• University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
King’s College London Featured Masters Courses
University of Reading Featured Masters Courses
Vlerick Business School Featured Masters Courses
Barcelona Technology school Featured Masters Courses
University of Glasgow Featured Masters Courses
"plasma" AND "physics"×
0 miles

Masters Degrees (Plasma Physics)

We have 25 Masters Degrees (Plasma Physics)

  • "plasma" AND "physics" ×
  • clear all
Showing 1 to 15 of 25
Order by 
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The course is run jointly by the. Mathematical Institute. and the. Department of Physics. It provides a high-level, internationally competitive training in mathematical and theoretical physics, right up to the level of modern research. Read more

The course is run jointly by the Mathematical Institute and the Department of Physics. It provides a high-level, internationally competitive training in mathematical and theoretical physics, right up to the level of modern research. It covers the following main areas:

  • quantum field theory, particle physics and string theory
  • theoretical condensed matter physics,
  • theoretical astrophysics, plasma physics and physics of continuous media
  • mathematical foundations of theoretical physics

The course concentrates on the main areas of modern mathematical and theoretical physics: elementary-particle theory, including string theory, condensed matter theory (both quantum and soft matter), theoretical astrophysics, plasma physics and the physics of continuous media (including fluid dynamics and related areas usually associated with courses in applied mathematics in the UK system). If you are a physics student with a strong interest in theoretical physics or a mathematics student keen to apply high-level mathematics to physical systems, this is a course for you.

The course offers considerable flexibility and choice; you will be able to choose a path reflecting your intellectual tastes or career choices. This arrangement caters to you if you prefer a broad theoretical education across subject areas or if you have already firmly set your sights on one of the subject areas, although you are encouraged to explore across sub-field boundaries.

You will have to attend at least ten units' worth of courses, with one unit corresponding to a 16-hour lecture course or equivalent. You can opt to offer a dissertation as part of your ten units. Your performance will be assessed by one or several of the following means: 

  • invigilated written exams
  • course work marked on a pass/fail basis
  • take-home exams
  • mini-projects due shortly after the end of the lecture course.

The modes of assessment for a given course are decided by the course lecturer and will be published at the beginning of each academic year. As a general rule, foundational courses will be offered with an invigilated exam while some of the more advanced courses will typically be relying on the other assessment methods mentioned above. In addition, you will be required to give an oral presentation towards the end of the academic year which will cover a more specialised and advanced topic related to one of the subject areas of the course. At least four of the ten units must be assessed by an invigilated exam and, therefore, have to be taken from lecture courses which provide this type of assessment. A further three units must be assessed by invigilated written exam, take-home exam or mini-project. Apart from these restrictions, you are free to choose from the available programme of lecture courses.

The course offers a substantial opportunity for independent study and research in the form of an optional dissertation (worth at least one unit). The dissertation is undertaken under the guidance of a member of staff and will typically involve investigating and write in a particular area of theoretical physics or mathematics, without the requirement (while not excluding the possibility) of obtaining original results.



Read less
Shock physics focuses on the understanding of what happens to matter under extreme conditions. This research can be applied in many ways, including. Read more
Shock physics focuses on the understanding of what happens to matter under extreme conditions.

This research can be applied in many ways, including:

Analysing the effect of meteorite impacts on planets, spacecraft and satellites
Understanding how tsunamis are formed
Understanding the high pressure conditions that occur at the core of planets

This course explores the response of a wide range of materials, from rock to plasma, when subjected to rapid or high pressure loading.

This area is important for a number of applications, including:

Preventing impact damage to transportation vehicles
Petrochemical and other offshore platforms
Astrophysics and studies into the internal conditions of nuclear energy reactors

You will be trained in techniques that are of value to potential industrial employers, government agencies and other organisations.

Read less
The Masters in Theoretical Physics provides an understanding of the principles and methods of modern physics, with particular emphasis on the theoretical aspects of the subject, and at a level appropriate for a professional physicist. Read more
The Masters in Theoretical Physics provides an understanding of the principles and methods of modern physics, with particular emphasis on the theoretical aspects of the subject, and at a level appropriate for a professional physicist.

