• University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Reading Featured Masters Courses
Southampton Solent University Featured Masters Courses
Swansea University Featured Masters Courses
"medical" AND "imaging" A…×
0 miles

Masters Degrees (Medical Imaging Technology)

We have 106 Masters Degrees (Medical Imaging Technology)

  • "medical" AND "imaging" AND "technology" ×
  • clear all
Showing 1 to 15 of 106
Order by 
The full time MSc Medical Imaging. International programme provides a coherent pathway of study relevant to contemporary medical imaging practice. Read more
The full time MSc Medical Imaging: International programme provides a coherent pathway of study relevant to contemporary medical imaging practice.

It is designed to be of particular interest to international students, with a qualification in diagnostic radiography or medical technology, who are currently working in the area of medical imaging and who wish to enhance their knowledge so as to contribute to improve medical imaging services. It is designed to support healthcare professionals develop their knowledge, understanding and theoretical skills related to medical imaging required for a professional who aspires to work at an advanced level of practice.

Education within the clinical environment is not a component of the course and on successful completion students will not be eligible to apply for Health and Care Professions Council (HCPC) registration.

The programme is delivered by the Radiography academic team within the School of Allied Health professions and Sport in partnership with clinical and scientific experts working within specialised areas of medical imaging to ensure the curriculum remains appropriately diverse and clinically relevant, and alongside the part time MSc Medical Imaging programme for UK students.

This full-time MSc pathway is a modular programme encompassing a range of academic modules related to medical imaging, and research. Upon successful completion of the MSc Medical Imaging: International, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Why Bradford?

The MSc Medical Imaging: International programme is aligned with the Faculty of Health’s SSPRD framework, a multidisciplinary framework for continuing professional development. The framework provides an opportunity to study alongside students from a range of healthcare disciplines to provide an enriched learning experience.

The programme is delivered by the experienced Radiography academic team within the School of Allied Health Professions and Sport in partnership with clinical and scientific experts working within specialised areas of medical imaging to ensure the curriculum remains appropriately diverse and clinically relevant, and alongside the part time MSc Medical Imaging programme for UK students.

This full-time MSc pathway is a modular programme encompassing a range of academic modules related to medical imaging, and research. Upon successful completion of the MSc Medical Imaging: International, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

There is now some flexibility in module choice for MSc Medical Imaging: International. Applicants have a choice to study 2 out of 3 optional modules which support their experience and knowledge. They will then have 3 core modules which are compulsory.
The ethos of sustainable development is a fundamental feature of the programme with students encouraged to develop autonomous learning skills and the ability to apply critical thinking to clinical practice.

Modules

-Current Topics in Medical Imaging
-Preparing for a Systematic Review
-Pursuing a Systematic Review
-Computed Tomography
-Magnetic Resonance Imaging
-Principles of Reporting

Learning activities and assessment

When you have completed the programme you will be able to;
-Develop a detailed knowledge and understanding of the literature that relates to your specialist field of practice
-Critically analyse and synthesise the research evidence that informs the development of policy and service delivery in your specialist field of practice
-Evaluate and critically apply theoretical concepts and where appropriate, for your field of practice, master practical skills for the management of complex issues within your field of practice
-Reflect upon and demonstrate knowledge of values, ethical thinking, equality awareness, inclusive practice and demonstrate mastery within your specialist field or practice
-Develop and demonstrate the ability to articulate sound arguments using a variety of formats including written and oral communication skills
-Demonstrate management and leadership through effective communication, problem solving, and decision making
-Demonstrate the ability to become an autonomous learner through independent study and critical reflection on continuing development needs
-Demonstrate the ability to use IT skills to gather and synthesise information , to access course materials
-Demonstrate a critical awareness and understanding of different theoretical constructs underpinning research and/or project management methodologies.
-Design, undertake and report on either a systematic review, a piece of empirical research, work based or management project that contributes to or extends the body of knowledge for your field of practice

The MSc Medical Imaging assessments allows students flexibility to direct assessments to their area of developing practice and have been praised by external examiners for their relevance to current clinical practices. Assessments range from: portfolios demonstrating advanced practice skills; case studies; presentations; critical evaluations of imaging practices; examinations in image appearances and imaging technology; and a final research project.

Students need to achieve a mark of 40% for each assessment for each module.

Career support and prospects

The theoretical knowledge gained in the imaging modalities of Computed Tomography, Magnetic Resonance Imaging, and/or principles of medical image reporting will compliment the skills of critical reflection and research that developing practitioners and academics will use in advancing their careers.

Read less
Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management. Read more

Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management.

It is also a key tool in medical research and it is becoming increasingly possible to relate imaging studies to genetic traits in individuals and populations. Novel imaging biomarkers of disease can enable more rapid and precise diagnosis and inform decision making in drug discovery programmes.

As medical imaging involves knowledge of anatomy, physiology, pathology, physics, mathematics and computation, our course is suitable if you want to expand your disciplinary horizons and pursue a career in an image-related field in clinical medicine, medical research, or technological research or development.

