• New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cass Business School Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Northumbria University Featured Masters Courses
"navigation"×
0 miles

Masters Degrees (Navigation)

  • "navigation" ×
  • clear all
Showing 1 to 15 of 82
Order by 
This qualification is available for industry professionals who have a postgraduate award already but wish to upgrade this to a full Masters. Read more
This qualification is available for industry professionals who have a postgraduate award already but wish to upgrade this to a full Masters. This can be achieved simply by the completion of:

A short period of distance learning study in Applied Research Methods
A workplace focussed research project in an appropriate area

By studying your distance e-learning degree with us, when you graduate you will receive a full Master’s award from Plymouth University a world leader in Marine and Maritime related subjects. This is exactly the same as if you had attended a full time on-campus degree course.

We have a number of different start dates throughout the year to suit individual circumstances.

Read less
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. Read more
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems.

This specialist option of the MSc Aerospace Vehicle Design (http://www.cranfield.ac.uk/courses/taught/aerospace-vehicle-design) provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

- BAE Systems
- Airbus
- Royal Air Force
- Department for Business, Enterprise and Regulatory Reform
- Royal Australian Air Force
- Messier-Dowty
- Department of National Defence and the Canadian Armed Forces.

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project

Accreditation

Royal Aeronautical Society (RAeS) - http://aerosociety.com/
Institution of Mechanical Engineers (IMechE) - http://www.imeche.org/

Course details

This option is comprised of 14 compulsory modules and a minimum of 60 hours of optional modules, selected from a list of 10 options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce engineering drawings and detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

- Blended Wing Body Aircraft - https://www.youtube.com/watch?v=UfD0CIAscOI
- A9 Dragonfly Box Wing Aircraft - https://www.youtube.com/watch?v=C4LQzXBJInw
- MRT7 Tanker Aircraft - https://www.youtube.com/watch?v=bNfQM2ELXvg
- A-13 Voyager - https://www.youtube.com/watch?v=LS6Wq7lpmDw
- SL-12 Vimana - https://www.youtube.com/watch?v=HjEEazsVtSc

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc

Read less
Unique in Europe, and one of only a few in the world, this internationally respected MSc programme offers you the chance to develop a holistic approach to outdoor education with a specific emphasis on environmental and sustainability education. Read more

Programme description

Unique in Europe, and one of only a few in the world, this internationally respected MSc programme offers you the chance to develop a holistic approach to outdoor education with a specific emphasis on environmental and sustainability education. This programme will prepare you for a career in which you will facilitate learning that focuses on themes of environmental, sustainability, and ecological education.

There are three possible exit levels: Certificate (60 credits), Diploma (120 credits), or Masters (180 credits). The Certificate programme provides a broad theoretical coverage of the field of study. The Diploma extends this with further academic study and a Professional Development Programme (involving field courses, such as a canoe descent of the River Spey, introduction to group leadership and navigation techniques, a teaching placement/practicum, and a group project), which provides a broad base for a professional career in outdoor environmental and sustainability education. The Masters extends this further still with a dissertation and associated research methods course.

The emphasis — whether Certificate, Diploma, or Masters — is on developing the knowledge, understanding, and judgement necessary to facilitate meaningful learning in, for, and through the outdoors. You will consider a range of connected subject areas as well as the particular demands for teaching these in a variety of settings, from schools, residential centres, and Ranger sites, to charitable/not-for-profit organisations.

You will develop your intellectual skills through critically assessing theoretical, professional, and academic issues while honing transferable skills such as environmental literacy and oral communication. You will also expand your understanding and personal practice of educating outdoors through a range of professional development activities.

Courses take place at our Edinburgh campus and the University’s two residential outdoor centres in the highlands of Scotland, from where you will journey by boat or on foot to live and learn in the outdoors.

This programme is affiliated with the University's Global Environment & Society Academy.

Programme structure

Learning will take the form of lectures, seminars, group discussions, student presentations, field courses, self-study, and work experience/practicum.

