• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
Cardiff University Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Swansea University Featured Masters Courses
"ocean" AND "engineering"…×
0 miles

Masters Degrees (Ocean Engineering)

We have 64 Masters Degrees (Ocean Engineering)

  • "ocean" AND "engineering" ×
  • clear all
Showing 1 to 15 of 64
Order by 
The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering. Read more

The University of British Columbia Geological Engineering programme is a postgraduate course awarding a research-based Master of Applied Science or a taught Master of Engineering.

Students complete training and research projects according to their qualification pathway.

Program Overview

The Geological Engineering Program is intended for students interested in the application of earth sciences principles to engineering problems. While most geological engineering degree programs are based in the Department of Earth, Ocean and Atmospheric Sciences, students may also base their studies in allied Applied Science departments such as Civil or Mining Engineering. The program is highly interdisciplinary and draws upon courses, laboratories, and faculty members from the departments of Earth, Ocean and Atmospheric Sciences, Civil Engineering, Mining Engineering, Forestry, Geography, and others. Graduate students are often co-supervised by faculty members from different departments.

Geological engineering faculty members in the Department of Earth, Ocean and Atmospheric Sciences have research interests in the following general areas:

- landslides, debris flows, engineering geology, slope stability

- groundwater hydrology, groundwater contamination and remediation, reactive transport modeling, environmental geochemistry

- rock engineering, rock slopes, and tunneling

Other research areas include geotechnical engineering, environmental geology, engineering geology, economic geology, and applied geophysics. The specific fields of study may involve geomorphology and terrain analysis, groundwater hydrology, natural hazards, slope stability, petroleum and coal geology, coalbed methane, mineral prospecting and valuation, and other similar subjects. Students are encouraged to consult individual faculty members for information about current research areas.

Admission to graduate studies in geological engineering is open only to students with an undergraduate degree in engineering or, at the discretion of the program director, to students with sufficient engineering work experience.

Quick Facts

- Degree: Master of Applied Science (research-based), Master of Engineering (course-based, 1 year)

- Specialization: Geological Engineering

- Subject: Engineering

- Mode of delivery: On campus

- Faculty: Faculty of Science

Funding

The following postgraduate funding may be available to study Geological Engineering at the University of British Columbia.

Canadian postgraduate funding

Funding from FindAMasters:



Read less
Your programme of study. Subsea Engineering is one of the most challenging areas within the energy industry due to the locations involved in minerals extraction. Read more

Your programme of study

Subsea Engineering is one of the most challenging areas within the energy industry due to the locations involved in minerals extraction. It is a vital part of the oil and gas industry and though it is technically challenging there is a lot of new technology coming online to improve supply and monitoring in the ocean.

You are taught by industry informed academics from two main energy hubs internationally in Global Subsea Engineering. At Aberdeen you have the combined expertise of academics who have closely followed the oil and gas since growth in the 1970s at Aberdeen from which they have been informed by industry in the city. In Perth Australia you are taught by another major university at Curtin who also work closely with their energy hub both in the Pacific and Asian regions. This partnership gives you the best teaching and future opportunities possible within the Subsea sector in your respective region. You are awarded with a degree from both institutions giving you strength in the global employment market and the level of knowledge you will carry with you.

You learn in depth skills, application and theory within subsea environments to ensure sufficient knowledge about control, risk management and maintenance, flow assurance, reliability and integrity. You can begin the programme with Curtin by taking Semester 1 and the Project module in Perth and Semester 2 in Aberdeen as an alternative. Graduates from the programme have gone on to successful careers as CEO and MD within existing business and new business and as specialists in Subsea Engineering,. 

Find out more detail by visiting the programme web page

Courses listed for the programme

Semester 1 (University of Aberdeen)

  • Subsea Construction, Inspection and Maintenance
  • Subsea Control
  • Subsea Integrity
  • Offshore Structures and Subsea Systems

Semester 2 (Curtin University)

  • Phase Behaviour and Flow Assurance
  • Umbilical's and Risers
  • Safety, Reliability and Integrity Management
  • Flow and Pipelines

Research Project (University of Aberdeen)

Why Study at Aberdeen?