You will cover the basic science and technology behind the principal imaging modalities currently used in medicine and medical research, as well as advanced imaging methods, clinical and research applications, imaging biomarkers and computational methods.

You will learn how advanced imaging techniques are applied in medical research and drug discovery with an emphasis on magnetic resonance (MR) and positron emission tomography (PET) imaging. You will also receive training in computational and quantitative methods of image analysis or in the interpretation of clinical images from different imaging modalities.

This course comprises both a taught component and a research project, giving you the skills and knowledge required for a career in an image-related field in clinical practice, clinical or scientific research, or technical development.

Aims

We aim to provide you with:

  • with a systematic understanding of the scientific basis of the major medical imaging modalities;
  • a broad understanding of the principal clinical applications of medical imaging and its role in diagnosis, monitoring and therapy;
  • an understanding of the capabilities and limitations of medical imaging for deriving quantitative anatomical and physiological data;
  • knowledge of how advanced imaging techniques are applied in medical research and drug discovery;
  • the experience to plan, implement and complete a research project;
  • generic transferrable skills required in a multidisciplinary scientific or clinical research environment;
  • the knowledge and skills required for a career in an image-related field in clinical practice, clinical research, scientific research or technical development.

Special features

Excellent facilities

Benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Learn from experts

Manchester has an imaging and image computing research group with a strong international reputation. Our research groups and facilities are staffed by scientists conducting research in novel imaging and image analysis methods, and clinicians who apply these methods in clinical practice.

Flexible learning

Learn when it suits you thanks to options for either full-time or part-time study.

Multidisciplinary learning

Study alongside physicists, engineers, mathematicians, computer scientists, chemists, biologists and clinicians working in hospitals and research-dedicated imaging facilities.

Teaching and learning

As this course aims to produce graduates equipped to pursue either clinically or technically-focused careers in imaging, it is important to provide an adequate knowledge base. For this reason, much of the teaching takes the form of lectures.

However, in most course units, this is supplemented by group discussions and practical exercises. Other than the introductory units, most course units provide you with an understanding of research methods by requiring submission of a critical review of appropriate research literature or clinical material, either as a report or presentation.

Where appropriate, practical imaging exercises are provided, requiring you to cooperate in acquiring images and analysing results.

All units require a considerable component of independent research and study.

Coursework and assessment

Assessment will occur in a variety of forms.

Summative assessment takes the form of written assignments, examinations, oral presentations and online quizzes. Written assignments and presentations, as well as contributing to summative assessment, have a formative role in providing feedback, particularly in the early stages of course units.

Online quizzes provide a useful method of regular testing, ensuring that you engage actively with the taught material. As accumulation of a knowledge base is a key aim of the course, examinations (both open-book and closed-book) form an important element of summative assessment.

In addition, formal assessment of your research and written communication skills is achieved via the dissertation. This is a 10,000 to 15,000-word report, written and organised to appropriate scientific standards, describing the design, execution and results of the research project.

Course unit details

The MSc requires students to pass 180 credits composed of eight course units of 15 credits each and a 60-credit research project.

We provide course units in Human Biology and Introductory Mathematics and Physics to bring students up to the required level in these topics.

Semester 1: Compulsory units

  • Scientific Skills
  • Mathematical Foundations of Imaging
  • Radioisotope Imaging (PET/SPET)
  • Non-radioisotope Imaging (MRI, CT, US)

Semester 2: Compulsory units

  • Advanced MR Imaging
  • Advanced PET Imaging
  • Quantitative Imaging into Practice (Imaging Biomarkers for Healthcare and Research)

Semester 2: Elective units (select one)

  • Imaging in Clinical Diagnosis
  • Medical Image Analysis and Mathematical Computing

Semester 3:

  • Research project

Facilities

You will benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Each student will have an identified personal tutor who can provide advice and assistance throughout the course. During the research project, you will be in regular contact with your research supervisor.You will also be able to access a range of other library and e-learning facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Graduates will be in an excellent position to pursue careers in image-related fields in healthcare and research. This MSc will also form a sound basis for students who wish to proceed to PhD research in any aspect of medical imaging.

Intercalating medical students may use this qualification as a platform to pursue a clinical career in radiology.

Physical science/engineering graduates may see this as a route to imaging research or development in an academic or commercial environment.



Read less
Programme Aims. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

The award in Medical Imaging and Radiation Science (MIRS) is specially designed for professionals in medical imaging and radiotherapy and has the following aims.

A. Advancement in Knowledge and Skill

  • ​To provide professionals in Medical Imaging and Radiotherapy, as well as others interested in health technology, with the opportunity to develop advanced levels of knowledge and skills;
  • To develop specialists in their respective professional disciplines and enhance their career paths;
  • To broaden students' exposure to a wider field of health science and technology to enable them to cope with the ever-changing demands of work;
  • To provide a laboratory environment for testing problems encountered at work;
  • To equip students with an advanced knowledge base in a chosen area of specialisation in medical imaging or radiotherapy to enable them to meet the changing needs of their disciplines and contribute to the development of medical imaging or radiation oncology practice in Hong Kong; and
  • To develop critical and analytical abilities and skills in the areas of specialisation that are relevant to the professional discipline to improve professional competence.