For the Postgraduate Certificate you will complete the following courses:

Outdoor Environmental Education: Concept-based Practice (20 credits)
Interpreting the Landscape (20 credits)
Ecology and Field Studies (20 credits)

For the Postgraduate Diploma, in addition to the above courses, you will complete:

Education for Environmental Citizenship
Introduction to Learning for Sustainability
Experiential Education (10 credits)
Sources of Knowledge (10 credits)

For the Masters, in addition to the above courses, you will complete:

Research Methods – Planning Research (10 credits)
Dissertation (50 credits)

For the Masters and Diploma you will complete a four-week professional placement/practicum, a five-day canoe descent of the River Spey, a three-day land-based group leadership and navigation course, a two-day specialist outdoor first aid course, a group designed, week-long ‘Environmental Education in Practice’ practicum project, and the opportunity to opt-in to other professional development courses (eg. sea kayaking) from the MSc Outdoor Education programme at an additional cost.

The Masters and Diploma programmes can be taken on a full-time or part-time basis. The Certificate is by nature a part-time programme of study.

Career opportunities

This industry-recognised qualification will allow you to take on roles in outdoor environmental and sustainability education in a variety of settings from schools, to community education, private organisations, or charitable/not-for-profit organisations.

Completion of the MSc degree will enable you to continue onto advanced research, and a possible academic career. However, you will also develop highly transferable skills, such as communication and project management, which can be applied in any field.

Work placement/internships opportunities

To facilitate and broaden direct experience of teaching outdoors, course members undertake a 4-week professional placement. The placement occurs at a stage in the programme when students are able to make a useful contribution to the agencies they choose to work with and are able to relate their experience to theoretical material covered in class. Placement agencies range from those focusing on environmental education, to inner city projects, special needs organisations, management training, outdoor education centres, and many more.

Read less
Today’s societies require more and more geographical information. Think of physical planning, analyzing the spread of epidemic diseases, risk management, navigation systems, location based services, movement analysis, augmented reality, increasing use of maps and volunteered geographical information. Read more

MSc Geographical Information Management and Applications (GIMA)

Today’s societies require more and more geographical information. Think of physical planning, analyzing the spread of epidemic diseases, risk management, navigation systems, location based services, movement analysis, augmented reality, increasing use of maps and volunteered geographical information.

Our GIMA course offers a comprehensive MSc programme, focusing on the management and application of geographical information from a scientific perspective. Two additional aspects contribute to the uniqueness of the GIMA programme: GIMA is a joint venture involving four renowned Dutch universities: Utrecht, Delft, Twente and Wageningen; and GIMA is a blended learning programme, enabling you to do most of your studying from the place at which you study best (home or office). Only the first and the last week of each module are classroom-based.

Programme Summary

The MSc Geographical Information Management and Applications (GIMA) offers a challenging programme in the domain of Geographical Information Sciences (GIS). It will help you to develop your knowledge and skills in the field of geo-information management and geo-information applications. As a future geo-information specialist, you have to address a wide number of fundamental issues in today’s society such as: Why is geographical information needed and how can it be used to solve problems in the broadest variety of application fields (in flood risk management, spatial planning, location-based services, orientation and navigation, location of sales outlets, spatial aspects of crime, dealing with natural hazards and humanitarian disasters)? How can proof-of-concept geo-information and geo-information technology based solutions for societal problems be designed and implemented and how can the quality and usabiliy be evaluated? What are appropriate concepts, methods and techniques for the management of geo-information and geo-information processes, which may involve multidisciplinary teamwork?
The GIMA programme deals with all of these issues and, teaches, among other things, how to apply and manage geo-information in organisations and projects by critically understanding and using state-of-the-art geo-information theories and technology.

Features of the programme

This Master programme is offered by four renowned universities in the Netherlands: Utrecht University, Delft University of Technology, University of Twente and Wageningen University. As a student, you have access to the large pool of experts from all four universities. You can choose between a full-time (two years) or parttime (four years) programme. Exemptions are possible for students who have relevant working experience, making it possible to complete a part-time programme in approximately three years. GIMA is a blended learning programme. It consists of distance learning (85%) with contact weeks at the four universities (15%).

Your future career

Graduates have excellent career prospects. The demand for managers and application specialists in geo-information in the professional market is constantly increasing. Our alumni are employed in both the private and public sector (by companies, consultancies, government organizations and research institutes) as managers, specialists and researchers. APPLICATION AND ADMISSION This programme is registered in CROHO as MSc Geographical Sciences at Utrecht University, code 60732. Application for GIMA proceeds through Utrecht University. The application deadline is 1 June 2015 for the programme that starts in September 2015. All information about application and admission requirements can be found at the GIMA website http://www.msc-gima.nl.