  • You spend a semester studying at Curtin University in Perth, Western Australia and graduate with a degree from both universities
  • Aberdeen is recognised as a global Centre of Excellence for Subsea. It is a founding member of the Global Subsea Universities Alliance
  • Aberdeen is a major global hub of the energy industry and Aberdeen is recognised as a global centre of excellence in Subsea development and operations

Where you study

  • University of Aberdeen
  • 12 Months
  • Full Time
  • September start

International Student Fees 2017/2018

Find out about fees:

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:

 



Read less
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Distinctive features

• Professional practice issues are integrated with the scientific and engineering foundation of the MSc through a series of short, workshop-style training courses covering practical aspects. These short courses are delivered by recognised professional practitioners in the industry.

• The course involves an innovative partnership between the Cardiff School of Engineering, the School of Earth, Ocean and Planetary Sciences and the Cardiff School of Biosciences.

• The MSc in Civil and Geoenvironmental Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The degree programme is available on a one year full-time basis or on a three year part-time basis. The full-time programme is delivered over two taught semesters followed by a research period and preparation of a dissertation. The part-time course is taught over three years. On successful completion of Part 1, the taught part of the course, you will proceed to the research project and dissertation stage.

This MSc is a partnership between the School of Engineering, the School of Earth, Ocean and Planetary Science and the School of Biosciences, and is administered by the School of Engineering.

For a list of the modules taught on the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc

For a list of the modules taught on the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc-part-time

Teaching

Part 1 of your course involves taught classes such as lectures, laboratory sessions and tutorials. You will be taught by leading international researchers in the fields of civil and geoenvironmental engineering.

A feature of the MSc in Civil and Geoenvironmental Engineering is the series of short, workshop style training courses covering practical applications, integrating professional practice issues with the scientific and engineering foundation of the course. These workshops are delivered by recognised professional practitioners in the industry.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Geoenvironmental Engineering is excellent, with the majority of graduates joining engineering consultants. A small number of graduates each year go on to further study, typically a PhD.

Substantial industrial involvement with the design and delivery of the course ensures the continuing relevance of the MSc as preparation for professional employment work in this area.

Read less
The Faculty of Engineering runs a multi-disciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy. Read more

Why this course?

The Faculty of Engineering runs a multi-disciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy.

This flexible programme combines study in specialist, advanced engineering technologies underpinned with training in sustainability. The programme has been developed with direct industrial involvement to provide you with a solid understanding of modern, sustainable engineering. As well as gaining an understanding of how sustainable engineering applies to offshore renewable energy, this programme will also provide you with key transferable skills to aid your employability.

The course is designed for experienced or newly qualified engineers in:
- Naval Architecture
- Marine Engineering
- Mechanical Engineering
- Civil Engineering
- Electrical Engineering or related disciplines

The Department of Naval Architecture, Ocean & Marine Engineering, a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainableengineeringoffshorerenewableenergy/

You’ll study

Studying at least three generic classes will meet the key requirements to attain Chartered Engineer status.

You must take three specialist classes if you are studying for the Postgraduate Certificate and up to five if you are studying for a Postgraduate Diploma or MSc.

Successful completion of six classes leads to the award of a Postgraduate Certificate.

- Group project
You’ll work with a group of students from different pathways of the Sustainable Engineering programme. You’ll produce sustainable solutions to real-life industry problems. This project will include site visits, field trips and progress reports to industry partners.
Successful completion of eight modules and the group project leads to the award of a Postgraduate Diploma.

- Individual project
MSc students will study a selected topic in depth and submit a thesis.
Successful completion of eight classes, the group project and an individual project leads to the award of an MSc.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

Student competitions

Naval Architecture, Ocean & Marine Engineering supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years our students have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. The first semester is usually from the beginning of October and the second semester starts at the end of January.
Some of the second semester subjects are taught over eight weeks so that you can devote as much time as possible to your individual project work.
Each year about 15 experts from the industry give talks and seminars on wide-ranging topics. Industrial visits are made to a variety of companies.
You’re required to attend an induction prior to the start of the course.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination

Careers

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
- Graduate Design Engineer
- Project Engineer
- Renewable Energy Consultant
- Thermal Performance Engineer

Employers include:
- Arup
- Eaton
- Esteyco Energua
- Granite Services International
- Moorfield International
- Mott Macdonald

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Offshore engineering is a rapidly developing discipline. In addition to its traditional relevance to the oil & gas industry, it is expanding to embrace the novel engineering challenges presented by the offshore renewable energy industry. Read more

Offshore engineering is a rapidly developing discipline. In addition to its traditional relevance to the oil & gas industry, it is expanding to embrace the novel engineering challenges presented by the offshore renewable energy industry.