Why this programme

◾Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
◾The School plays a leading role in the exploitation of data from the Large Hadron Collider, the world’s largest particle accelerator at CERN.
◾You will gain the theoretical and computational skills necessary to analyse and solve a range of advanced physics problems, providing an excellent foundation for a career of scientific leadership in academia or industry.
◾You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
◾You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates

Programme structure

Modes of delivery of the MSc in Theoretical Physics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional lecture courses and project work to a wide variety of specific research topics and their applications in the area of theoretical physics.

Core courses include
◾Advanced data analysis
◾Quantum information
◾Quantum theory
◾Research skills
◾Extended project

Optional courses include
◾Advanced electromagnetic theory
◾Advanced mathematical methods
◾Applied optics
◾Dynamics, electrodynamics and relativity
◾General relativity and gravitation (alternate years, starting 2018-19)
◾Plasma theory and diagnostics (alternate years, starting 2017-18)
◾Relativistic quantum fields
◾Statistical mechanics
◾The sun's atmosphere

For further information on the content of individual courses please see Honours and Masters level courses.

Career prospects

Career opportunities include academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
The Masters in Astrophysics gives you an understanding of the principles and methods of modern astrophysics at a level appropriate for a professional physicist. Read more
The Masters in Astrophysics gives you an understanding of the principles and methods of modern astrophysics at a level appropriate for a professional physicist.

Why this programme

◾The School has a major role in the award winning NASA RHESSI X-ray mission studying solar flares and in several other forthcoming international space missions such as ESA’s Solar Orbiter.
◾The School plays a world-leading role in the design and operation of the worldwide network of laser interferometers leading the search for gravitational waves.
◾Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
◾You will gain the theoretical, observational and computational skills necessary to analyse and solve advanced astrophysics problems, providing you with an excellent foundation for a career of scientific leadership in academia or industry.
◾You will develop transferable skills that will improve your career prospects, such as project management, team-working, advanced data analysis, problem-solving, critical evaluation of scientific literature, advanced laboratory and computing skills, and how to effectively communicate with different audiences.
◾You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.

[Modes of delivery of the MSc in Astrophysics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The programme draws upon a wide range of advanced Masters-level courses. You will have the flexibility to tailor your choice of optional courses and project work to a variety of specific research topics and their applications in the area of astrophysics.

Core courses include
◾Advanced data analysis
◾General relativity and gravitation (alternate years, starting 2018–19)
◾Gravitational wave detection
◾Plasma theory and diagnostics (alternate years, starting 2017–18)
◾Pulsars and supernovae (alternate years, starting 2018–19)
◾Research skills
◾Statistical astronomy (alternate years, starting 2017–18)
◾The Sun's Atmosphere
◾Extended project

Optional courses include

◾Advanced electromagnetic theory
◾Applied optics
◾Circumstellar matter (alternate years, starting 2017-18)
◾Cosmology (alternate years, starting 2018–19)
◾Dynamics, electrodynamics and relativity
◾Exploring planetary systems (alternate years, starting 2018-19)
◾Galaxies (alternate years, starting 2017-18)
◾Instruments for optical and radio astronomy (alternate years, starting 2018-19)
◾Statistical mechanics
◾Stellar astrophysics (alternate years, starting 2017–18)

For further information on the content of individual courses please see Honours and Masters level courses.

Industry links and employability

-◾The School of Physics and Astronomy is highly active in research and knowledge transfer projects with industry. Our Masters students have regular opportunities to engage with our industrial collaborators through informal visits, guest lectures and workshops.
◾You will also benefit from our membership of the Scottish Universities Physics Alliance. The alliance brings together internationally leading physics research across Scotland to form the largest physics grouping in the UK.
◾Our staff and students come from all around the world providing a truly global experience. The School of Physics and Astronomy is committed to providing an equitable environment for study and work, in line with the principles of Project Juno of the Institute of Physics. This was recognised in 2011 by the award of Juno Champion status. We also have a strong programme of talks and seminars given by experts from the UK and abroad, which will give you the chance of broadening your knowledge in many other areas of physics and astronomy.

For further information please visit:

Scottish Universities Physics Alliance
Project Juno of the Institute of Physics
The award of Juno Champion status

Career prospects

Career opportunities include academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
This interdisciplinary MSc offers a wide programme of study related to the physics of planetary and space environments, including planetary interiors, atmospheres… Read more
This interdisciplinary MSc offers a wide programme of study related to the physics of planetary and space environments, including planetary interiors, atmospheres and magnetospheres; the impact of the space environment on human physiology; and research project work which provides potential opportunity to work with established planetary researchers at UCL and Birkbeck, some of whom are involved in active or planned space missions.