Alumna Gineke Snoeren.
Business consultant at ESRI Nederland. “GIS offers many opportunities and will become more important in future. That is why I decided to enrol in this programme. The course has 2 advantages. First, it does not focus solely on GIS techniques, but also at management. Second, the blended learning system is great because it combines contact teaching with distance learning. You can study in your own time with less contact hours but still contact with teachers and students at set times. Not only Dutch and foreign students take the course, but also people who are already employed in the field of GIS. You learn a lot from each other”.

Related programmes:
MSc Geo-information Science.

Read less
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
The programme provides you with an understanding of contemporary information and records management issues. It pays special attention to the management of digital records and electronic resources, and how to manage these alongside analogue resources. Read more
The programme provides you with an understanding of contemporary information and records management issues. It pays special attention to the management of digital records and electronic resources, and how to manage these alongside analogue resources.

Why this programme

◾The programme is designed for those with a vocational interest in records management, archives and digital curation. It will prepare you to work in these fields, and give you a thorough grounding for continuing with research.
◾You will complete a two-week work placement in an archive, records management or digital repository.
◾As a graduate you will be eligible to be accredited by both the Archives & Records Association and CILIP (Chartered Institute of Library and Information Professionals), providing valuable professional recognition in both the archive and library fields.

Programme structure

You will develop skills in the core competencies of archives, records, and information management, creating and managing digital records, digital curation and preservation issues, archival theory, user needs, and description,
cataloguing, and navigation.

The programme consists of six courses spread over two semesters. You will take courses in:
◾Archives and records information management
◾Records and evidence
◾Description, cataloguing and navigation
◾Management, curation and preservation of digital materials.

Optional courses include:
◾2D digitisation
◾Law for cultural heritage institutions
◾Archives and records theory
◾Records and the transition to the digital
◾Palaeography
◾Phenomenology.

To graduate with the MSc you will also need to complete a course in research methods and professional studies, and produce a dissertation.

Career prospects

As a graduate, you will be well placed for a career as an archivist, records manager or digital curator within a variety of public and private organisations.

Positions held by recent graduates include Assistant Archivist and Records Manager.

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

Degree information

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Systems Engineering
-Robotic Vision and Navigation

Optional modules
-Acquisition and Processing of 3D Geometry
-Affective Computing and Human-Robot Interaction
-Artificial Intelligence and Neural Computing
-Image Processing
-Inverse Problems in Imaging
-Machine Vision
-Mathematical Methods, Algorithmics and Implementations
-Probabilistic and Unsupervised Learning
-Research Methods and Reading
-Supervised Learning
-Other selected modules available within UCL Computer Science
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
UNB’s physics graduate program is a force to be reckoned with in the academic world. This nationally-accredited program has earned an outstanding reputation for its accomplishments in research. Read more
UNB’s physics graduate program is a force to be reckoned with in the academic world. This nationally-accredited program has earned an outstanding reputation for its accomplishments in research. Students acquire an advanced physics understanding while developing an original research project in their preferred field of study.

Our award-winning faculty have magnetic personalities and the campus itself radiates a positive energy, full of students who are on the same wavelength. Graduates have lots of potential and go on to work in universities, government institutions, industry, schools, financial organizations and more. We typically have around 20-25 graduate students, with one-third of them MSc and the rest PhD students.

Our faculty also have collaborations within industries, including: NavCanada, SIL, Saskatoon, NovAtel, Green Imaging Technologies, Saudi Aramco, ConocoPhillips, Septentrio Navigation, Trimble Navigation, Raytheon, Rockwell-Collins, Pfizer, Suncor, Eni, Italy, COMDEV, Light Machinery, and KEO Scientific.

Read less
Measuring, describing and depicting the seabed is crucial to the maintenance and development of ports, safe navigation, offshore renewables and the continuing search for hydrocarbons. Read more
Measuring, describing and depicting the seabed is crucial to the maintenance and development of ports, safe navigation, offshore renewables and the continuing search for hydrocarbons. Yet there is an international shortage of hydrographic surveyors. Seize this opportunity to gain a thorough knowledge of the science and technology of hydrography, experiencing the latest methods and equipment involved in exploring and managing the seabed whilst preparing for a career in this growth area.

