• Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
King’s College London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Cambridge Featured Masters Courses
Teesside University Featured Masters Courses
"medical" AND "device" AN…×
0 miles

Masters Degrees (Medical Device Regulatory Affairs)

We have 9 Masters Degrees (Medical Device Regulatory Affairs)

  • "medical" AND "device" AND "regulatory" AND "affairs" ×
  • clear all
Showing 1 to 9 of 9
Order by 
As a student of Regulatory Affairs and Services you will be prepared to take a leadership role in one of the most in-demand professions in the medical device industry. Read more
As a student of Regulatory Affairs and Services you will be prepared to take a leadership role in one of the most in-demand professions in the medical device industry. You will learn the educational and career skills necessary for managing the regulatory approval processes from faculty who are industry experts with practical experience in the field. You will receive an education in regulatory affairs with a focus on clinical affairs, quality systems and health care reimbursement.

Program Highlights

Offered at the Twin Cities Graduate Center in Maple Grove, Minnesota, and is available online through a synchronous Adobe Connect Connection.
Courses offered weekday evenings and Saturday mornings.
Designed in collaboration with medtech industry professionals.
An experience course provides students with direct industry regulatory submission experience.
Courses can be taken on a stand-alone basis as a non-degree seeking student.
$63,567 is the average salary for medtech workers in Minnesota.
Medtech employees earn on average 40% more than their counterparts in other industries.

Program Distinctions

Only regulatory program in the United States focused on medical devices.
Courses are taught by industry experts with practical experience and leadership working in regulatory and related fields — many with 15 to 30 years experience.
1 of 3 programs in the United States chosen to distribute a $10,000 annual scholarship from the Association of Medical Diagnostic Manufacturers.
The industry's most senior and experienced executive leaders in clinical research serve on the program's industry advisory board.
The annual medtech networking and job fair is the largest of its kind featuring 15-20 medtech industry companies.

Read less
What's the Master of Biomedical Engineering about? . The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering. Read more

What's the Master of Biomedical Engineering about? 

The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering:

  • Biomechanics
  • Biomaterials
  • Medical sensors and signal processing
  • Medical imaging
  • Tissue engineering

The teaching curriculum builds upon the top-class research conducted by the staff, most of whom are members of the Leuven Medical Technology Centre. This network facilitates industrial fellowships for our students and enables students to complete design projects and Master’s theses in collaboration with industry leaders and internationally recognized research labs.

Biomedical engineers are educated to integrate engineering and basic medical knowledge. This competence is obtained through coursework, practical exercises, interactive sessions, a design project and a Master’s thesis project.

Structure

Three courses provide students with basic medical knowledge on anatomy and functions of the human body. The core of the programme consists of biomedical engineering courses that cover the entire range of contemporary biomedical engineering: biomechanics, biomaterials, medical imaging, biosensors, biosignal processing, medical device design and regulatory affairs.

The elective courses have been grouped in four clusters: biomechanics and tissue engineering, medical devices, information acquisition systems, and Information processing software. These clusters allow the students to deepen their knowledge in one particular area of biomedical engineering by selecting courses from one cluster, while at the same time allowing other students to obtain a broad overview on the field of biomedical engineering by selecting courses from multiple clusters.

Students can opt for an internship which can take place in a Belgian company or in a medical technology centre abroad. 

Through the general interest courses, the student has the opportunity to broaden his/her views beyond biomedical engineering. These include courses on management, on communication (e.g. engineering vocabulary in foreign languages), and on the socio-economic and ethical aspects of medical technology.

A design project and a Master’s thesis familiarize the student with the daily practice of a biomedical engineer.

International

The Faculty of Engineering Science at KU Leuven is involved in several Erasmus exchange programmes. For the Master of Science in Biomedical Engineering, this means that the student can complete one or two semesters abroad, at a number of selected universities.

An industrial fellowship is possible for three or six credits either between the Bachelor’s and the Master’s programme, or between the two phases of the Master’s programme. Students are also encouraged to consider the fellowship and short courses offered by BEST (Board of European Students of Technology) or through the ATHENS programme.

You can find more information on this topic on the website of the Faculty.

Strengths

The programme responds to a societal need, which translates into an industrial opportunity.

Evaluation of the programme demonstrates that the objectives and goals are being achieved. The mix of mandatory and elective courses allows the student to become a generalist in Biomedical Engineering, but also to become a specialist in one topic; industry representatives report that graduates master a high level of skills, are flexible and integrate well in the companies.

Company visits expose all BME students to industry. Further industrial experience is available to all students.

Our international staff (mostly PhD students) actively supports the courses taught in English, contributing to the international exposure of the programme.

The Master’s programme is situated in a context of strong research groups in the field of biomedical engineering. All professors incorporate research topics in their courses.