Degree information

Students develop insights into the techniques used in current projects, and gain in-depth experience of a particular specialised research area through project work as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits.

The programme consists of a choice of three core modules (45 credits), three optional modules (45 credits), a research essay (30 credits) and a dissertation (60 credits). A Postgraduate Diploma consisting of three core modules (45 credits), three optional modules (45 credits) and a research essay (30 credits); full-time nine months is offered.

Optional modules 1 (15 credits each) - students choose three from:
-Deep Earth and Planetary Modelling
-Earth and Planetary Materials
-Planetary Atmospheres
-Space Plasma and Magnetospheric Physics
-Remote Sensing and Planetary Surfaces
-Physics of Exoplanets

Optional modules 2 (15 credits each) - students choose three from the following:
-Earth and Planetary System Science
-Melting and Volcanism
-Solar Physics
-Astronomical Spectroscopy
-Physics of the Earth
-Space Medicine and Extreme Environment Physiology
-Comets, Asteroids and Meteorites
-Advanced Topics in Planetary Science

Alternatively students may also choose a fourth module from the Optional modules 1 list and two from the Optional modules 2 list above.

Dissertation/report
All students submit a critical research essay and MSc students undertake an independent research project which culminates in a substantial dissertation and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, practical classes, computer-based teaching, fieldwork, and tutorials. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Careers

Physics-based careers embrace a broad band of areas, e.g. information technology, engineering, finance, research and development, medicine, nanotechnology and photonics. Graduates of MSc programmes at UCL go on to a variety of careers as research associates, postdoctoral fellows, consultants, and systems test engineers.

Top career destinations for this degree:
-Chartered Surveyor, Dunphys
-PhD in Planetary Science, The Open University (OU)

Employability
An MSc qualification from UCL is highly regarded by employers. Students engage in a variety of learning activities, including undertaking their own research projects, which encourages the development of problem-solving skills, technical and quantitative analysis, independent critical thinking and good scientific practice. In addition, teamwork, vision and enthusiasm make physics graduates highly desirable members in all dynamic companies.

Why study this degree at UCL?

UCL Physics & Astronomy is among the leading departments in the UK for graduate study. The curriculum of the Planetary Science MSc draws on a variety of other academic departments within UCL including Space & Climate Physics (Mullard Space Science Laboratory), Earth Sciences, Cell & Developmental Biology and Birkbeck's Department of Earth and Planetary Sciences. The programme thus has a strong interdisciplinary flavour, in line with the ethos of the Centre for Planetary Sciences at UCL/Birkbeck.

The combination of taught courses, tutorials and project work allows prospective students to study a wide variety of topics related to planetary and space environments, such as: planetary interiors, atmospheres and magnetospheres; the impact of the space environment on human physiology and life; and the application of current knowledge to investigations of extrasolar planets, i.e. worlds in other stellar systems.

Read less
This MSc provides students with the skills, knowledge and research ability for a career in astrophysics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field. Read more
This MSc provides students with the skills, knowledge and research ability for a career in astrophysics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field.

Degree information

Students develop insights into the techniques used in current astrophysics projects, and gain in-depth experience of a particular specialised research area, through project work, as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits.

The programme consists of a choice of six optional modules (90 credits), a research essay (30 credits) and a research dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered.

Optional modules 1 (15 credits each)
Students choose four of the following:
-Planetary Atmospheres
-Solar Physics
-High-energy Astrophysics
-Stellar Atmospheres and Stellar Winds
-Galaxy and Cluster Dynamics
-Cosmology
-Mathematics for General Relativity
-Space Plasma and Magnetospheric Physics

Optional modules 2 (15 credits each)
Students choose two of the following:
-Physics MSc core modules
-Space and Climate Science MSc core modules
-Medical Physics MSc core modules
-Intercollegiate fourth year modules
-Physics and Astrophysics MSc fourth-year modules
-Plastic and Molecular (Opto)electronics

Dissertation/report
Students submit a critical research essay of approximately 8,000 words and undertake an in-depth research project which culminates in a formal report and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and practical, laboratory and computer-based classes. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Careers

Astrophysics-based careers embrace a broad range of areas, for example information technology, engineering, finance, research and development, medicine, nanotechnology and photonics. Employers regard a physics degree as flexible and highly desirable university training.

