• Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Leeds Beckett University Featured Masters Courses
OCAD University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"photonics"×
0 miles

Masters Degrees (Photonics)

We have 92 Masters Degrees (Photonics)

  • "photonics" ×
  • clear all
Showing 1 to 15 of 92
Order by 
The Erasmus Mundus Master of Science in Photonics is an international English-taught course programme with a duration of 2 years set up in the context of the Erasmus Mundus programme of the European Union since 2006. Read more

About the programme

The Erasmus Mundus Master of Science in Photonics is an international English-taught course programme with a duration of 2 years set up in the context of the Erasmus Mundus programme of the European Union since 2006. This master programme is offered by three leading European universities in the field of photonics: Ghent University (acting as coordinator), Vrije Universiteit Brussel (Belgium) and St-Andrews University (UK). Furthermore the consortium has added Associated Academic Partners (NTU - National Taiwan University, Taiwan, EPFL - Ecole Polytechnique Fédérale de Lausanne, Switzerland, DTU - Technical University of Denmark, Denmark - Royal Institute of Technology - KTH, Stockholm (Sweden) and UPV - Universidad Politécnica de Valencia, Spain) to the programme to offer all students a thesis in their field of specialization.

Core and advanced photonics courses

Two universities in Belgium (Vrije Universiteit Brussel and Universiteit Gent, programme coordinator), two in Scotland (St.-Andrews University and Heriot-Watt University) and one in Sweden (Kungliga Tekniska Högskolan, Stockholm) have jointly organised the Erasmus Mundus Master of Science in Photonics since September 2006.

This Master offers:

- A specialization in photonic materials, components and systems. Lasers and LED's, optical fibres and liquid crystals, optical sensors and detectors will reveal all their secrets to you.
- A wide variety of elective courses in ICT, electronics, business aspects of photonics, multimedia etc.
- An industrial internship which will give you the opportunity to get in touch with the Photonics Industry
- A multi-disciplinary training in Photonics and Photonics-related subjects, organized
by four European universities that are all at the top of the innovative world of Photonics
- The opportunity to broaden your knowledge and skills in other domains, such as ICT, biosciences, physics and chemistry of materials, industrial management etc.

The graduates of this programme receive a joint UGent-VUB Master of Science degree in Photonics

Approach

Core and advanced photonics courses:
The first year will be devoted mainly to a programme of core photonics courses with essentially the same content at all institutes, complemented by a number of advanced photonics courses as well as several courses in related disciplines and transferable skill courses.

Move to another location:
In the second year you will move to another location where you will continue to take advanced photonics, multidisciplinary and transferable skill courses and where you will carry out your master thesis (30 ECTS) in a photonics sub-field of their choice. In addition to the regular courses, all students will attend a two-week summer school at the end of the first and second year of the programme.

International opportunities

This Master's programme offers both EU and non-EU students the opportunity to enroll in an international programme and to spend a year in two of the three countries mentioned above. It’s a multi- disciplinary programme covering electrical engineering, basic physics, material technologies, electronics and applications in different fields.

Contact with different European cultures and languages:
In addition, they will be brought into contact with several European cultures and languages and will get the chance to live in different European capitals (Brussels and Stockholm) and/or European cities (Gent, Edinburgh and Saint Andrews), cities with a rich cultural heritage.

For your master thesis you can travel to the following EMMP partner institutions who excel in photonics research:
- Overseas partnership: National Taiwan University (R.O.C. Taiwan)
- Associated European partners: Danmarks Tekniske Universitet (Denmark), École Polytechnique Fédérale de Lausanne (Switzerland), Universitat Politècnica de València (Spain)

Curriculum

Available on http://studiegids.ugent.be/2013/EN/FACULTY/E/MABA/EMEMMP/EMEMMP.html

Admission requirements



Read less
This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry. Read more

Why this course?

This course will train physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.

You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.

We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.

You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.

