain management in construction.

Format

The course can be taken on a full-time (one year) or part-time (two year) basis with an option to complete at postgraduate diploma level. Lectures are broadcast using web-technology and can be attended either in UCC, in your home, or at your workplace. The majority of lectures are scheduled outside normal working hours. Block seminars consisting of full-day events are available once a month during academic periods. The course requires the completion of two projects, but can be combined with a work placement. A minor thesis contribution begins when all taught modules are completed successfully and involves four months of research work.

Assessment

Modules focusing on the acquisition of new knowledge are assessed by written exams (60%), in combination with continuous assessment (assignments – 40%). Modules focusing on skills-development or knowledge transfer are assessed through the submission of reports or essays in combination with presentations. Projects are usually organised in groups. They are assessed through continuous assessment (team meetings, status review meetings) and a final report complemented by a final presentation. You must pass each module (40%) and achieve an average grade of 50% across all taught modules in order to be eligible to progress with the master’s thesis.

Careers

Recent publications report that a shortage of engineers has been identified by professional bodies across the European Union. In the UK and Germany alone, it is predicted that approximately 2,500 engineering positions need to be filled on an annual basis over the next five years (2012 to 2016). It is expected that employable candidates have an excellent background in how to efficiently exploit IT tools in order to execute engineering tasks in the most efficient but also in an interdisciplinary way. This course addresses the need for interdisciplinary expertise and skills in engineering, energy management and computer science.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This course develops the combination of technical knowledge and management expertise that are required to successfully deliver multi-million pound engineering projects. Read more
This course develops the combination of technical knowledge and management expertise that are required to successfully deliver multi-million pound engineering projects.

Course overview

This Masters-level course equips you to be the type of person who can lead a technical team to deliver on time and on budget. You will build on your technical background while adding business and management skills. These skills include project control, supply chain management, risk management and quality optimisation.

Our supportive tutors also help you develop the ‘soft’ skills of working with others and leading projects. For example, you will gain expertise in negotiation and collaboration, effective communication, handling conflict and politics, and managing change.

Modules include ‘Engineering Operations Management’, ‘Project Risk and Quality Management’ and ‘Decision Support for Management’. Your Masters project will involve a real-world project that is supported by a sponsor. It will include both a research and a practical element, and it is an opportunity to impress not only your academic assessors but also potential employers.

Sunderland has long-standing expertise in engineering management and strong links with employers. We host the Institute for Automotive & Manufacturing Advanced Practice (AMAP) which provides problem-solving solutions to manufacturers of all capabilities. We are a leading research group in automotive, manufacturing and maintenance engineering. This research informs our teaching and facilitates your own research as part of your Masters project.

Course content

The course mixes taught elements with independent research and supportive supervision. At MA level, responsibility for learning lies as much with you as with your tutor.

Modules on this course include:
-Research Skills and Academic Literacy (15 Credits)
-Project Management and Control (30 Credits)
-Engineering Operations Management (15 Credits)
-Decision Support for Management (15 Credits)
-Managing People and Project Leadership (15 Credits)
-Project Risk and Quality Management (15 Credits)
-Advanced Maintenance Practice (15 Credits)
-Masters Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, group work, research, discussion groups, seminars, tutorials and practical laboratory sessions.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include individual written reports and research papers, practical assignments and the Masters project.

Facilities & location

The University of Sunderland has excellent facilities with specialist laboratories and modelling software.

Engineering facilities
Our specialist facilities include laboratories for electronics and electrical power, and robotics and programmable logic controllers. We also have advanced modelling software that is the latest industry standard. In addition, the University is the home of the Institute for Automotive and Manufacturing Advanced Practice (AMAP), which builds on Sunderland’s role as a centre of excellence in the manufacturing and assembly of cars.

University Library Services
We’ve got thousands of books and e-books on engineering topics, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.
Some of the most important sources for engineers include:
-British Standards Online which offers more than 35,000 documents covering specifications for products, dimensions, performance and codes of practice
-Abstracts from the Institute of Electrical and Electronics Engineers and Institution of Engineering and Technology. These include journals, conference proceedings, technical reports and dissertations. A limited number of articles are full-text
-Science Direct, which offers more than 18,000 full-text Elsevier journals
-Archives of publications from Emerald, including over 35,000 full-text articles dating back to 1994 that span engineering and management subjects

IT provision
When it comes to IT provision you can take your pick from hundreds of PCs as well as Apple Macs in the David Goldman Informatics Centre and St Peter’s Library. There are also free WiFi zones throughout the campus. If you have any problems, just ask the friendly helpdesk team.

Location
The course is based at our Sir Tom Cowie Campus at St Peter’s. The Campus is on the banks of the River Wear and is less than a mile from the seaside. It’s a vibrant learning environment with strong links to manufacturers and commercial organisations and there is a constant exchange of ideas and people.

Employment & careers

This course equips you for a wide range of engineering management roles throughout the engineering and manufacturing sector. Employers recognise the value of qualifications from Sunderland, which has been training engineers and technicians for over 100 years.

As part of the course, you will undertake a project that tackles a real-world problem. These projects are often sponsored by external clients and we encourage and support you to find your own client and sponsor. This relevant work experience will enhance your skills, build up a valuable network of contacts and further boost your employability.

Potential management roles include:
-Project manager
-Design engineer
-Manufacturing engineer
-Mechanical engineer
-Electrical engineer
-Product engineer
-Maintenance engineer

Engineering management provides good career prospects with salaries ranging from £30,000 up to around £80,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
Some of the most challenging problems in industry and commerce are associated with software development. This course will equip computing professionals with advanced knowledge of the latest methods and tools in software engineering, as well as practical skills in software development. Read more
Some of the most challenging problems in industry and commerce are associated with software development. This course will equip computing professionals with advanced knowledge of the latest methods and tools in software engineering, as well as practical skills in software development.

You can combine this course with Management Studies, which will enable you to develop the skills to successfully lead teams and manage innovation.

Key features
-This course is accredited by BCS, The Chartered Institute for IT.
-The knowledge and skills learnt on this course will enable you to make an effective contribution as part of a team building software systems, delivering optimum results in terms of cost, time and software quality.
-The dissertation/project gives you the chance to study an area of interest in greater depth. It can be undertaken in industry, giving you valuable industrial experience and an excellent talking point when you are looking for a job or promotion.

What will you study?

You will study state-of-the-art concepts in software engineering and will focus on the fundamental concepts and principles of systems analysis, design, implementation and testing. The course focuses on the cost-effective development of high-quality software. You will also have an opportunity to improve your practical skills so that you can plan and conduct complex systems development projects to meet customer needs and integrate software solutions into an evolving business environment.

The Software Engineering course can be combined with Management Studies enabling you to set your technical knowledge in a management context and enable you to work effectively with business managers to develop systems for business advantage. An understanding of the business and management context is a key skill employers look for and essential for those aiming to set up their own business.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Software Engineering with Management Studies MSc modules
-Modelling Enterprise Architectures
-Software Architectures and Programming Models
-Business in Practice
-Project Dissertation
-Software Quality Engineering OR Web Application and Infrastructure Development

Read less

Show 10 15 30 per page



Cookie Policy    X