Top career destinations for this degree:
-PhD in Astrophysics, Kiel University, Germany
-Research Assistant, University College London
-Research Assistant, Max-Planck-Institut für Kernphysik (Nuclear Physics)
-PhD in Astrophysics, University of Crete

Employability
Astrophysics opens up many avenues to employment through the skills acquired: problem-solving; the training of a logical and numerate mind; computation skills; modelling and material analysis; and the ability to think laterally. In addition, work vision and enthusiasm make physics graduates highly desirable members of all dynamic companies.

Why study this degree at UCL?

UCL Physics & Astronomy is among the top departments in the UK for graduate study.

The department's participation in many international collaborations means we provide exceptional opportunities to work as part of an international team. Examples include the Dark Energy Survey - investigating the origin of the accelerating universe and the nature of dark matter, the Hubble Telescope and the Cassini project.

In some cases, opportunities exist for students to broaden their experience by spending part of their time overseas.

Read less
The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century. Read more

Why this course?

The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century.

The course is based on the strong record of optical technologies across research divisions in the department of physics and the collaborating institutions:
- Optics Division (Physics)
- Plasma Division (Physics)
- Nanoscience Division (Physics)
- Institute of Photonics
- Centre for Biophotonics
- Department of Electronic & Electrical Engineering

You can choose classes relevant to your career interests from a wide range of topics including:
- photonics and photonic materials
- nanosciences
- optics at the physics-life sciences interface
- laser-based plasma physics
- quantum optics and quantum information technology

You’ll put the knowledge gained in the taught components to use in a cutting-edge research project.

The course gives you the opportunity of exploring and mastering a large range of optical technologies. It enables you to put devices in the context of an optical system and/or application.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/opticaltechnologies/

Who’s the course suitable for?

It’s suitable for those with a science or engineering background wanting to gain a vocational degree or to obtain a solid foundation for an optics-related PhD programme.

It’s also appropriate for those who’ve worked in industry and want to consolidate their future career by further academic studies.

You’ll study

The course consists of two semesters of taught classes followed by a three- month research project.

Facilities

This course is run by the Department of Physics. The department’s facilities include:
- well-equipped optical labs for semiconductor photonics, semiconductor spectroscopy and fluorescence lifetime analysis.
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- cutting edge high power laser research with SCAPA, the highest power laser in a UK university
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high performance computer facilities
- industry standard cleanroom in the Institute of Photonics

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.

Assessment

The assessment includes written examinations, coursework, presentations and a talk, oral examination and report presenting and defending the research project.

Careers

The course gives you a thorough basis for a successful job in the photonics, optical and life sciences industries. It provides the basis to excel in more interesting and challenging posts.
The course can also be an entry route into an optics-related PhD programme.
Over the years, many of Strathclyde’s optics and photonics graduates have found successful employment at the large variety of local laser and optics companies as well as with national and international corporations.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The Postgraduate Certificate in Astronomy and Astrophysics programme at Queen Mary, University of London, provide a unique opportunity for graduates to pursue the subject in depth for 9 months, either for personal interest or as a first step towards a professional career in astronomy. Read more
The Postgraduate Certificate in Astronomy and Astrophysics programme at Queen Mary, University of London, provide a unique opportunity for graduates to pursue the subject in depth for 9 months, either for personal interest or as a first step towards a professional career in astronomy. The programme has been running since 1985 and around 80 certificates degrees have been awarded. Some students have gone on to complete the MSc, and even to do PhDs..

The programme at Queen Mary is unique in the UK in the scope of material covered. It gives students a detailed overview of the fundamentals of the subject as well as an up-to-date account of recent developments in research. The wide range of topics covered by the course reflects the breadth of research interests pursued by the members of staff in our large and friendly research group. Lectures cover such diverse topics as the origin of the universe, dark matter, dark energy, galaxies, radiation mechanisms in astrophysics, the life and death of stars, black holes, extrasolar planets, the solar system, space and solar plasma physics and research methods.

Students who do sufficiently well in the examinations may be allowed to change their registration to Part-time MSc Astrophysics and proceed to its 2nd year.