B. Professional Development

  • ​To develop students' ability in critical analysis and evaluation in their professional practices;
  • To cultivate within healthcare professionals the qualities and attributes that are expected of them;
  • To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
  • To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice

  • ​To equip students with the necessary skill in research to enable them to perform evidence-based practice in the delivery of healthcare service and industry.

D. Personal Development

  • ​To provide channels through which practising professionals can continuously develop themselves while at work; and
  • To allow graduates to develop themselves further after graduation.

Characteristics

The Medical Imaging and Radiation Science award offers channels for specialisation and the broadening of knowledge for professionals in medical imaging and radiotherapy. It will appeal to students who are eager to become specialists or managers in their areas of practice. Clinical experience and practice in medical imaging and radiotherapy are integrated into the curriculum to encourage more reflective observation and active experimentation.

Programme Structure

To be eligible for the MSc in Medical Imaging and Radiation Science (MScMIRS), students are required to complete 30 credits:

  • 2 Compulsory Subjects (6 credits)
  • 3 Core Subjects (9 credits)
  • 5 Elective Subjects (15 credits)

Apart from the award of MScMIRS, students can choose to graduate with one of the following specialisms:

  • MSc in Medical Imaging and Radiation Science (Computed Tomography)
  • MSc in Medical Imaging and Radiation Science (Magnetic Resonance Imaging)
  • MSc in Medical Imaging and Radiation Science (Ultrasonography)

To be eligible for the specialism concerned, students should complete 2 Compulsory Subjects (6 credits), a Dissertation (9 credits) related to that specialism, a specialism-related Specialty Subject (3 credits), a Clinical Practicum (3 credits) and 3 Elective Subjects (9 credits).

 Compulsory Subjects

  • Research Methods & Biostatistics
  • ​Multiplanar Anatomy

Core Subjects

  • Advanced Radiotherapy Planning & Dosimetry
  • Advanced Radiation Protection
  • Advanced Technology & Clinical Application in Computed Tomography *
  • Advanced Technology & Clinical Application in Magnetic Resonance Imaging *
  • Advanced Technology & Clinical Application in Nuclear Medicine Imaging
  • Advanced Topics in Health Technology
  • Advanced Ultrasonography *
  • Clinical Practicum (CT/MRI/US)
  • Dissertation
  • Digital Imaging & PACS
  • Imaging Pathology

 * Specialty Subject

Elective Subjects

  • Bioinformatics in Health Sciences
  • Professional Development in Infection Control Practice


Read less
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography. Read more
The School of Clinical Medicine offers a programme in Medical Imaging with an option in Nuclear Medicine, Radiation Safety or Magnetic Resonance Imaging and Computed Tomography.

The Nuclear Medicine and Radiation Safety strands are offered in parallel on a bi-annual basis, the Magnetic Resonance Imaging and CT strand are offered on alternate years. In September 2013, the MRI and CT strands will commence.

The main aim of the programme is to train and qualify Radiographers in the practice of Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging or Computed Tomography.

The course is intended for qualified Radiographers with a clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department. It is a course requirement that the student must spend a minimum of 15 hours per week on clinical placement in a Nuclear Medicine Department, a Radiology Department, a Magnetic Resonance Imaging Department or a Computed Tomography Department as appropriate to fulfill the requirements of the course.

The M.Sc. in Medical Imaging will be run over 12 months on a part-time basis.

In the M.Sc. in Medical Imaging, there are 4 separate strands: Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and Computed Tomography. Students will choose one of the 4 options.

The taught component of the course is covered in the first 8 months. The student may opt to exit the programme upon completion of the taught component with a Postgraduate Diploma in Medical Imaging.

From May to September, students undertake an independent research project. Successful completion of the research component of the programme leads to the award of M.Sc. in Medical Imaging.

The list of common core modules currently available to students of the Nuclear Medicine, Radiation Safety, Magnetic Resonance Imaging and CT strands are:

Medico-Legal Aspects, Ethics and Health Services Management (5 ECTS)
Clinical Practice (10 ECTS)

The additional modules in the Nuclear Medicine strand are:

Physics and Instrumentation, and Computer Technology Radiation Protection and Quality Control in Nuclear Medicine (15 ECTS)
Clinical Applications of Nuclear Medicine and Hybrid Imaging (15 ECTS)
Anatomy, Physiology and Pathology applied to Nuclear Medicine (5 ECTS)
Radiopharmacy (5 ECTS)

The additional modules in the Radiation Safety strand are:

Radiation Protection Legislation (10 ECTS)
Practical Aspects of Radiation Protection (5 ECTS)
Physics and Instrumentation and Computer Technology (10 ECTS)
Quality Management and Quality Control (15 ECTS)

The additional modules in the Magnetic Resonance Imaging strand are:

Physics and Instrumentation of MR and computer technology (15 ECTS)
Anatomy, Physiology and Pathology applied to MR (10 ECTS)
Safety in MR and Quality Control (5 ECTS)
MR Imaging Techniques and Protocols (15 ECTS)

The additional modules in the Computed Tomography strand are:

Physics and Instrumentation of CT and computer technology (10 ECTS)
Anatomy, Physiology and Pathology applied to CT (10 ECTS)
CT Imaging Techniques and Protocols (15 ECTS)
Radiation protection and quality assurance in CT (5 ECTS)

All common modules and strand-specific modules must be undertaken. The taught component thus consists of 60 ECTS.
Dissertation (30 ECTS)

Read less
EXACT SCIENCE AND CUTTING-EDGE TECHNOLOGY IN HEALTH CARE. The field of medical imaging is evolving rapidly, since diagnosis and treatment are increasingly supported by imaging procedures. Read more

EXACT SCIENCE AND CUTTING-EDGE TECHNOLOGY IN HEALTH CARE

The field of medical imaging is evolving rapidly, since diagnosis and treatment are increasingly supported by imaging procedures. The Medical Imaging Master’s programme combines elements from physics, mathematics, computer science, biomedical engineering, biology and clinical medicine. Master’s students will attain a high level of knowledge and skills in various areas of medical imaging, such as image acquisition physics, quantitative image analysis, computer-aided diagnosis, and image-guided interventions.

A CHALLENGING PROGRAMME COMPOSED BY TWO RENOWNED INSTITUTIONS

The programme is offered in close collaboration between the imaging divisions of the UMC Utrecht and Eindhoven University of Technology (TU/e). Two leading organizations at the forefront of health care and technology. This collaboration tops a solid technological basis with strong links to research performed in a clinical setting.

Are you a student with a clear interest in health care technology, a ‘beta-mindset’, a curiosity towards the natural sciences and medical imaging, and ambition in research? Do you have a background in natural or physical sciences, e.g. physics, mathematics, computer science or more applied technical sciences like biomedical engineering? This Master’s programme might just be a perfect fit.

WHY YOU SHOULD STUDY MEDICAL IMAGING AT UTRECHT UNIVERSITY

  1. It’s a strongly technology-oriented Master’s programme in a clinical setting. It allows you to work with an impressive range of imaging platforms.
  2. You will have the opportunity to carry out research projects at renowned international research groups and with selected industrial partners, and gain valuable experience which helps your career in the world of research and technology development.
  3. The whole field of medical imaging, ranging from image acquisition physics to advanced image processing and analysis topics, is covered.
  4. You will benefit from the excellent international reputation and strong position of the Image Sciences Institute (ISI) and the Center for Image Sciences (CIS) at UMC Utrecht.


Read less
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course. This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. Read more
Make future breakthroughs within healthcare with the MSc Biomedical Engineering with Healthcare Technology Management course.

Who is it for?

This course is for inquisitive students who want to design, develop, apply or even manage the use of cutting-edge methods and devices that will revolutionise healthcare. It is open to science and engineering graduates and those working within hospitals or related industry who want to work in healthcare organisations, in the medical devices industry, or in biomedical engineering research.

The course will suit recent graduates and/or clinical engineers with a technical background or those working in healthcare who want to move into a management position.

Objectives

With several medical conditions requiring extensive and continuous monitoring and early and accurate diagnosis becoming increasingly desirable, technology for biomedical applications is rapidly becoming one of the key ingredients of today and tomorrow’s medical care.

From miniaturised home diagnostic instruments to therapeutic devices and to large scale hospital imaging and monitoring systems, healthcare is becoming increasingly dependent on technology. This course meets the growing need for biomedical and clinical engineers across the world by focusing on the design of medical devices from conception to application.

One of the few accredited courses of its kind in London, the programme concentrates on the use of biomedical-driven engineering design and technology in healthcare settings so you can approach this multidisciplinary topic from the biological and medical perspective; the technological design and development perspective; and from the perspective of managing the organisation and maintenance of large scale equipment and IT systems in a hospital.

This MSc in Biomedical Engineering with Healthcare Technology Management course has been created in consultation and close collaboration with clinicians, biomedical engineering researchers and medical technology industrial partners. The programme fosters close links with the NHS and internationally-renowned hospitals including St. Bartholomew's (Barts) and the Royal London Hospital and Great Ormond street so that you can gain a comprehensive insight into the applied use and the management of medical technology and apply your knowledge in real-world clinical settings.

Placements

In the last few years there have been some limited opportunities for our top students to carry out their projects through placements within hospital-based healthcare technology groups or specialist London-based biomedical technology companies. Placement-based projects are also offered to selected students in City’s leading Research Centre for Biomedical Engineering (RCBE). As we continue our cutting-edge research and industrial and clinical collaborations, you will also have this opportunity.