Key features

-Graduate from a course that crosses different disciplines and is accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institute of Civil Engineering Surveyors (CICES).
-Study with the ocean right on your doorstep in our waterfront city. Benefit from the practical research opportunities and links to international marine businesses this brings, as well as access to the University’s specialist Marine Institute.
-Study aboard the University’s own survey vessel the Falcon Spirit, and develop hands-on experience in current survey techniques and different methods of data collection and analysis.
-Prepare yourself on a commercially focused programme that’s been developed in response to industry requirements and an expressed commercial need. Progress to a career in hydrographic research and development, port and offshore/ nearshore surveying or environmental support.
-Equip yourself with the latest knowledge relating to hydrography in the fields of marine geophysics, oceanography, land survey techniques, geodesy, bathymetric surveying, tides, acoustic theory and marine resource management. Learn to use equipment including GNSS, SBES, MBES, ADCP and sidescan sonar.
-Engage in debates around the wider aspects of hydrography and the implications for data capture, data management, processing and information systems.
-Attend lectures and receive support from our specialist staff, as well as access to a series of industrial speakers and demonstrations of the latest technologies.
-Gain the knowledge and skills you need to design, develop and implement a final research project at postgraduate level.
-Benefit from our good relationship with industry – a number of companies visit each year. There is excellent recruitment from the programme to the marine sector with global opportunities and the potential to travel in conjunction with your employment.

Course details

Period 1 — an intensive 15 week programme of classroom learning and field activities prepare you for the technical aspects of surveying and the research required in master’s study. 70 per cent lectures/seminars and 30 per cent practical, either within the laboratory or afloat. Assessment is continual or by coursework.

Period 2 — includes specialisms in advanced studies with a combination of the digital mapping and survey project management modules, designed to prepare students for practical roles and management decisions when completing hydrographic tasks on behalf of future employers. Modules are selected based on industrial expectations and potential career requirements. 80 per cent lectures/seminars, 20 per cent practical. Assessment is 50/50 coursework and formal examination for core modules, continuous for the one optional module.

Period 3 — undertake a self-managed final dissertation, supervised by an assigned academic. May comprise a desk study, laboratory experimentation, field observations, data acquisitions and processing.

Core modules
-MAR513 Research Skills and Methods
-MAR520 Hydrography
-MAR521 Acoustic and Oceanographic Surveying
-MAR524 MSc Dissertation
-MAR522 Survey Project Management
-MAR523 Digital Mapping

Optional modules
-MAR517 Coastal Erosion and Protection
-MAR529 Marine Planning
-MAR530 Managing Marine Ecosystems
-MAR507 Economics of the Marine Environment
-MAR518 Remote Sensing and GIS

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Our MSc Animal Behaviour is unusual in that it is offered within a Psychology department. Read more
Our MSc Animal Behaviour is unusual in that it is offered within a Psychology department. This benefits you by providing a strong background in a broad cross-section of research methods used by researchers studying human and animal behaviour, a strong training in statistical methods and multidisciplinary study environment. You will learn how to formulate and test relevant research questions, and critically evaluate the research carried out by others in the field.

The programme will give you an insight into the varied means of performing animal behaviour research in a wide array of locations with wild and (semi-)captive animals – in the wild, laboratory, zoo or under human management. As part of the taught component you will be exposed to lectures and seminar discussions, research talks and discussions with speakers, boost and consolidate your knowledge and skills in statistical data analysis, participate in a one-week residential field course (during the Easter break) and in research skill training sessions. During the course you will continuously develop your abilities in critical analysis of the literature and of scientific evidence, project development, communication and scientific writing.

You will be part of the lively, internationally-recognised Centre for Research in Animal Behaviour (http://psychology.exeter.ac.uk/research/centres/crab/) and will have the opportunity to work alongside our experienced researchers on a research apprenticeship which is a central component of the course. The apprenticeship enables you to develop your research skills further and write up the research in the form of a journal article for potential publication. Apprenticeships can also be undertaken under the supervision of researchers at various institutions with whom we have developed long-term relationships.

On successful completion of the MSc you will have the skills to pursue a PhD, work as a research assistant and project manager or follow a career working in zoos, research centres, nature reserves, wildlife and other animal-related offices, education, scientific media and the expanding field of eco-tourism.

Research Apprenticeship

A distinctive feature of all our taught Masters programmes is the Research Apprenticeship. The Apprenticeship enables you to develop your research skills by working alongside experienced researchers or practitioners. You will also gain experience of writing up your research in the form of a dissertation.