You’ll study

The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:
-research and grant writing skills, which are valuable in both academic and commercial settings
-project training, including entrepreneurial and innovation skills training and a literature survey preparing for the project in the company
-topics in photonics, covering laser physics, laser optics and non-linear optics
-optical design, where you will learn about advanced geometrical optics and apply this knowledge to the design of optical systems, through the use of modern optical design software
-photonic materials and devices, focusing on semiconductor materials physics and micro/nano-structures
-advanced photonic devices and applications, covering quantum well structures, waveguides and photonic crystals

These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:
-system engineering and electronic control which forms a key part of modern optical systems
-photonic systems, where fibre optic communications systems and principles of photonic networks are discussed

Work placement

You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.

The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.

Facilities:
Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.

Advanced research facilities are also available in:
-the Department of Physics here at Strathclyde
-the Institute of Photonics
-the Fraunhofer Centre for Applied Photonics

Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.

Guest lectures

You'll attend the seminar series of the Institute of Photonics and Fraunhofer Centre of Applied Photonics with distinguished guest speakers giving a first-hand overview of the rapid development in applied photonics research.

Learning & teaching

In semesters one and two, the course involves:
-lectures
-tutorials
-various assignments including a literature review
-workshops where you'll gain presentation experience

The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.
Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.

Assessment

Assessment methods are different for each class and include:
-written examinations
-marked homework consisting of problems and/or essay assignments
-presentations

Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.

How can I fund my course?

Financial support for Scottish and EU students may be available on a case-by-case basis which will be supported by the industrial partners. Selection will be based on an excellent academic record and/or industrial experience and the promise of a successful career in Industrial Photonics.

Please indicate that you apply for such a scholarship in the "Funding" section of the application form. You'll also need to provide a CV and a statement explaining your interests and motivation with your application. This will inform the decision on a possible scholarship.

For more information, just get in touch with the Department of Physics.

Available scholarships:
We currently have a scholarship available for this course.

You must be able to demonstrate academic excellence based on your previous study along with the promise of a successful career in Industrial Photonics. Relevant previous industrial experience will be considered.

Deadline:
The first round of applications closes on 20th May 2016, and a second one will close on the 30th June 2016.

How to apply:
Apply for this scholarship via our scholarship search: https://www.strath.ac.uk/studywithus/scholarships/sciencescholarships/physicsscholarships/physicsindustrialphotonicsscholarships/

Careers

A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.

Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.

Work experience is key:
Employers want to know you can do the job so work experience is key.

This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.

We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.

Doctorate study:
If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.

Job roles:
Our Physics graduates from photonics related courses have found employment in a number of different roles including:

-Medical Physicist
-Optical engineer
-Laser engineer
-Optical and laser production engineer
-Research and production engineer
-Senior Engineer
-Systems Engineer
-Software Engineer
-Spacecraft Project Manager
-Defence Scientist
-Oscar winner

Read less
The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Read more

Overview

The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Major activities are based around optoelectronics, laser development, semiconductor physics, materials technology, ultra-fast phenomena, modern optics, and instrumentation. This expertise is brought to the teaching of our one-year taught MSc course (See http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/ ).

Previously called Optoelectronic and Laser Devices, this MSc course has been updated and enhanced, recognising the explosive growth of the UK and global photonics industry, fostered by the world-wide expansion in the exploitation of optical in telecommunications.

Students spend one semester at each university, and then undertake a three-month research project, normally in a UK company. Companies participating in recent years include Bookham Technologies, BAE Systems, Edinburgh Sensors, Cambridge Display Technology, Defence Science and Technology Laboratory, Indigo Photonics, Intense Photonics, Kamelian, Nortel, Renishaw, Rutherford Appleton Laboratory, Thales, Sharp and QinetiQ.

Find more information here http://www.phy.hw.ac.uk/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Photonics and Optoelectronic Devices. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Students receive postgraduate training in modern optics and semiconductor physics tailored to the needs of the optoelectronics industries. Graduates gain an understanding of the fundamental properties of optoelectronic materials and optical fibres, and experience of the technology and operation of a wide range of laser semiconductor devices appropriate to the telecommunications, information technology, sensing, and manufacturing industries.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/

Read less
The MSc in Photonics and Optoelectronic Devices is a 12-month taught programme run jointly by the . School of Physics and Astronomy. Read more

The MSc in Photonics and Optoelectronic Devices is a 12-month taught programme run jointly by the School of Physics and Astronomy at the University of St Andrews and the School of Engineering and Physical Sciences at Heriot-Watt University in Edinburgh, which makes available to students the combined diversity of research equipment and expertise at both universities.