Who is it for?

This course is suitable for engineering, maths or science graduates who wish to specialise in Offshore Engineering. It develops professional engineers and scientists with the multidisciplinary skills and ability to analyse current and future offshore energy engineering problems.

Cranfield’s MSc in Offshore Engineering is able to provide the new skills needed across this fast developing sector, together with the fundamental engineering understanding necessary, whatever the application. Exciting new disciplines taught in this MSc include advanced operation and maintenance of offshore assets; Health, Safety, Security and Environment; and Risk and Reliability. Students applying for this MSc will be able to choose between two routes: one focusing on detailed engineering aspects, and the other focusing on offshore asset management. Graduates with an MSc in Offshore Engineering will be able to work in a range of different industries including offshore renewables, oil & gas, aquaculture systems and beyond.

Why this course?

Providing a stable, secure and financially viable energy supply is a fundamental issue impacting our homes and workplaces. Cranfield’s expertise relates to all the potential solutions; from our ongoing relationship with oil and gas, to our developing reliance on renewable energy in the world around us.

Key advantages:

  • Projects with industry: Through our group and individual projects our students have regular contact with potential employers.
  • Learning from the best academics: We attract top-quality staff from across the world, many of whom are world-leading in their area of expertise. The diverse mix of backgrounds and experiences creates a rich teaching and research environment.
  • Outstanding facilities: We have exceptional facilities, many of which are unique in the university sector. Our impressive on-site pilot-scale facilities include gas turbines and high-pressure combustion rigs, a structural integrity laboratory and an ocean systems laboratory.
  • Research-informed teaching: We’re actively researching offshore renewables, oil and gas engineering, the production and the clean use of fossil fuels.
  • Networking opportunities: Our considerable network of contacts gives you the opportunity to build useful connections with industry.
  • Industry relevant courses: We design our courses with employers to combine high-calibre teaching with practical work experience, giving you an unparalleled competitive edge. The relevance and appropriateness of the MSc content is reviewed by an Industrial Advisory Panel; a group of key figures in relevant industries (i.e. Shell, Society of Underwater Technology, ABS).

Course details

The taught programme for the Offshore Engineering masters is generally delivered from October to February and is comprised of eight modules.

Students on the part-time programme will complete all of the modules based on a flexible schedule that will be agreed with the course director.

Group project

The group project is an applied, multidisciplinary, team-based activity. Often solving real-world, industry-based problems, students are provided with the opportunity to take responsibility for a consultancy-type project while working under academic supervision. Success is dependent on the integration of various activities and working within agreed objectives, deadlines and budgets. Transferable skills such as team work, self-reflection and clear communication are also developed.

Individual project

The individual project is the chance for students to focus on an area of particular interest to them and their future career. Students select the individual project in consultation with the Thesis Co-ordinator and their Course Director. These projects provide students with the opportunity to demonstrate their ability to carry out independent research; think and work in an original way; contribute to knowledge; and overcome genuine problems in the offshore industry. Many of the projects are supported by external organisations.

Assessment

  • Taught modules 40%, group project 20% (or dissertation for part-time students), and individual project 40%.

Funding Opportunities

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.

Entry requirements

A first or second class UK Honours degree (or equivalent) in a related science or engineering discipline is required. Other recognised professional qualifications, or several years' relevant industrial experience, may be accepted as equivalent, subject to approval by the Course Director.

Applicants who do not fulfil the standard entry requirements can apply for the Pre-Masters programme, successful completion of which will qualify them for entry to this course as a second year of study.

English Language

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification.

Your career

Successful students develop diverse and rewarding careers in the extremely exciting and challenging fields of offshore oil and gas exploration, underwater engineering, pipeline engineering, risk management in offshore and marine operations, and the emerging offshore renewable energy industry. The international nature of such activities means that career opportunities are not restricted to the domestic market; Cranfield graduates develop careers around the world.



Read less
The Masters in Subsea Engineering is aimed at engineers who already have some relevant offshore oil and gas experience and high calibre graduates who wish to enhance their employability in the subsea industry. Read more
The Masters in Subsea Engineering is aimed at engineers who already have some relevant offshore oil and gas experience and high calibre graduates who wish to enhance their employability in the subsea industry.