Many students undertake their apprenticeship with researchers in the Centre for Research in Animal Behaviour in our School, both in the labs and in the field around the campus, Devon and abroad. Students work on a wide range of topics and with different animals, for example:
• Social behaviour, animal welfare and enrichment, zoo research, animal cognition, navigation, sensory ecology, behavioural ecology, ecotoxicology
• Fish (guppies, sticklebacks, killifish), mammals (primates, squirrels, whales, donkeys, dogs, meerkats, coyotes), birds (pigeons, chickens, pheasants, magpies, flamingoes, wood and sea birds), invertebrates (crabs, honeybees, bumblebees, desert ants, wood ants)

Programme structure

The programme is made up of compulsory modules. Constituent modules may be updated, deleted or replaced as a consequence of the annual programme review of this programme.

Compulsory modules

The compulsory modules can include; Advanced Statistics; Behavioural Science Research Skills; Advances and Methods in Animal Behaviour; Research Apprenticeship; Current Research Issues in Animal Behaviour;

Read less
This course is designed to develop knowledge of the critical contribution that human factors/ergonomics plays in the design of products, jobs, workplaces and systems as well as in the wider context of organizations and society. Read more
This course is designed to develop knowledge of the critical contribution that human factors/ergonomics plays in the design of products, jobs, workplaces and systems as well as in the wider context of organizations and society. It also emphasizes the importance of a user-centred focus in the design of human interaction with advanced technologies and sociotechnical systems to ensure effectiveness and reliability as well as comfort, health and safety and satisfaction for the user, consumer or employee.

The consequences of neglecting human factors/ergonomics have been amply demonstrated over the past few years in major
reliability failures and accidents, unsuccessful introduction of technology, and labour relations problems.

Students will develop:
their learning in a world leading active research and teaching
environment
the ability to exercise original thought
the ability to communicate ideas effectively in written
reports, verbally and by the means of presentations to groups
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
their knowledge of fundamental human factors/ergonomics
principles
their ability to apply theory to world problems and issues
key skills that will prepare them for a career in human in
academia or industry

Previous projects have included:

Evaluation of a private eye display for maintenance tasks
Implementing ergonomics in engineering design
Sub-sea engineering supervision
Manual handling on construction sites
What makes a VE (Virtual Environment) usable?
Assembly ergonomics for automotive design engineers
Data visualisation and 3D displays
Situational awareness measurement in rail traffic control
Distance judgement in vehicle navigation systems
Importance of usability in product choice

This course is accredited as the educational qualification for Membership of The Institute for Ergonomics and Human Factors.

Read less
VIBOT is a two-year International Masters of Excellence in Vision and Robotics sponsored by the European Union under the Erasmus Mundus framework. Read more
VIBOT is a two-year International Masters of Excellence in Vision and Robotics sponsored by the European Union under the Erasmus Mundus framework. Built as collaboration between three leading universities in Europe (Heriot-Watt University in Scotland, the Universitat de Girona in Spain and the Université de Bourgogne in France), it is a truly international degree where students not only learn cutting edge science and engineering but are also exposed to different cultures. Over 50 countries have been represented on the Vibot programs since its inception in 2006.

This is a highly competitive programme aiming at attracting the best European and Overseas students to study robotics and computer vision. A number of very attractive grants (up to €42000) covering the University fees and a stipend for living and travel expenses are offered to the best students in the limit of the available grants (typically 16/year). On average, one in ten student applying is selected for a grant.

In recent years, the amount of digital image information to be stored, processed and distributed has grown dramatically. The generalisation of the use of digital images, in video surveillance, biomedical and e-health systems, and remote sensing, creates new, pressing challenges, and automated management tools are key to enable the organisation, mining and processing of these important knowledge resources. The key subject areas taught are computer vision, pattern recognition and robotics. Research in these areas is very dynamic and relevant to a wide range of sectors, such as the autonomotive industry, autonomous systems, medical imaging and e-health. The course is over two years, students spend the first semester in France, the second in Spain and the third in Scotland. The fourth semester is reserved for Masters thesis.

Career Prospects:
All of our graduates find work in industry or research very quickly and are sought after by research laboratories and leading blue chip companies alike. More and more of our graduates choose an industrial career.

Started in 2006, the VIBOT program has become the leading computer vision and robotics program in Europe. A majority of the VIBOT students have graduated with distinction and around 50% of them continue on to PhD studies.