Academic facilities

As a student on this course you will have the opportunity to work with cutting-edge test and measurement instrumentation – oscilloscopes, function generators, analysers – as well as specialist signal generators and analysers. The equipment is predominantly provided by the world-leading test and measurement equipment manufacturer Keysight, who have partnered with City to provide branding to our electronics laboratories. You also have access to brand new teaching labs and a dedicated postgraduate teaching lab. And as part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught through face-to-face lectures in small groups, where there is a lot of interaction and feedback. Laboratory sessions run alongside the lectures, giving you the opportunity to develop your problem-solving and design skills. You also learn software skills in certain modules, which are taught inside computer labs. We also arrange hospital visits so you gain hands-on experience of different clinical environments.

We arrange tutorials for setting coursework, highlight important subject areas, conduct practical demonstrations, and offer support with revision. You are assessed by written examinations at the end of each term, and coursework assignments, which are set at various times throughout the term.

You also work towards an individual project, which is assessed in the form of a written thesis and an oral examination at the end of the summer. The project can be based on any area of biomedical engineering, telemedicine or technology management and will be supervised by an academic or clinical scientist with expertise in the subject area. Many projects are based in hospital clinical engineering departments, or if you are a part-time student, you can base the project on your own workplace. You will have regular contact with the supervisor to make sure the project progresses satisfactorily. Some of the programme’s current students are working on a project focusing on devices that use brain signals to move external objects such as a remote control car and a prosthetic arm.

Some of the previous projects students have worked on include:
-A cursor controller based on electrooculography (EOG)
-Modelling a closed-loop automated anaesthesia system
-Design of a movement artefact-resistant wearable heart rate/activity monitor
-Review of progress towards a fully autonomous artificial mechanical heart
-Design of smartphone-based healthcare diagnostic devices and sensors.

If you successfully complete eight modules and the dissertation you will be awarded 180 credits and a Masters level qualification. Alternatively, if you do not complete the dissertation but have successfully completed eight modules, you will be awarded 120 credits and a postgraduate diploma. Completing four modules (60 credits) will lead to a postgraduate certificate.

Modules

Along with the 60 credit dissertation eight core modules cover diverse subject areas including biomedical electronics and instrumentation, technology infrastructure management, as well as the latest advances in medical imaging and patient monitoring.

The course includes a special module which gives you an introduction to anatomy, physiology and pathology designed for non-clinical science graduates.

The most innovative areas of biomedical and clinical engineering are covered and the content draws from our research expertise in biomedical sensors, bio-optics, medical imaging, signal processing and modelling. You will learn from academic lecturers as well as clinical scientists drawn from our collaborating institutions and departments, which include:
-Charing Cross Hospital, London
-The Royal London Hospital
-St Bartholomew's Hospital, London
-Basildon Hospital
-Department of Radiography, School of Community and Health Sciences, City, University of London

Modules
-Anatomy, Physiology and Pathology (15 credits)
-Physiological Measurement (15 credits)
-Biomedical Instrumentation (15 credits)
-Medical Electronics (15 credits)
-Cardiovascular Diagnostics and Therapy (15 credits)
-Medical Imaging Modalities (15 credits)
-Clinical Engineering Practice (15 credits)
-Healthcare Technology Management (15 credits)

Career prospects

This exciting MSc programme offers a well-rounded background and specialised knowledge for those seeking a professional career as biomedical engineers in medical technology companies or research groups but is also uniquely placed for offering skills to clinical engineers in the NHS and international healthcare organisations.

Alumnus Alex Serdaris is now working as field clinical engineer for E&E Medical and alumna Despoina Sklia is working as a technical support specialist at Royal Brompton & Harefield NHS Foundation Trust. Other Alumni are carrying out research in City’s Research Centre for Biomedical Engineering (RCBE).

Applicants may wish to apply for vacancies in the NHS, private sector or international healthcare organisations. Students are encouraged to become members of the Institute of Physics and Engineering in Medicine (IPEM) where they will be put in touch with the Clinical Engineering community and any opportunities that arise around the UK during their studies. Application to the Clinical Scientist training programme is encouraged and fully supported.

The Careers, Student Development & Outreach team provides a professional, high quality careers and information service for students and recent graduates of City, University of London, in collaboration with employers and other institutional academic and service departments. The course also prepares graduates who plan to work in biomedical engineering research and work within an academic setting.

Read less
Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries. Read more

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

Programme structure

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Technical characteristics of the pathway

Medical Imaging is a rapidly growing discipline within the healthcare sector, incorporating engineers, physicists, computer scientists and clinicians. It is driven by the recent rapid development of 3-D Medical Imaging Systems, fuelled by an exponential rise in computing power.

New methods have been developed for the acquisition, reconstruction, processing and display of digital medical-image data with unprecedented speed, resolution and contrast.

This programme in Medical Imaging is aimed at training graduates for careers in this exciting multi-disciplinary area, and our graduates can expect to find employment in the medical imaging industry or the public health care sector.