A broad range of topics are covered including well engineering and topside processing facilities as well as the core areas of subsea engineering including: subsea systems, subsea control, pipelines & risers, corrosion and subsea reliability. Current and emerging technologies and their design limitations as applied to deepwater, long tie-back and HP/HT wells are also covered.

This subsea engineering course has been developed and is supported by experienced oil and gas industry professionals using current standards and fundamental engineering practices.

Visit the website https://www.rgu.ac.uk/engineering/engineering-study-options/postgraduate/subsea-engineering

Modules

Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

•The Oceans, Operability and Humans in the Ocean
•Wells
•Facilities
•Subsea Systems

Exit Award: PG Cert Subsea Engineering

•Subsea Reliability and Intervention
•Subsea Pipeline and Riser Design
•Materials and Corrosion Science
•Control and Telemetry Systems

Exit Award: PG Dip Subsea Engineering

•Individual Project Report

Award: MSc Subsea Engineering

Placements and accreditation

Course accredited by the Energy Institute

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. Read more
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. This course allows you to tailor your study towards employment in a specific sector including oceanographic and environmental research and consultancy, marine renewable energy, marine conservation management, offshore exploration and hydrographic surveying.

You will equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year - study the exploration and sustainable management of marine resources, construction and environmental support. You’ll conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.

Key features

-Gain a sound knowledge base across all areas of ocean science with options to develop specialist skills in marine conservation, oceanography or hydrography.
-Specialise in subjects that most interest you including coastal dynamics, seafloor mapping, physical oceanography, meteorology, remote sensing, offshore exploration, biological oceanography, marine pollution and conservation.
-Equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year (with potential high-level professional FIG/IHO/ICA accreditation) - study the exploration and sustainable management of marine resources, construction and environmental support.
-Conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.
-Develop your range of practical skills with our own fully-equipped fleet of boats, a new £4.65 million Marine Station used as a base for fieldwork afloat, industry standard oceanographic and surveying equipment and a type-approved ship simulator.
-Option to take the industry-recognised professional diving qualification (HSE Professional SCUBA) alongside your degree, and an optional scientific diving module to provide training and qualification for diving-based research projects and employment (limited places and additional costs apply).
-Experience an overseas field course that's aimed at integrating ocean science knowledge and understanding across the different sub-disciplines.

Course details

Year 1
Your first year, shared across the Marine Science Undergraduate Scheme, introduces the full range of topics within the degree and develops your underpinning scientific knowledge and practical skills. You’ll develop your understanding of the Earth’s oceans and the key physical, chemical, biological processes that occur in these systems. You’ll build practical skills and enhance your ability to analyse, present and interpret scientific data through field-based activities.

Core modules
-OS101 Introduction to Ocean Science
-OS103 Biology and Hydrography of the Ocean
-OS105 Mapping the Marine Environment
-OS102 Physical and Chemical Processes of the Ocean
-OS104 Measuring the Marine Environment

Optional modules
-GEES1002PP Climate Change and Energy
-GEES1003PP Sustainable Futures
-GOV1000PP One Planet? Society and Sustainability
-ENGL405PP Making Waves: Representing the Sea, Then and Now
-GEES1001PP Natural Hazards
-OS106PP Our Ocean Planet
-OS107PP Space Exploration

Year 2
In your second year, the emphasis will be on understanding core aspects of ocean science, including topics in ocean exploration, oceanography and marine conservation, and enhancing your practical and research skills. You’ll participate in a field work module based at our Marine Station, learning how to use industry standard instrumentation and software for measuring a variety of parameters in the coastal zone and you’ll develop a proposal for your final year project. There's also opportunity to apply scientific diving skills gained alongside the degree for suitably qualified individuals.

Core modules
-OS201 Global Ocean Processes
-OS202 Monitoring the Marine Environment
-OS206 Researching the Marine Environment

Optional modules
-OS208 Meteorology
-OS209 Marine Remote Sensing
-OS207 Scientific Diving
-OS203 Seafloor Mapping
-OS204 Waves, Tides and Coastal Dynamics
-OS205 Managing Human Impacts in the Marine Environment

Year 3
You’ll focus on topics with special relevance to your future plans including options across the specialisms offered through the related BSc Marine Science courses. A residential field course allows you to develop a group-based in-situ investigative study. A large part of the year is spent completing a research project, carrying out an in-depth investigation under the guidance of a member of academic staff.