Most alumni have found a job within three months after graduation.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Career perspectives

Biomedical engineering is a rapidly growing sector, evidenced by an increase in the number of jobs and businesses. The Master of Science in Biomedical Engineering was created to respond to increased needs for healthcare in our society. These needs stem from an ageing population and the systemic challenge to provide more and better care with less manpower and in a cost-effective way. Industry, government, hospitals and social insurance companies require engineers with specialised training in the multidisciplinary domain of biomedical engineering.

As a biomedical engineer, you'll play a role in the design and production of state-of-the-art biomedical devices and/or medical information technology processes and procedures. You will be able to understand medical needs and translate them into engineering requirements. In addition, you will be able to design medical devices and procedures that can effectively solve problems through their integration in clinical practice. For that purpose, you'll complete the programme with knowledge of anatomy, physiology and human biotechnology and mastery of biomedical technology in areas such as biomechanics, biomaterials, tissue engineering, bio-instrumentation and medical information systems. The programme will help strengthen your creativity, prepare you for life-long learning, and train you how to formalise your knowledge for efficient re-use.

Careers await you in the medical device industry R&D engineering, or as a production or certification specialist. Perhaps you'll end up with a hospital career (technical department), or one in government. The broad technological background that is essential in biomedical engineering also makes you attractive to conventional industrial sectors. Or you can continue your education by pursuing a PhD in biomedical engineering; each year, several places are available thanks to the rapid innovation taking place in biomedical engineering and the increasing portfolio of approved research projects in universities worldwide.



Read less
1. Big Challenges being addressed by this programme – motivation. Human health and quality of life is one of the most critical challenges facing humanity. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Human health and quality of life is one of the most critical challenges facing humanity.
• The challenge is all the greater due to a rapidly increasing and rapidly aging global population that now exceeds 7 billion.
• Biomedical Engineering addresses these issues directly, with engineers innovating, analysing, designing and manufacturing new medical implants, devices and therapies for the treatment of disease, injuries and conditions of the human body, to restore health and improve quality of life.
• CNN lists Biomedical Engineering as No. 1 in the “Best Jobs in America” 2013.

2. Programme objectives & purpose

The objective of the programme is to generate graduates with a sound grounding in engineering fundamentals (analysis, design and problem solving), but who also have the multi-disciplinary breadth that includes knowledge of human biology and clinical needs and applications, to be able to make an immediate impact in the field on graduation, in either the academic research or medical technology industry domains. Ultimately the programme aims to generate the future leaders of the national and international medical technology industry, and of academic research and teaching in biomedical engineering.

3. What’s special about CoEI/NUIG in this area:

• NUI Galway pioneered the development of educational programmes in Biomedical Engineering in Ireland, introducing the country’s first bachelor’s degree in Biomedical Engineering in 1998, that was the first to achieve professional accreditation from Engineers Ireland in 2004, and at the graduate level with the Structured PhD programme in Biomedical Engineering and Regenerative Medicine (BMERM) in 2011.
• NUI Galway has been at the forefront of world-class research in biomedical engineering for over 20 years and has pioneered multi-disciplinary research in biomedical engineering and science, with the establishment of the National Centre for Biomedical Engineering Science (NCBES) in 1999, and up to the present day with the announcement of NUI Galway as the lead institution in a new Science Foundation Ireland funded Centre for Research in Medical Devices (CÚRAM).
• NUI Galway has a very close and deep relationship with the medical device industry locally, nationally and internationally, at many levels, from industry visits, guest lectures and student placements, up to major research collaborations.
• Many of our engineering graduates now occupy senior management and technical positions in the medical device industry nationally and internationally.

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Modules:

Advanced Finite Element Methods
Advanced Computational Biomechanics
Advanced Biomaterials
Mechanobiology
Bioinstrumentation Design
Medical and Surgical Practice
Stem Cells and Gene Therapy
Translational Medicine
Polymer Engineering
Advanced Engineering Statistics
Systems Reliability
Lean Systems
Research Methods for Engineers
Financial Management
Regulatory Affairs and Case Studies
Technology, Innovation and Entrepreneurship

6. Any special funding arrangements – e.g. Irish Aid

Comment (PMcH): CoEI scholarships a great idea.

7. Opportunity for number of Industrial & Research internships.

Students enrolled on this programme will have an opportunity to apply for a one-year post-graduation internship in either a related industry or research group in Ireland.

8. Testimonials.

“The Biomedical Engineering programme at NUI Galway has given me the fundamental engineering skills and multi-disciplinary background in biology and clinical application that I needed to be able to make an immediate impact in industry and to be able to design and develop new medical implants and devices. My graduate education through my PhD in bone biomechanics was also very important in this because I directly combined engineering and biological analysis techniques to better understand how stem cells generate new bone, showing me how biomedical engineers can play a critically important role in generating new knowledge on how the body works, and how new treatments can be developed for diseases and injuries, such as osteoporosis.” Evelyn Birmingham, BE Biomedical Engineering (2009), PhD Biomedical Engineering (2014), R&D Engineer, Medtronic Vascular, Galway.