It represents a blend of fundamental medical physics topics concerned with image acquisition and reconstruction coupled with imaging science and image engineering topics such that graduates understand how images are formed and how advanced machine-based methods can be bought to bare to provide new diagnostic information.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice. Read more
The part time MSc Medical Imaging programme provides a coherent pathway of study relevant to contemporary medical imaging practice.

It is designed to support healthcare professionals develop their knowledge, understanding and skills related to medical imaging required for a professional who aspires to work at an advanced level of practice.

This part-time MSc pathway is a modular programme encompassing a range of academic and work-based modules related to medical imaging, and research.

Upon successful completion of the MSc Medical Imaging, students will have the knowledge and understanding necessary to work at an advanced level of practice within their chosen medical imaging discipline and apply research informed learning to international health communities to inform health service practice and delivery.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Why Bradford?

The MSc Medical Imaging programme at Bradford is a long standing and successful programme delivered by an experienced radiography team, with diagnostic radiographers coming from around the UK, and full time international students choosing to study here.

The programme is delivered in partnership with clinical and scientific experts, and the research informed curriculum ensures it is relevant to current and innovative practice.

Learning activities and assessment

The MSc Medical Imaging assessments allows students flexibility to direct assessments to their area of developing practice and have been praised by external examiners for their relevance to current clinical practices.

Assessments range from: portfolio's demonstrating advanced practice skills; case studies; presentations; critical evaluations of imaging practices; examinations in image appearances and imaging technology; and a final research project.

Students need to achieve a mark of 40% for each assessment for each module.

Career support and prospects

The programme supports students to develop advancing practice skills, knowledge, critical reflection and research skills. It supports developing practitioners and academics current and future career prospects within a dynamic and evolving healthcare environment.

Read less
Your programme of study. If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Read more

Your programme of study

If you want to study Medical Physics with applications in nuclear medicine, radiotherapy, electronics and MRI University of Aberdeen has an world renowned historic reputation within major global innovation in this health area. Did you know the first MRI (Magnetic Resonance Imaging) scanner was invented at Aberdeen over 30 years ago? Major innovations to this technology are still being researched at Aberdeen today. You learn everything you need to know as an advanced grounding in medical physics such as understanding anatomy and how cells are altered by disease. You look at the engineering behind MRI and other visual scanning techniques to understand how applications are made in areas such as nuclear, Positron, Tomography, Radio diagnosis (X-ray), MRI and Ultrasound. You understand radiation and you apply electronics and computing to medical physics. The degree ensures plenty of practical understanding and application and you learn MRI within the department that built it.

If you want to work within imaging and medical physics to pursue a medical career in hospitals, industry and healthcare and diagnose disease by different methods of imaging the degree in Medical Physics will help you towards this goal. You can also develop your own research portfolio and PhD from this MSc and work within academia to pursue innovation in the discipline.

You receive a thorough academic grounding in Medical Physics, are exposed to its practice in a hospital environment, and complete a short research project. Many graduates take up careers in health service medical physics, either in the UK or their home country. The MSc programme is accredited by the Institute of Physics & Engineering in Medicine as fulfilling part of the training requirements for those wishing to work in the NHS. You can also work as a researcher, risk manager, radiation physics specialist and within the medical device industry in product development and innovation.

Courses listed for the programme

Semester 1

  • Biomedical and Professional Topics in Healthcare Science
  • Imaging in Medicine
  • Radiation in Medicine
  • Computing and Electronics in Medicine
  • Generic Skills

Semester 2

  • Radiation and Radiation Physics
  • Nuclear Medicine and Post Emission Tomography
  • Magnetic Resonance Imaging
  • Medical Electronics and Instrumentation
  • Medical Image Processing and Analysis
  • Diagnostic Radiology and Radiation Protection

Semester 3

  • Project Programmes in Medical Physics and Medical Imaging

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You are taught by renowned researchers with opportunity to contribute to the expanding research portfolio
  • You learn in a cutting edge medical facility adjacent to the teaching hospital including a PET-CT scanner, radiotherapy centre and linac treatment machines, plus MRI scanners
  • The MRI scanner was invented and developed at University of Aberdeen

Where you study

  • University of Aberdeen
  • 12 months or 24 months
  • Full time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs:



Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more

This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered.

A Postgraduate Certificate (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Medical Electronics and Control
  • Clinical Practice
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Applications of Biomedical Engineering
  • Materials and Engineering for Orthopaedic Devices
  • Computing in Medicine
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Biomedical Engineering and Medical Imaging MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in health care, industry and academia sectors.

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.



Read less
See the department website - http://www.cis.rit.edu/graduate-programs/master-science. The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Read more
See the department website - http://www.cis.rit.edu/graduate-programs/master-science

The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Formal course work includes consideration of the physical properties of radiation-sensitive materials and processes, the applications of physical and geometrical optics to electro-optical systems, the mathematical evaluation of image forming systems, digital image processing, and the statistical characterization of noise and system performance. Technical electives may be selected from courses offered in imaging science, color science, engineering, computer science, science, and mathematics. Both thesis and project options are available. In general, full-time students are required to pursue the thesis option, with the project option targeted to part-time and online students who can demonstrate that they have sufficient practical experience through their professional activities.