Optional modules
-BPIE338 Ocean Science Placement

Year 4
Pathway options in the final year provide both an opportunity for you to pursue your choice of topic in greater depth and an opportunity to increase the breadth of your study through modules from the applied contemporary offerings of our Marine Science MSc programmes: Applied Marine Science, Marine Renewable Energy and Hydrography. You’ll conduct a research or consultancy-type project closely linked to one of our internationally-leading marine science research groups or industrial partners, providing an experience of working with established marine scientists.

Optional modules
-MAR517 Coastal Erosion and Protection
-MATH523 Modelling Coastal Processes
-MAR520 Hydrography
-MAR522 Survey Project Management
-MAR515 Management of Coastal Environments
-MAR518 Remote Sensing and GIS
-MAR521 Acoustic and Oceanographic Surveying
-MAR507 Economics of the Marine Environment
-MAR523 Digital Mapping
-MAR516 Contemporary Issues in Marine Science
-MAR519 Modelling Marine Processes

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering. Marine engineering involves the systems and equipment onboard marine vehicles including. Read more

Why this course?

This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering.

Marine engineering involves the systems and equipment onboard marine vehicles including:
- design
- construction
- installation
- support

There’s a particular emphasis on propulsion and control systems.

High efficiency and low environmental impact of marine engines are the key factors in assuring economical operation and environmental protection in maritime transportation. This has important implications for both economic success and environmental impact.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/marineengineering/

You’ll study

The programme consists of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It'll give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by a survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of the aspects learned from other modules within a specific topic. This'll be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are, or are to be (2014), recognised professionally by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years, students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in the form of formal lectures supported with tutorials and laboratory experiments.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is exam assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70% exam marks.

Careers

As a graduate you’ll be prepared for a wide range of challenging and rewarding careers in the marine and related industries.

These include:
- marine engineering machinery & system design
- surveying
- technical superintendence
- project management
- safety management
- support services
- classification societies
- consultancy services

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The future exploration and development of Oil and Gas will increasingly move towards offshore drilling and production. This will involve drilling and production rigs, vessels and infrastructure. Read more
The future exploration and development of Oil and Gas will increasingly move towards offshore drilling and production. This will involve drilling and production rigs, vessels and infrastructure.

Offshore Oil and Gas Engineering activity is increasing all around the world and graduates from this course will have a particular focus on operations in the ocean, processing, pipelines, subsea systems, materials and corrosion. This course is particularly designed for those wishing to move into the Oil and Gas Industry who may not have previous detailed oil and gas knowledge or industry experience.

Another related complementary course is our MSc Oil and Gas Engineering which has more focus in stage 2 on well completions, project management, risk and the environment. An advantage of these two courses is that they are designed to have the same first four stage 1 modules introducing the Oil and Gas industry so that students, having gained more understanding of the industry, can compare the courses and swap between courses during stage 1, as they decide which course they would prefer to follow in stage 2. This flexible approach offers students the advantage of more choice during their study.

Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

Visit the website https://www.rgu.ac.uk/engineering/study-options/postgraduate/offshore-oil-and-gas-engineering-masters

Stage 1

• Subsurface
• Wells
• Facilities
• Business Essentials

Exit award: PgCert Oil and Gas Engineering

Stage 2

• Materials and Corrosion
• Processing and Pipelines
• Oceans, Operability & Humans in the Ocean
• Subsea Systems

Exit award: PgDip Offshore Oil and Gas Engineering

Stage 3

• Individual Project Report

Award: MSc Offshore Oil and Gas Engineering

Placements and accreditations

This course is not yet accredited with any Institute. However, we will be seeking accreditation from the Energy Institute once a full cohort of students has completed the course.

Careers

This course provides the knowledge required for a range of professional careers within the offshore oil and gas industry.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques. Read more

Why this course?

As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques.

This course is for graduates in naval architecture, offshore engineering, mechanical engineering and related disciplines who want to gain advanced knowledge of subsea systems, designs and installation. This includes systems and equipment such as:
- pipelines
- wellheads
- drilling rigs
- riser & mooring systems

See the website https://www.strath.ac.uk/courses/postgraduatetaught/subseapipelineengineering/

You’ll study

Your course will be made up of three components:
- Instructional modules
- Group project
- Individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are and will be (2014) professionally accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

The department of Naval Architecture, Ocean and Marine Engineering (NAOME) supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

You’re required to attend an induction prior to the start of the course.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.
Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30 to 40% course work and 60 to 70% examination.