Highlights

  • Students have access to well-resourced teaching laboratories which allow hands-on experience to explore a wide range of laser devices and optoelectronic technologies. 
  • The programme is offered in collaboration with Heriot-Watt University and run by schools known for pioneering work in lasers and optoelectronics. 
  • The School helps students to find a summer placement usually with a photonics company, which can allow students to gain vocational training in the optoelectronics and laser industry alongside their studies.

Teaching format

Students take modules at St Andrews in Semester 1 and Heriot-Watt in Semester 2, followed by approximately 3.5 months working on a project, which is usually with an optoelectronics company. 

Teaching comprises lectures, tutorials and laboratory work. Lecture classes are relatively small, with typically around 20-30 students in a class. Lecture modules are assessed largely through examinations at the end of each semester whereas the laboratory work is assessed continuously. The lecture and lab modules develop important skills and knowledge that can be used in the summer project. The project is an on-the-job investigation or development of some aspect of photonics, often in a commercial setting.

Well-equipped teaching laboratories allow you to explore the science of photonics and interact directly with academic staff and the School’s early-career researchers. Teaching staff are accessible to students and enjoy explaining the excitement of physics and its applications.

Students are also encouraged to attend relevant research seminars and departmental discussions given by research staff from other universities and specialists from the industry.

Further particulars regarding curriculum development.

Modules

The lecture modules in this programme are delivered through lectures combined with tutorials, discussions and independent study; they are assessed through examinations and, in some cases, coursework. In the two lab modules, which are continuously assessed, students explore practical photonics for three afternoons a week.

For more details of each module, including weekly contact hours, teaching methods and assessment, please see the latest module catalogue which is for the 2017–2018 academic year; some elements may be subject to change for 2018 entry.



Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
Photonics is an exciting area of physics, which enables developments in fields as diverse as biomedical imaging and high power fibre lasers. Read more
Photonics is an exciting area of physics, which enables developments in fields as diverse as biomedical imaging and high power fibre lasers.

The Department of Physics has a long and successful research record in imaging and photonic.

This 12-month MRes, built on our renowned MSc in Optics and Photonics, usually forms the first year of the four-year (MRes+PhD) research training programme in the Photonics Group.

Some funded studentships for the combined MRes and PhD programme are available to Home students.

Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Photonics enables the majority of world-wide communications, almost all data on the Internet exists in optical form at some point during the transmission. Read more
Photonics enables the majority of world-wide communications, almost all data on the Internet exists in optical form at some point during the transmission. Photonics also has many other applications in medicine, sensing biology and chemistry. On this course you will combine taught material which is specifically relevant to your research topic with advanced knowledge obtained from working in a world leading research environment. The course enhances employability in many industries including communications, civil engineering and bio-technology.

This programme trains aspiring academic and industrial research scientists. The programme consists of a training aspect of taught components (equivalent to 3 modules approximately during the first 3 months) and a significant interdisciplinary research project.

Research topics are chosen by students from a list of topics mirroring the computational expertise of the Mathematics group and the newly founded Systems Analytics Research Institute at Aston, with Computationally oriented projects in for example, biology, optimization, pattern analysis and physics as well as finance. The projects are supervised by academics from the Mathematics group and the Systems Analytics Research Institute at Aston.

The MSc integrates a taught component of three modules over approximately three months (30 credits) with a substantial individual research project lasting nine months (150 credits)

Core modules:
-Computational Mathematics (10 Credits)
-Research skills and Professional Development (10 Credits)
-Specialist/Technical Research Skills (10 Credits)

Exemption from these modules may be arranged through APL or APEL, provided this is done prior to enrolment.

Personal Development

Students will have the opportunity to carry out a research project in collaboration with industry and through this learn about the application context of technology and the interaction between research and business.

Facilities & Equipment

Students will get access to appropriate computational and experimental facilities.

Aston University offers Wi-Fi connection, modern lecture/tutorial rooms, computer labs, lounge area, good learning resources and publications are available in the library and many electronically.