Faculty within the Center for Imaging Science supervise thesis research in areas of the physical properties of radiation-sensitive materials and processes, digital image processing, remote sensing, nanoimaging, electro-optical instrumentation, vision, medical imaging, color imaging systems, and astronomical imaging. Interdisciplinary efforts are possible with other colleges across the university.

The program can be completed on a full- or a part-time basis. Some courses are available online, specifically in the areas of color science, remote sensing, medical imaging, and digital image processing.

Plan of study

All students must earn 30 credit hours as a graduate student. The curriculum is a combination of required core courses in imaging science, elective courses appropriate for the candidate’s background and interests, and either a research thesis or graduate paper/project. Students must enroll in either the research thesis or graduate paper/project option at the beginning of their studies.

Core courses

Students are required to complete the following core courses: Fourier Methods for Imaging (IMGS-616), Image Processing and Computer Vision (IMGS-682), Optics for Imaging (IMGS-633), and either Radiometry (IMGS-619) or The Human Visual System (IMGS-620).

Speciality track courses

Students choose two courses from a variety of tracks such as: digital image processing, medical imaging, electro-optical imaging systems, remote sensing, color imaging, optics, hard copy materials and processes, and nanoimaging. Tracks may be created for students interested in pursuing additional fields of study.

Research thesis option

The research thesis is based on experimental evidence obtained by the student in an appropriate field, as arranged between the student and their adviser. The minimum number of thesis credits required is four and may be fulfilled by experiments in the university’s laboratories. In some cases, the requirement may be fulfilled by work done in other laboratories or the student's place of employment, under the following conditions:

1. The results must be fully publishable.

2. The student’s adviser must be approved by the graduate program coordinator.

3. The thesis must be based on independent, original work, as it would be if the work were done in the university’s laboratories.

A student’s thesis committee is composed of a minimum of three people: the student’s adviser and two additional members who hold at least a master's dgeree in a field relevant to the student’s research. Two committee members must be from the graduate faculty of the center.

Graduate paper/project option

Students with demonstrated practical or research experience, approved by the graduate program coordinator, may choose the graduate project option (3 credit hours). This option takes the form of a systems project course. The graduate paper is normally performed during the final semester of study. Both part- and full-time students may choose this option, with the approval of the graduate program coordinator.

Admission requirements

To be considered for admission to the MS in imaging science, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution (undergraduate studies should include the following: mathematics, through calculus and including differential equations; and a full year of calculus-based physics, including modern physics. It is assumed that students can write a common computer program),

- Submit a one- to two-page statement of educational objectives,

- Submit official transcripts (in English) of all previously completed undergraduate or graduate course work,

- Submit letters of recommendation from individuals familiar with the applicant’s academic or research capabilities,

- Submit scores from the Graduate Record Exam (GRE) (requirement may be waived for those not seeking funding from the Center for Imaging Science), and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 600 (paper-based) or 100 (Internet-based) are required. Students may also submit scores from the International English Language Testing System. The minimum IELTS score is 7.0. International students who are interested in applying for a teaching or research assistantship are advised to obtain as high a TOEFL or IELTS score as possible. These applicants also are encouraged to take the Test of Spoken English in order to be considered for financial assistance.

Applicants seeking financial assistance from the center must have all application documents submitted to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Additional information

- Bridge courses

Applicants who lack adequate preparation may be required to complete bridge courses in mathematics or physics before matriculating with graduate status.

- Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
This module is designed to be of particular interest to diagnostic radiographers who are currently working in the area of medical imaging and who wish to enhance their knowledge so as to contribute to improve medical imaging services. Read more
This module is designed to be of particular interest to diagnostic radiographers who are currently working in the area of medical imaging and who wish to enhance their knowledge so as to contribute to improve medical imaging services.

It is designed to support healthcare professionals develop their knowledge, understanding and apply research informed learning to international health communities to inform health service practice and delivery.

Students will use a learning opportunity undertaken at conference, short course, study day or distance learning course , to focus on a topic that is currently relevant to clinical medical imaging practice.

The student may choose to review and evaluate an aspect of current practice, explore and report on a recent change in practice, or develop and reflect on new clinical skills or services. The role of medical imaging in the patient pathway may also be considered and this should be reflected in the content of the short course. Relevant published research and literary evidence will be critically appraised to determine the likely impact of developments on clinical practice.

The role of higher education within the UK is not only to develop the learning and critical thinking skills of students but to provide students such as yourself with the opportunity to study for an award which will support your current and future career prospects within a dynamic and evolving healthcare environment.

Why Bradford?

Postgraduate provision in Medical Imaging at the University of Bradford has long been established and is known for its quality and success in supporting development of healthcare professionals in their diverse roles, with students coming from around the UK, and full time international students choosing to study here.

The modules are delivered by an experienced radiography team, and a research informed curriculum ensures it is relevant to current and innovative practice.