Careers

Offshore hydrocarbon activities are moving into area of water depths exceeding 2000m. Subsea drilling, production and control systems are becoming much more important. Therefore, subsea engineers are in great demand world-wide.

- Where are they now?
100% of graduates are in work or further study**

**Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The accredited MSc Engineering in the Coastal Environment course provides training in coastal engineering for civil engineers and physical scientists. Read more

The accredited MSc Engineering in the Coastal Environment course provides training in coastal engineering for civil engineers and physical scientists. This unique programme is taught jointly between Engineering and the Environment and Ocean and Earth Science at the University of Southampton, with extensive input from industry.

Introducing your course

The coastal zone is widely recognised as important at national, European and global levels. Skilled graduates who can understand environmental coastal issues and apply this to engineering problems are in high demand. This course has been designed with your future career in mind and will enable you to acquire core knowledge of environmental coastal engineering; develop key skills such as the use of numerical models, data analysis, environmental impact assessment, and design of coastal structures; and apply this knowledge to address real world problems in the coastal zone.

Overview

Why Southampton?

• A unique and effective interdisciplinary educational environment with world leading research expertise and access to cutting-edge facilities.

• Strong links to industry and practicing coastal engineers, such as HR Wallingford, Associated British Ports and Channel Coastal Observatory.

• Research projects undertaken in collaboration with (and often based at) leading international coastal consultancies or appropriate government agencies, including AECOM, CH2M, Royal Haskoning, Eastern Solent Coastal Partnership, and the Environment Agency.

• Draws on world-class research expertise from both Engineering and the Environment and the Environment and Ocean and Earth Science, which is based at the National Oceanography Centre Southampton (NOCS).

• More than 98% of graduates successfully move into careers or PhD research in the field within six months.

Our MSc is closely linked with the Southampton Marine and Maritime Institute (SMMI) which develops applied coastal research across the University, nationally and internationally. You will also benefit from our partnership with industry and government.

View the programme specification document for this course



Read less
The accredited MSc Engineering in the Coastal Environment course provides training in coastal engineering for civil engineers and physical scientists. Read more

The accredited MSc Engineering in the Coastal Environment course provides training in coastal engineering for civil engineers and physical scientists. This unique programme is taught jointly between Engineering and the Environment and Ocean and Earth Science at the University of Southampton, with extensive input from industry.

Introducing your course

The coastal zone is widely recognised as important at national, European and global levels. Skilled graduates who can understand environmental coastal issues and apply this to engineering problems are in high demand. This course has been designed with your future career in mind and will enable you to acquire core knowledge of environmental coastal engineering; develop key skills such as the use of numerical models, data analysis, environmental impact assessment, and design of coastal structures; and apply this knowledge to address real world problems in the coastal zone.

Overview

Why Southampton?

• A unique and effective interdisciplinary educational environment with world leading research expertise and access to cutting-edge facilities.

• Strong links to industry and practicing coastal engineers, such as HR Wallingford, Associated British Ports and Channel Coastal Observatory.

• Research projects undertaken in collaboration with (and often based at) leading international coastal consultancies or appropriate government agencies, including AECOM, CH2M, Royal Haskoning, Eastern Solent Coastal Partnership, and the Environment Agency.

• Draws on world-class research expertise from both Engineering and the Environment and the Environment and Ocean and Earth Science, which is based at the National Oceanography Centre Southampton (NOCS).

• More than 98% of graduates successfully move into careers or PhD research in the field within six months.

Our MSc is closely linked with the Southampton Marine and Maritime Institute (SMMI) which develops applied coastal research across the University, nationally and internationally. You will also benefit from our partnership with industry and government.

View the programme specification document for this course



Read less
This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/offshorefloatingsystems/

You’ll study

The programme consists of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- towing/wave tank exclusively for teaching purposes
- marine engine laboratory
- hydrogen fuel cell laboratory
- cutting-edge computer facilities
- industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.
Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/shipoffshorestructures/

You'll study

Your course is made up of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are and to be (2014) professionally by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:
- Naval Architect
- Marine Engineer
- Graduate Engineer
- Marine Surveyor
- Offshore Renewables Engineer
- Project Engineer

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less

Show 10 15 30 per page



Cookie Policy    X