Read less
The course gives you the opportunity to explore and master theoretical, computational and experimental physics skills with wide application. Read more

Why this course?

The course gives you the opportunity to explore and master theoretical, computational and experimental physics skills with wide application.

Our four divisions – Nanoscience, Optics, Plasmas and the Institute of Photonics – all contribute research-based teaching expertise to the course. You can choose taught elements relevant to your career interests from a wide range of topics, including:
- theoretical & computational physics
- quantum optics and quantum information
- complexity science
- physics and the life sciences
- solid-state physics
- plasma physics

The knowledge you gain in the taught components is then put to use in a cutting-edge research project, which can be theoretical, computational or experimental.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

- Facilities
This course is run by the Department of Physics. The department’s facilities include:
- cutting-edge high-power laser research with SCAPA, researching the future of particle accelerators via laser-based acceleration
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- access to the top-of-the-range high performance and parallel computer facilities of ARCHIE-WeSt
- a scanning electron microscopy suite for analysis of hard and soft matter
- new high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs

English language

IELTS 6.0 is required for all non-English speakers.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral examination.

Careers

A Masters degree in physics prepares you for a wide and versatile range of careers in science and engineering as well as all areas of management, financial services, etc. Many graduates proceed to a PhD.

Strathclyde physics graduates are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorneys
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. Read more
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. The OEPE program has both theoretical and experimental research activities. The graduates of the OEPE program will work at frontiers of technology with a broad spectrum of application areas: from automotive and home lighting to information and communications, from life sciences and health to displays, from remote sensing to nondestructive diagnostics, and from material processing to photovoltaics. Individuals with B.S. degrees in electrical and electronic engineering, optics, optoelectronics, physics, and related science and engineering disciplines should apply for graduate study in the OEPE Program.

Current faculty projects and research interests:

• 2D/3D Displays and Imaging Systems
• Advanced Signal Processing
• Femtosecond Lasers
• Metamaterials
• Microwaves
• Nano-optics
• Optical Communication
• Optical MEMS
• Plasma Physics
• Plasmonics
• Quantum Communication
• Quantum Optics
• Remote Sensing
• Silicon Photonics
• Solid State Lasers

Read less
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena. Read more
What are the laws of nature governing the universe from elementary particles to the formation and evolution of the solar system, stars, and galaxies? In the Master’s Programme in Particle Physics and Astrophysical Sciences, you will focus on gaining a quantitative understanding of these phenomena.

With the expertise in basic research that you will gain in the programme, you can pursue a career in research. You will also acquire proficiency in the use of mathematical methods, IT tools and/or experimental equipment, as well as strong problem-solving and logical deduction skills. These will qualify you for a wide range of positions in the private sector.

After completing the programme, you will:
-Have wide-ranging knowledge of particle physics and/or astrophysical phenomena.
-Have good analytical, deductive and computational skills.
-Be able to apply theoretical, computational and/or experimental methods to the analysis and understanding of various phenomena.
-Be able to generalize your knowledge of particle physics and astrophysical phenomena as well as identify their interconnections.
-Be able to formulate hypotheses and test them based your knowledge.

The teaching in particle physics and astrophysical sciences is largely based on the basic research. Basic research conducted at the University of Helsinki has received top ratings in international university rankings. The in-depth learning offered by international research groups will form a solid foundation for your lifelong learning.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The understanding of the microscopic structure of matter, astronomical phenomena and the dynamics of the universe is at the forefront of basic research today. The advancement of such research in the future will require increasingly sophisticated theoretical, computational and experimental methods.

The study track in elementary particle physics and cosmology focuses on experimental or theoretical particle physics or cosmology. The theories that form our current understanding of these issues must be continuously re-evaluated in the light of new experimental results. In addition to analytical computation skills, this requires thorough mastery of numerical analysis methods. In experimental particle physics, the main challenges pertain to the management and processing of continuously increasing amount of data.

The study track in astrophysical sciences focuses on observational or theoretical astronomy or space physics. Our understanding of space, ranging from near Earth space all the way to structure of the universe, is being continuously redefined because of improved experimental equipment located both in space and on the Earth’s surface. Several probes are also carrying out direct measurements of planets, moons and interplanetary plasma in our solar system. Another key discipline is theoretical astrophysics which, with the help of increasingly efficient supercomputers, enables us to create in-depth models of various phenomena in the universe in general and the field of space physics in particular. Finally, plasma physics is an important tool in both space physics and astronomy research.