For further details

visit http://nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Biomedical Engineering - PAC code GYE24

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Read less
Regulatory affairs professionals play an important part in coordinating scientific endeavour with regulatory demands throughout the life of a medical device product from design conception through manufacture to market. Read more
Regulatory affairs professionals play an important part in coordinating scientific endeavour with regulatory demands throughout the life of a medical device product from design conception through manufacture to market.
This part-time executive course provides professionals working in medical device regulatory affairs with a recognised way of formalising your skills, whilst retaining in employment with the flexibility to fit around your current job and responsibilities.

Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. The primary biotechnology activity carried out in Ireland is research and development. Ireland has experienced massive growth across the biotechnology sector including food, environmental and pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 global pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, BristolMyers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here. The MSc in Biotechnology is taught by leading
academics in the UCD School of Biomolecular and Biomedical Science and focuses on broadening your knowledge and understanding of the current technologies and processes in the biotechnology industry, including approaches being applied to further advance the discovery and design of new and highly innovative biotech and pharmaceutical products and technologies. It also provides modules on food and environmental biotechnology, as well as industrially relevant expertise in facility design, bioprocess technology, regulatory affairs and clinical trials.

Key Fact

During the third semester you will conduct research in an academic or industrial lab. Projects will be carried out within research groups of the UCD School of Biomolecular and Biomedical Science using state-of-the-art laboratory and computational facilities or in Irish and multinational biotechnology companies, across the spectrum of the dynamic biotechnology industry in Ireland.

Course Content and Structure

Taught masters Taught modules Individual research project
90 credits 60 credits 30 credits
You will gain experimental and theoretical knowledge in the following topics:
• Pharmacology and Drug Development
• Medical Device Technology
• Biomedical Diagnostics
• Recombinant DNA Technology
• Microbial and Animal Cell Culture
• Food Biotechnology
• Facility Design
• Environmental Biotechnology
• Regulatory Affairs
• Drug Development and Clinical Trials
• Bioprocessing Laboratory Technology
Assessment
• Your work will be assessed using a variety
of methods including coursework, group
and individual reports, written and online
exams, and presentations

Career Opportunities

This advanced graduate degree in Biotechnology has been developed in consultation with employers and therefore is recognised and valued by them. A key feature is the opportunity to carry out a project in industry which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation. You will also have the opportunity to become part of a network of alumni in the fi eld of Biotechnology. Prospective employers include Abbott; Allergan; Amgen; Baxter Healthcare; Beckman Coulter; Biotrin International Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon Clinical Research; Johnson & Johnson Ltd.; Kerry Group Plc.; Merck Sharp & Dohme; Quintiles; Sandoz; Serology Ltd.

Facilities and Resources

• The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting edge core technologies including the premier Mass Spectrometry Resource in the country, NMR spectroscopy, real time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less
This award winning programme was designed in partnership with academics and employers to meet the specific requirements of industry. Read more
This award winning programme was designed in partnership with academics and employers to meet the specific requirements of industry. It equips graduates with essential knowledge and skills in the fields of operations, quality, and innovation management.

The programme aims to enhance graduates’ technical and management contribution in various enterprises including manufacturing, financial services, health services, government, and many more. It invites participants from many disciplines: it is suitable for Engineering, Science, Commerce, and Arts graduates who wish to pursue a career in a high-tech environment. This conversion course aspect is of significant interest to students who may wish to change direction from their course of undergraduate study and pursue a new career path that offers them sound employment prospects in a growth area.

The Masters of Applied Science (Enterprise Systems) programme is highly regarded by employers and there has always been a strong demand for our graduates. Graduates of this programme have secured roles in engineering, management and IT in companies such as Accenture, Apple, Boston Scientific, Medtronic, Ingersoll Rand, Pepsi Co. Kerry Group, IBM, Ericsson, Elan and Hewlett Packard.

Key features of the programme include:
• An ethos of innovation
• Engaging teaching methods
• Customised learning programme
• Multidisciplinary approach
• Extensive career opportunities.

Content

You can choose from the following courses. Technology Innovation & Entrepreneurship; Project Management; Applied Innovation; Operations Management; Operations Strategy; Logistics and Transportation; Operations Research; Lean Systems; Quality Systems; Human Reliability; Systems Reliability; Ergonomics; Safety and Risk Management; Regulatory Affairs; Decision Systems & Business Analytics; Information Systems Strategy & Planning.

You will also prepare an industrial based research thesis on a topic to be agreed with an academic supervisor. We will provide some company specific case studies (and industrial mentors) in Med Tech, High Tech and Services organisations.