Links with industry:
Strong links with industry have been established and companies now routinely welcome our students for their final year project. Recently, a 2007-2009 VIBOT student won the BAe Systems Chairman Bronze award for his contribution to autonomous navigation of terrestrial robots, demonstrating that our student are well prepared not only for high academic achievement but also for industry.

Our industrial partners have commented on our program:

“We have hosted VIBOT MSc project for the past 3 years and found them to be of a high calibre - in fact - we hired one of them. Their training seems to equip them well for in medical image analysis research, and what they don't know they quickly learn. The course works them hard - requiring a dissertation, short paper, poster and presentation of their work. This serves us well since it ensures they leave behind a good documentary record in addition to the software output. We look forward to working with VIBOT students in the future.

Ian Poole, PhD.
Scientific Fellow - Image Analysis
Toshiba Medical Visualization Systems Europe, Ltd Bonnington Bond”

“BAE Systems has found the ViBOT students to be of a high calibre and full of enthusiasm. They have all managed to fit into our teams quickly and have made valuable technical contributions. We have hired one student following his placement. We find that, through the students, we can sometimes attempt innovative tasks and try new approaches that are off the critical path of our projects. This can help give us early initial experience of emerging methods or potential applications. The ViBOT students are usually from overseas which has the bonus of adding to the diversity of our student placements, who are typically coming from the UK.

Richard Brimble
Principal Scientist,
BAE SYSTEMS, Advanced Technology Centre,

Facilities:
Our world-class robotics facilities include state of the art robots and 3D scanners. We have several turtlebots (http://www.turtlebot.eu) for land robotics, equipped with state of the art sensing such as the kinect, several human robots (Nao) as well as a wide range of dedicated robots for air and subsea robotics.

Read less
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard. Read more
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard.

The Masters in Satellite Communications Engineering is a leader in Europe in equipping students with the necessary background to enter the satellite industry or to continue on to a research degree.

PROGRAMME OVERVIEW

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Space Dynamics & Missions
-Space Systems Design
-Antennas and Propagation
-Principles of Telecommunications & Packet Networks
-Satellite Communications Fundamentals
-RF Systems & Circuit Design
-Data & Internet Networking
-Advanced Guidance, Navigation & Control
-Launch Vehicles & Propulsion
-Network & Service Management & Control
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Standard Project

FACILITIES, EQUIPMENT AND SUPPORT

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). The programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin satellite communications engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within satellite communications engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s. Read more
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s.

Since then, our sustained programme of building complete satellites, performing mission planning, working with international launch agencies and providing in-orbit operations has kept us at the forefront of the space revolution –utilising new advances in technology to decrease the cost of space exploration.

PROGRAMME OVERVIEW

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Space Dynamics and Missions
-Space Systems Design
-Space Robotics and Autonomy
-Satellite Remote Sensing
-RF Systems and Circuit Design
-Space Avionics
-Advanced Guidance, Navigation and Control
-Launch Vehicles and Propulsion
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
We start with a semester of formal lectures (2 x 5 week blocks) and assocaiated assignments covering. Read more
We start with a semester of formal lectures (2 x 5 week blocks) and assocaiated assignments covering: Behavioural development; Motivation and sensory systems; Evolution and behaviour; Pain, stress and welfare; Navigation; Cognition; Endocrines and pheromones; Communication and Welfare of farm, companion and zoo animals; Behaviour and conservation; Fear and sterotypies and Practical measures for enhancing welfare. We also have visits to Belfast Zoological Gardens, Castle Espie Wildfowl Centre and Farms. In semester two we cover practical topics that include defining and recording behaviour, experimental design and analyses, presentation of results in various formats and getting to grips with primary literature. That is a period in which students also focus on preparing for the project and they give a seminar onhow they intend to approach the research project. The latter is a 5-month, fully-supervised Research Project that can involve field work abroad, field work on UK farms, exerimental work in the labortaory or field. It can involve welfare or fundamental animal behaviour. We have a team of ten that currently offer diverse projects for this course and nine of these are involved in the delivery of lectures (check our web site). Project supervisors will also supervise a literature review in the broad area of the project. Knowledge gained form the course can be applied to fundamental scientific research and to practical areas such as conservation, animal husbandry and zoo environments. Formal teaching is on Mondays, Tuesdays and Wednesdays, one year full time two years part time.

Read less

Show 10 15 30 per page



Cookie Policy    X