Modules

This module is provided as part of this interdisciplinary Framework within the Faculty of Health Studies. The Framework enables students to create an individualised programme of study that will meet either their needs and/or the employers’ needs for a changing diverse workforce within a modern organisation.

The modules and academic awards are presented in areas representing employment practice or work based or clinical disciplines.

Whilst some students can build their own academic awards by choosing their own menu of module options, other students will opt for a named academic award. The Framework also provides the option for students to move from their chosen named award to another award if their job or personal circumstances change and they need to alter the focus of their studies. The majority of named awards also offer students, the option of choosing at least one module, sometimes more, from across the Faculty module catalogue enabling them to shape their award more specifically to their needs.

Learning activities and assessment

There are two assessments for this module: both must achieve a mark of 40% to pass the module. A reflective piece looks at how new knowledge can inform your practice. A critical evaluation looks at imaging technology, practices, protocols or intervention: you can choose to undertake an oral presentation or an assignment for this assessment.

Career support and prospects

This module supports students to develop knowledge, critical reflection and research skills that developing practitioners and academics will use in their careers in medical imaging.

Read less
This MSc is the only programme in the UK entirely focused on the imaging of cancer and has been purpose-built to meet a demand for expert researchers and clinicians. Read more

This MSc is the only programme in the UK entirely focused on the imaging of cancer and has been purpose-built to meet a demand for expert researchers and clinicians. Medical imaging is central to the management of cancer, and this course has been designed to cover all aspects of imaging, from basic physics to image analysis. It also aims to give a solid grounding in current concepts of cancer biology and therapy as they apply ‘bench to bedside’.

Designed in close collaboration with a leading team of radiologists, medical physicists, oncologists and research specialists, the programme takes a theoretical and a practical approach to ensure it provides you with the specialist knowledge and skills required.

A key part of the programme is the study of real patient data and there are opportunities for project work in state-of-the-art clinical facilities for oncology imaging at both Hull Royal Infirmary and Castle Hill Hospital. You can also undertake preclinical research in the University's PET (Positron Emission Tomography) Research Centre, a recently completed cutting edge facility that hosts the only research-dedicated cyclotron in the UK, along with extensive radiochemistry provision and preclinical PET-CT and SPECT-CT scanners.

Study information

You study the basic theory and practice of image analysis and interpretation as well as advanced research applications. Students obtain a deep appreciation of the importance of image analysis as a discipline in the generation of scientific data that underpins patient management.

You gain an understanding of imaging theory, technology and application as relates to clinical practice across modalities, and of the biology of cancer as manifested in the clinic, integrated with key physiological and pharmacological concepts.

The programme aims to give graduate students from a range of backgrounds an understanding of imaging theory, an overview of the current understanding of cancer and how this underlies the use of imaging in patient management and the assessment of cancer treatments.

The programme comprises a combination of lectures, state-of-the-art computer-based image analysis, practical work, and projects supported by 'problem classes', workshops and tutorials.

A 12-week cancer imaging research project, carried out in the laboratory of an internationally-recognised cancer imaging scientist or clinician, is a key part of the course.

Programme Content:

  • Introduction to Cancer Imaging
  • Research Skills
  • Imaging Modalities I
  • Imaging Modalities II
  • Image Analysis
  • Organ-Specific Cancers: Bench-to-Bedside
  • Research Project and Dissertation 

* All modules are subject to availability.

Future prospects

This MSc is designed for recent graduates who wish to pursue a career in medical imaging with a cancer focus.

The coverage of all aspects of medical imaging used in the management of cancer patients, from the basic physics through to clinical practice as seen in a modern UK NHS radiology department, also make it suitable for professionals working towards clinical qualification as well as those already qualified.

The programme is also the ideal pathway for biomedical science graduates or physicists who wish to develop their biological understanding of this disease prior to PhD study or employment in industry. Students will become independent life-long learners and scientific investigators with an ability to communicate across all disciplines involved with imaging.



Read less
This. MRes Medical and Materials Imaging. course will enable you to develop practical skills and theoretical knowledge in a specialist area of medical and materials imaging, according to your personal aspirations to prepare you for a career in industry or for PhD study. Read more

This MRes Medical and Materials Imaging course will enable you to develop practical skills and theoretical knowledge in a specialist area of medical and materials imaging, according to your personal aspirations to prepare you for a career in industry or for PhD study. You will have access to modern facilities and world leading researchers in the field.

You can gain skills in experimental lab techniques, optical techniques, writing scientific and research literature and the theory behind the practical focus.

The course gives you a unique opportunity to develop knowledge and skills in a wide range of techniques and approaches in both medical and materials imaging. Opportunities exist to use state-of-the-art equipment including: MRI magnets 2.2 Tesla, Transmission Electron, Scanning Electron and Confocal microscopes and Optical Coherence Tomography.

Modules

  • Research methodology and ethics
  • Medical imaging
  • Imaging matter: from atoms to galaxies
  • Research project

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.



Read less

Show 10 15 30 per page



Cookie Policy    X