What some of our employers say

Martin Conroy | Senior Director Medtronic

The Enterprise systems programme at NUI Galway focuses on providing the necessary knowledge to be excellent systems thinkers. Graduates have the ability to understand people; process as well as technology related issues in an organisation. The programme encourages candidates to analyse problems using scientific methods and to generate innovative and effective solutions to these problems. Furthermore graduates are given real skills such as the ability to work in a team and communicate well. Such skills are essential to fast moving high tech companies like ours.

Alan Phelan | CEO Nucleus VP Group

We have engaged and recruited graduates and found them to be great problem solvers and critical thinkers. Their background in lean systems has been very applicable to a number of our companies where they have helped to implement sound systems and processes which have allowed our subsidiaries to scale rapidly.

What some of our graduates say

Paul Gleeson | Accenture

The programme is well delivered as there is a nice balance between practical and classroom based learning. I found the lecturers to be some of the most helpful and engaging people I have come across during my studies as they take a hand on approach to getting students involved in class discussions and debates. All in all, the programme is an excellent foundation for finding future employment opportunities due to the high level of personal and professional development you will obtain. It helped open up numerous career opportunities for me so it is a programme that I would highly recommend.

Sean Hehir | Marvao Medical

With a broad subject choice the Masters of Applied Science at NUI Galway allowed me to tailor the course to focus on the areas of interest to me which also complemented my science degree. Through team-oriented projects I developed better inter-personal skills and grew exponentially both professionally and personally. With a flexible course structure and forward thinking/innovative faculty the degree encourages and inspires entrepreneurship and innovation. The course is very relevant to current industrial practices as I found I had a working knowledge of the medical device industry from day one in my current job.

Paul McCormack | Allergan

I undertook the Masters of Applied Science in NUI Galway with the aim of acquiring new skills and knowledge to aid in my future career progression. The course was challenging and required high standards throughout. While striving to meet these standards I believe I have greatly improved my knowledge of business systems and gained valuable new skills. I believe the lessons learnt during the course will facilitate my personal and professional development into the future.

Wenjing Tang | Ernst and Young

The Master of Applied Science (Enterprise systems) programme offers a variety of multidisciplinary modules, which was a great conversion for me from the pure technical background. The essential knowledge and skills I gained from the course help me to work in different roles, either as a software developer in a technology company or an IT consultant in a financial service company. The programme is a great foundation to pursue wider career path.

Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Ireland has experienced massive growth across the Biotechnology sector including Food, Environmental and Pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 world pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, Bristol-Myers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here.
The MSc in Biotechnology and Business is an exciting programme designed for non-business graduates who want to become managers or entrepreneurs in complex business environments in technology and science-based fields. The MSc in Biotechnology and Business provides you with a solid knowledge of techniques used in modern biotechnology including hands-on experience of bioprocessing. You will also receive a comprehensive business education. You will learn to identify and solve business problems
in local and international settings, enhance your communication and leadership skills, and improve your ability for independent thinking and developing creative solutions. The programme is the result of a close collaboration between the UCD School of Biomolecular and Biomedical Science and the UCD Michael Smurfit Graduate School of Business, which is Ireland’s leading business school.

Key Fact

The programme is the result of a close collaboration between the UCD School of Biomolecular and Biomedical Science and the UCD Michael Smurfit Graduate School of Business, which is Ireland’s leading business school.

Course Content and Structure

90 credits 70 credits 20 credits
taught masters taught modules group business plan research project
You will spend 50% of your time studying biotechnology and 50% of your time studying business. You may choose optional biotechnology modules to ensure that you specialise in your area of interest.
Depending on your chosen subjects you will also gain experimental and theoretical knowledge in the following topics:
• Drug Discovery
• Medical Device Technology
• Biomedical Diagnostics
• Regulatory Affairs
• Bioprocessing
• Marketing Management
• Corporate Finance
• Entrepreneurship
• Business plan development
• Biotechnology Case Study

Career Opportunities

This advanced graduate degree in Biotechnology and Business has been developed in consultation with employers and therefore will be recognised and valued by them. A key feature is the opportunity to carry out a business development plan which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation.
Prospective employers include: Abbott; Allergan; Alpha Technologies;
Amgen; Avonmore Foods; Baxter Healthcare; Beckman Coulter; Biotrin International
Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon
Clinical Research; ImmunoGen Inc.; Janssen Pharmaceutical Ltd.; Johnson & Johnson Ltd.;
Kerry Group Plc.; Medtronic; Merck Sharp & Dohme; Olympus Diagnostica; Quintiles;
Quest International; Sandoz.; Seroba Kernel; Serology Ltd.

Facilities and Resources

The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting-edge core technologies including the premier Mass Spectrometry resource in the country, NMR spectroscopy, real-time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X