Read less
Optics is of key importance to many industry sectors including medic, ICT and high-tech manufacturing. Imperial has offered an advanced course in optics for over 80 years and the current MSc in Optics and Photonics draws on our experience as one of the largest centres for optics-based research and application in the UK. Read more
Optics is of key importance to many industry sectors including medic, ICT and high-tech manufacturing.

Imperial has offered an advanced course in optics for over 80 years and the current MSc in Optics and Photonics draws on our experience as one of the largest centres for optics-based research and application in the UK.

The course includes substantial laboratory and project work, often based within industry.

There is also a chance to undertake a self-study project in an area of your choice.

You finish with a four-month, full-time project, which may be in industry, an academic research group or abroad.

Graduates of this course are well qualified to apply their knowledge in a wide range of industrial contexts, as well as in a research environment.

They find employment with a variety of careers in industry and many move on to doctoral studies at leading universities in the UK and abroad.

Read less
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. Read more
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. The OEPE program has both theoretical and experimental research activities. The graduates of the OEPE program will work at frontiers of technology with a broad spectrum of application areas: from automotive and home lighting to information and communications, from life sciences and health to displays, from remote sensing to nondestructive diagnostics, and from material processing to photovoltaics. Individuals with B.S. degrees in electrical and electronic engineering, optics, optoelectronics, physics, and related science and engineering disciplines should apply for graduate study in the OEPE Program.

Current faculty projects and research interests:

• 2D/3D Displays and Imaging Systems
• Advanced Signal Processing
• Femtosecond Lasers
• Metamaterials
• Microwaves
• Nano-optics
• Optical Communication
• Optical MEMS
• Plasma Physics
• Plasmonics
• Quantum Communication
• Quantum Optics
• Remote Sensing
• Silicon Photonics
• Solid State Lasers

Read less
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing. Read more
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing.

This course brings together our expertise in quantum photonics and nanomaterials. There is a particular focus on the study of novel fundamental phenomena in condensed matter systems as well as applications in quantum information processing, photovoltaics and optoelectronics.

Our staff are at the forefront of technological advances. We work with support from the UK Engineering and Physical Sciences Research Council, European Research Council and the Horizon 2020 programme, the Royal Society, the Leverhulme Trust and the British Council as well as CONACyT, the National Council of Science and Technology in Mexico.

Our department attracts postgraduate students from around the world.

Core modules

Optical Properties of Solids
Semiconductor Physics and Technology
Advanced Electromagnetism
Solid State Physics
Research Skills in Physics
Research Project in Physics

Examples of optional modules

Magnetic Resonance: Principles and Applications
Physics in an Enterprise Culture
The Physics of Soft Condensed Matter
Statistical Physics
Advanced Quantum Mechanics
Further Quantum Mechanics
Biological Physics

Teaching

Teaching is through lectures, research seminars, small group tutorials and oral presentation.

Your supervisor will help you develop your research skills and support you as you work on your research project.

Assessment

Assessment includes: a project report, literature review, oral presentations, including a viva, formal examinations and short reports and essays.

Read less
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing. Read more
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.

Degree information

The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.

Students undertake modules to the value of 180 credits. Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).
-Project Report 1 at either UCL or Cambridge
-Project Report 2 at either UCL, Cambridge or industry
-Transferable Business Skills

Optional modules - students choose three optional modules from the following:
-Nanotechnology
-Biosensors
-Advanced Photonic Devices
-Photonic Systems
-Solar-Electrical Power: Generation and Distribution
-Photonic Sub-systems
-Broadband Technologies and Components
-Management of Technology
-Strategic Management
-Telecommunication Business Environment

Elective modules - students choose a further two elective modules from the list below:
-Solid State Devices and Chemical/Biological Sensors
-Display Technology
-Analogue Integrated Circuits
-Robust and Nonlinear Systems and Control
-Digital Filters and Spectrum Estimation
-Image Processing and Image Coding
-Computer Vision and Robotics
-Materials and Processes for Microsystems
-Building an Internet Router
-Network Architecture
-Software for Network Services
-Optical Transmission and Networks
-Nanotechnology and Healthcare
-RF Circuits and Sub-systems
-Physics and Optics of Nano-Structure
-Broadband Communications Lab
-Analogue CMOS IC Design Applications

Dissertation/report
All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).

Careers

Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.

