• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
University of Southampton Featured Masters Courses
University of Reading Featured Masters Courses
Ulster University Featured Masters Courses
Coventry University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"mechatronics" AND "robot…×
0 miles

Masters Degrees (Mechatronics And Robotics)

  • "mechatronics" AND "robotics" ×
  • clear all
Showing 1 to 15 of 29
Order by 
Mechatronics, robotics and autonomous systems represent a range of important technologies which underpin many applications – from manufacturing and automation through to self-driving cars and robotic surgical tools. Read more
Mechatronics, robotics and autonomous systems represent a range of important technologies which underpin many applications – from manufacturing and automation through to self-driving cars and robotic surgical tools.

Delivered by the Schools of Electronic and Electrical Engineering, Mechanical Engineering and Computing, this programme will equip you with the specialist knowledge and wide range of skills to pursue a career in this dynamic field.

Core modules will give you a foundation in the many applications of mechatronics and robotics and develop your understanding of the wide range of industry sectors that use robotics. You’ll also build research skills with a major project in fields as diverse as robot swarms, sensing systems, bio-inspired robots and surgical robotics.

Diverse optional modules will allow you to focus on topics that suit your interests and career plans, guided by academics whose teaching is informed by their own world-class research.

Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

Modules

In each of the semesters 1 and 2 you will be required to take two core and one optional module from the lists below:

Semester 1:

•Robotics (20 credits)
• Microprocessors and Control (20 credits)

Optional modules (Semester 1):

• Pattern recognition and machine learning (20 credits)
• Technical, research and professional skills (20 credits)
• Advanced Instrumentation and Design (20 credits)
• Electrical Energy Converters and Drives (20 credits)

Semester 2:

• Digital Signal Processing and Real Time Systems (20 credits)
• Mechatronics and Embedded System Design (20 credits)

Optional modules (Semester 2):

• Electromechanical systems and manufacturing technology (20 credits)
• Technology evaluation and commercialisation (20 credits)
• Cloud Computing (20 credits)
• E-Business Applications (20 credits)

Semester 3

•MSc project (60 credits)

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. Read more

Mission and goals

The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. The level of cultural education is raised during the first year by broadening the knowledge of advanced analysis methods, which in the second year are applied in specialisation subjects and a thesis. The first year is offered in the Milano Bovisa and Lecco campuses with the same study plan (the first year is not available in the Piacenza campus, which offers only the second year). Students can choose different previously approved study plans (PSPA) in the second year. Some are offered in the Milano Bovisa campus (“Impianti e Produzione” [Production Plants and Production], “Meccatronica e Robotica” [Mechatronics and Robotics], “Metodi e Tecniche di Prototipazione Virtuale” [Methods and Techniques for Virtual Prototyping], “Motori e Turbomacchine” [Engines and Turbomachinery], “Progettazione” [Design], “Materiali e Tecnologie Innovative” [Materials and Innovative Technologies] and “Veicoli Terrestri” [Ground Vehicles]). Others are offered in the Lecco campus (“Mechanical Systems Design” and “Industrial Production”) and one in the Piacenza campus (“Macchine Utensili e Sistemi di Produzione” [Machine Tools and Production Systems]).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Career opportunities

Graduates with a Laurea Magistrale (equivalent to a Master of Science) in Mechanical Engineering are technicians who can independently develop the functional, construction and energy-related aspects of innovative products, processes and systems in industry and in the advanced tertiary sector. On passing the State Professional Examination, Mechanical Engineering Graduates with a Laurea Magistrale (equivalent to a Master of Science) can ask to be included in the Register of Engineers (section A).

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mechanical_Engineering_04.pdf
The MSc Programme in Mechanical Engineering – Ingegneria Meccanica provides an academically challenging exposure to modern issues in advanced Mechanical Engineering.
The educational goal of the MSc Programme is to train highly qualified engineers, capable of playing different roles in the job market, by providing them with sound scientific, economic and technical competences, together with broad practical and professional skills needed for a successful career in a technologically advanced and rapidly evolving society.
The specialist in Mechanical Engineering, being involved in the design, production process and operation of products and systems, needs to develop a strong interdisciplinary background in machine design, with respect to functional requirements, dynamic and structural analysis, propulsion and engine systems, fluid mechanics, material properties and selection, manufacturing processes and production systems, operation and management of industrial plants, experimental techniques, mechatronics and industrial automation. The programme is taught in English. http://www.ccsmecc.polimi.it/en

Subjects

The 1st year is organised in the following compulsory modules: Control and Actuating Devices for Mechanical Systems, Applied Metallurgy, Energy Systems, Nonconventional Machining Processes, Machine Design, Mechanical System Dynamics, Mechanical Measurements, Configuration and Management of Production Systems.

In the 2nd year students will have the possibility to specialize the training, by choosing among the following tracks:
Milano Bovisa Campus: Production Systems, Mechatronics and robotics, Virtual prototyping, Internal Combustion Engines and Turbomachinery, Advanced Mechanical Design, Advanced Materials and Technology, Ground Vehicles.
Lecco Campus: Mechanical Systems Design, Industrial Production.
Piacenza Campus: Machine Tools and Manufacturing Systems.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies. Read more
This course develops your knowledge and skills in mechatronics design and practice. You will develop skills in mechanical and electronic engineering, computing and control, and multidisciplinary skills appropriate to the requirements of modern manufacturing technologies.

This one year course is intended for honours (or international equivalent) graduates in mechatronics, mechanical or mechanical related engineering (eg automotive, aeronautical or design), physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a Preliminary Year.