Selection of the Major

The Master’s programme includes two study tracks:
-Particle physics and cosmology
-Astrophysical sciences

Courses in the programme have been compiled into modules. Both study tracks contain a mandatory core module that includes a research seminar. The study tracks are divided into specialisations that focus on astronomy, space physics, particle physics or cosmology. Courses typically include lectures, exercises, group work and research literature and end in examinations and/or final assignments. In addition, some studies can be completed as book examinations.

Programme Structure

The scope of the Master’s programme is 120 credits (ECTS), which can be completed in two years. The degree consists of:
-90 credits of Master’s studies, including a Master’s thesis (30 credits).
-30 credits of other studies from the Master’s programme or other degree programmes.

In addition, your studies include a personal study plan as well as career orientation and planning. You might also take part in a traineeship, elective studies offered by the Master’s Programme in Particle Physics and Astrophysical Sciences, or studies offered by other degree programmes.

Career Prospects

A Master’s degree in elementary particle physics or astrophysical sciences provides you with excellent qualifications for postgraduate education in research or for a career in diverse positions both in Finland and abroad. As a Master’s graduate you could begin a career in research and development in industry as well as in universities and other research institutes that enable you to conduct independent research on a topic that interests you.

Potential employers and career opportunities include:
-Research institutes in Finland and abroad (basic scientific research).
-Universities and universities of applied sciences (teaching).
-Industry, particularly high technology companies (applied research and development, managerial duties).
-Software production, e.g., the game sector.
-Diverse planning and consulting positions.

Master’s graduates from equivalent study tracks under the previous degree system have embarked on careers in:
-Research and teaching positions in Finnish universities and research institutes.
-Research and teaching positions abroad, for example at CERN (the European Organization for Nuclear Research), ESA (the European Space Agency), ESO (the European Southern Observatory), and NASA (the National Aeronautics and Space Administration).
-Administrative positions, for example at the Academy of Finland or the Finnish Funding Agency for Innovation (Tekes).
-The business sector.

The strong theoretical and analytical skills you will acquire in the programme are in great demand in fields such as:
-Data analysis (industry, media companies, game companies, financing).
-Industrial research, development and consulting (at, e.g., Nokia, Ericsson, Apple, Sanoma, Spinverse, Supercell, Nielsen, Valo -Research and Trading, Planmeca, Reaktor, Comptel, and Goldman Sachs).

Internationalization

Our multilingual Master’s programme is highly international. The Department hosts a large number of international students and staff members. In addition, the University of Helsinki and the Faculty of Science provide many opportunities for international engagement:
-Student exchange at one of the destinations available through the Faculty or the University.
-International traineeships.
-English-language teaching offered by the Faculty.
-Master’s thesis project as a member of one of the international research groups operating under the programme.
-Cooperation with international students enrolled in the programme.
-International duties in subject-specific student organisations or the Student Union of the University of Helsinki.
-Language courses organised by the Language Centre of the University of Helsinki.

The Faculty of Science is a top research institute in its fields among European universities. Its partners include many leading international research institutes, such as the European Organization for Nuclear Research (CERN), the European Space Agency (ESA) and the European Southern Observatory (ESO).

As a student at the Faculty of Science, you will have the opportunity to complete a research traineeship period at, for example, CERN in Geneva. By completing a traineeship at one of the internationally active research groups on campus you will be able to acquaint yourself and network with the international scientific community during your Master’s studies. The international student exchange programmes available at the University provide numerous opportunities to complete part of your degree at a university abroad.

Read less
Our 12-month (full time) Master's course provides a firm foundation in fusion physics. It is an ideal course to prepare students for a PhD in fusion energy or for employment in fusion laboratories. Read more
Our 12-month (full time) Master's course provides a firm foundation in fusion physics. It is an ideal course to prepare students for a PhD in fusion energy or for employment in fusion laboratories. In addition to the lecture courses, you will be introduced to the skills in computational and experimental plasma physics essential to Fusion research (and highly valued in today’s knowledge-based economy). The MSc culminates in a major research project where, under the supervision of world leading physicists at the York Plasma Institute, you will conduct cutting edge research in fusion. During your study you will also have the chance to explore the many exciting areas of modern plasma research, for example: cutting-edge medical therapies utilising plasma jets and beams of laser-generated ions; plasmas as compact particle accelerators and next generation plasma space propulsion systems. The Fusion Frontiers and Interfaces workshop, part of the MSc course, provides students an unrivalled opportunity to interact with world-class international fusion scientists, ensuring that the MSc in Fusion Energy is an excellent way to explore your interest in fusion and prepare for a career in this field.