Employability
Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, BAE Systems, Selex ES; medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through placements based both in the UK and overseas. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The Centre organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. A recent 2014 graduate is now working as a Fiber Laser Development Engineer for Coherent Scotland. Another is a Patent Attorney for HGF Ltd.

Why study this degree at UCL?

The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.

The centre provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.

This centre, aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.

Read less
This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications. Read more

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Semiconductor Materials; Principles of Semiconductor Device Technology; Packaging and Reliability of Microsystems; Nanoscale Electronic Devices; Energy Efficient Semiconductor Devices; Optical Communication Devices and Systems; Compound Semiconductor Device Manufacture; Major Research Project.

Teaching and assessment

Research-led teaching, lectures, laboratories, seminars and tutorials. A large practical module covers the design, manufacture and characterisation of a semiconductor component, such as a laser or light emitting diode. This involves background tutorials and hands-on practical work in the UK’s national III-V semiconductor facility. Assessment is by examinations, coursework or reports, and a dissertation with poster presentation.

Read less
The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century. Read more

Why this course?

The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century.

The course is based on the strong record of optical technologies across research divisions in the department of physics and the collaborating institutions:
- Optics Division (Physics)
- Plasma Division (Physics)
- Nanoscience Division (Physics)
- Institute of Photonics
- Centre for Biophotonics
- Department of Electronic & Electrical Engineering

You can choose classes relevant to your career interests from a wide range of topics including:
- photonics and photonic materials
- nanosciences
- optics at the physics-life sciences interface
- laser-based plasma physics
- quantum optics and quantum information technology

You’ll put the knowledge gained in the taught components to use in a cutting-edge research project.

The course gives you the opportunity of exploring and mastering a large range of optical technologies. It enables you to put devices in the context of an optical system and/or application.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/opticaltechnologies/

Who’s the course suitable for?

It’s suitable for those with a science or engineering background wanting to gain a vocational degree or to obtain a solid foundation for an optics-related PhD programme.

It’s also appropriate for those who’ve worked in industry and want to consolidate their future career by further academic studies.

You’ll study

The course consists of two semesters of taught classes followed by a three- month research project.

Facilities

This course is run by the Department of Physics. The department’s facilities include:
- well-equipped optical labs for semiconductor photonics, semiconductor spectroscopy and fluorescence lifetime analysis.
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- cutting edge high power laser research with SCAPA, the highest power laser in a UK university
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high performance computer facilities
- industry standard cleanroom in the Institute of Photonics

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.

Assessment

The assessment includes written examinations, coursework, presentations and a talk, oral examination and report presenting and defending the research project.

Careers

The course gives you a thorough basis for a successful job in the photonics, optical and life sciences industries. It provides the basis to excel in more interesting and challenging posts.
The course can also be an entry route into an optics-related PhD programme.
Over the years, many of Strathclyde’s optics and photonics graduates have found successful employment at the large variety of local laser and optics companies as well as with national and international corporations.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Course Summary. Read more

Course Summary

Whether you intend to gain skills and expertise that will enable you to take up a position in a key industrial sector or embark on further postgraduate research, you will find that our MSc Photonic Technologies will give you the solid intellectual foundation and hands-on practical and technical skills that you need for a successful professional career in science, engineering and related photonics-based industry.

Working in our new, state-of-the-art cleanroom complex with access to our extensive range of optical laboratories, as part of the course you will work with leading local and national photonics companies, and see first-hand their products and emerging photonics technologies.

Our broad programme will give you the solid intellectual foundation and hands-on practical and technical skills that you need for a successful professional career in science, engineering and related photonics-based industry, or to embark on further postgraduate research.

Modules

Semester one

Compulsory modules: Lasers; Microfabrication; Photonics Laboratory and Study Skills

Optional modules: Light and Matter; Matlab/Numerical Methods; Silicon Photonics

Semester two

Compulsory modules: Solid State and Ultrafast Lasers; Photonic Materials; Plasmonics, Metamaterials and Nanophotonics

Optional modules: Nanoscience Technology and Advanced Materials; MEMS Sensors and Actuators

Semester three

Lab and cleanroom project; four-month, independent research project culminating in a dissertation

Visit our website for further information.



Read less

Show 10 15 30 per page



Cookie Policy    X