Read less
Physics forms the basis of many other sciences as well as of innovative technical and industrial developments. Read more

Physics forms the basis of many other sciences as well as of innovative technical and industrial developments. In the NAWI Graz master's degree programme Technical Physics, students build on the knowledge acquired in the bachelor's degree programme and extend their skills in solving physics problems and mathematical problems so that they can work on research related and application oriented questions. Numerous career options are open to students after graduation, both in Austria and abroad. They can choose to continue researching fundamental aspects of physics or work developing new materials, technologies and processes for industry.

Dean of Studies Roland Würschum:

"As a special bonus, the NAWI Graz cooperation offers a chance for internationalisation and to attend a broader range of courses. The theoretical course contents have been optimally adapted to match the practical courses, such as research laboratories and computer-assisted simulations, through the modern modularisation of the curriculum."

Content

  • You increase your knowledge of physics and maths.
  • You acquire specialist knowledge in the following areas:
  • Statistical and Computational Physics
  • Advanced Quantum Mechanics and Atom Physics
  • Advanced Solid State Physics and Radiation Physics
  • You acquire knowledge in Business and Entrepreneurship.
  • You apply physics methods in experiments, in theory and using computers.
  • You analyse complex procedures using modern computer simulation processes.
  • You learn to think logically and systematically and to acquaint yourself with new physical and technical problem areas.
  • You work on interdisciplinary problems, e.g. in mathemathics, chemistry, medicine and environmental systems sciences.
  • You improve your specialist English vocabulary.

Specialisation Areas

You can specialise in three of the following areas:

  • Applied Materials Physics
  • Computational Condensed Matter Physics
  • Laboratory Technology and Instrumentation
  • Microscopy and Nanoanalysis
  • Modelling of Materials
  • Nano and Laser Optics
  • Nanoscience
  • Quantum Many-Body Physics
  • Quantum Optics and Molecular Physics
  • Radiation and Plasma Physics
  • Semiconductor Devices
  • Surface Science
  • Theoretical Solid State Physics

Further options for specialised modules are offered as part of a stay abroad.

Career Options

Technical physicists are regarded as the universal problem solvers in innovative industries. They work as highly-qualified experts in scientific and technological areas of industry, business and science both in Austria and abroad.

Technical physicists primarily work in the following industrial sectors:

  • Universities and other educational and research institutions
  • Data processing
  • Electronics and electrical engineering
  • Precision mechanics and optics
  • Mechanical engineering and vehicle construction
  • Health care and public services
  • The services sector and company services


Read less
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. Read more
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. The programme aims to provide a broad understanding of all aspects of space science together with specialised training in research methods, directly applicable to a career in academia, the public and private sectors.

Degree information

The Space Science pathway is focussed on scientific research applications of space technology; it aims to equip participants with a sound knowledge of the physical principles essential to sustain careers in space research and related fields. Students develop a thorough understanding of the fundamentals of:

a range of space science fields
spacecraft, space science instrumentation, the space environment, space operations and space project management
Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), three optional modules (45 credits), a group project (15 credits), and a research project (60 credits).

Core modules
-Space Data Systems and Processing
-Space Instrumentation and Applications
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Group Project

Optional modules
-Planetary Atmospheres
-Solar Physics
-High Energy Astrophysics
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security

Dissertation/report
All MSc students undertake an independent research project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examination, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for further research degrees and/or careers in space research or the space industry. First destinations of recent graduates include:
-University of Lancaster: PhD Solar Physics
-Irongate Archaeological Project: IT Specialist
-UCL: PhD Space Climate Physics

Why study this degree at UCL?

UCL’s Space & Climate Physics Department, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space, as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in academic circles and beyond.

Read less

Show 10 15 30 per page



Cookie Policy    X