The taught part of the course consists of major mechatronic engineering themes such as:
-Mechatronics
-Robotics
-Industrial automation
-Embedded systems
-Instrumentation and drives

You have the opportunity to undertake in-depth studies through research projects. Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of mechatronics to practical design, make and test investigations.

General areas for project work include:
-Mechatronics
-Mobile robotics
-Industrial robotics
-Microelectronic-mechanical systems
-Computational engineering modelling

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Graduates of this course who pass with merit are normally offered the opportunity to progress to PhD study either on a self-funded project or on a funded PhD studentship.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institute of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This advanced course focuses on enabling you to become proficient in communicating across a range of different disciplines and delivering optimised engineering solutions using an integrated multidisciplinary mechatronics approach. Read more

About the course

This advanced course focuses on enabling you to become proficient in communicating across a range of different disciplines and delivering optimised engineering solutions using an integrated multidisciplinary mechatronics approach. You will be exposed to a broad range of engineering disciplines, be able to solve multidisciplinary mechatronics problems and develop the skills to apply a mechatronic approach to the solution of technical problems.

Reasons to Study

• Accredited by the Institution of Engineering and Technology (IET)
ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Graduate employability
Mechatronic engineers are in high demand as more industries seek to apply advances across a range of engineering disciplines

• Enjoy access to state-of-the-art facilities
including dedicated mechanical, electrical and electronic laboratories especially suited for mechatronics, as well as an for the manufacture of student designs

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Work with leading research groups
you will be offered opportunities to work on projects with research groups within the faculty, including the Centre for Advanced Manufacturing Processes and Mechatronics, that are engaged in high-class, research and industrial collaboration and consultancy

• Course content relevant to modern day practice
our research informs our teaching, ensuring the course content covers current industry topics and issues

• Excellent graduate prospects
graduates enjoy exciting career opportunities in a range of fields such as robotics and automation, manufacturing, aerospace, material processing, energy and power.

Modules

First semester (September to January)

• Electromechanics
• Mechatronic Systems - Engineering and Design
• Engineering Business Environment and Energy Studies
• Programming and Software Engineering

Second semester (February to May)

• Machine Vision, Robotics and Flexible Automation
• Engineering Systems: Dynamics and Control
• Microprocessor Applications and Digital Signal Processing
• Research Methods

Individual Project (Stage three)

This research can be industrially-based or linked to an industrial partner, attached to one of the mechatronic-related research teams within the faculty or in other collaborating institutions. The research project should be in an area relevant to Mechatronics, where clear evidence of the ability to solve a real multidisciplinary problem is demonstrated. The project assessment involves a formal presentation, production of a technical paper and a thesis.

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and assessment

Teaching is delivered through a variety of methods including lectures, tutorials and laboratories. You will be expected to undertake self-directed study.

Contact and learning hours

For taught sessions you will attend eight modules with a total of 48 hours (four hours per week for 12 weeks each), with eight hours per module per week of average additional self-directed study. For the individual project you normally will spend 13 weeks working five days (eight hours per day) a week to complete it, and have one hour per week contact time with your supervisor.

Academic expertise

Research is carried out by the Mechatronics Research Centre, which holds a considerable number of UK and EU research project grants and has collaborative research links with more than 100 national and international organisations. The group is internationally regarded and specialises in machine design, control and simulation, fluid power systems and motion control.

As part of your studies, you will be offered opportunities to work on projects with research groups within the faculty that are engaged in high-class, leading-edge research and industrial collaboration and consultancy.

During the project element of the course, the Intelligent Machines and Automation Systems (IMAS) Research Laboratory provides access to dedicated research facilities

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The Masters in Mechatronics is a fusion of mechanical, electrical, electronic and control engineering. Modern industry depends for its success in global markets on its ability to integrate these subjects into both the manufacturing process and innovative products and systems. Read more
The Masters in Mechatronics is a fusion of mechanical, electrical, electronic and control engineering. Modern industry depends for its success in global markets on its ability to integrate these subjects into both the manufacturing process and innovative products and systems.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will learn how to apply design synthesis and analysis techniques within a coherent range of subjects in mechatronic engineering.
◾You will learn how to utilise specific software tools to support mechatronic system synthesis and analysis activity, and professionally plan, report and present the results of multidisciplinary project activity.
◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people such as James Watt.
◾This programme has a September and January intake*.

*For suitably qualified candidates.

Programme structure

Modes of delivery of the MSc in Mechatronics include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses normally offered include

◾Data signal processing
◾Integrated system design project.

Optional courses

◾Advanced manufacture
◾Auto vehicle guidance systems
◾Computer communications
◾Control
◾Fault detection, isolation and reconfiguration
◾Lasers
◾Power electronics and drives
◾Real-time embedded programming
◾Robotics 4.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits, many of which are conducted with industry.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Mechatronics. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The MSc in Mechatronics has developed in consultation with industry – it will provide you with the interdisciplinary approach necessary to achieve the coherent integration of these traditionally divided disciplines.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcocks, Howdens, Doosan and Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include manufacturing production systems; system design and manufacture; product engineering and manufacture.

Graduates of this programme have gone on to positions such as:
Senior Software Engineer at Wipro Technologies.

Read less
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. Read more
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. The result is mechatronics, a synergistic combination of mechanical components with electronic and IT systems. This technological integration forms new areas of application like electrical and digital technology in machine communication and control.

With the introduction of the Master program in Mechatronics & Smart Technologies, MCI has filled a gap in the educational offering in the west of Austria. With its international orientation and a consistent focus on practical relevance, the program makes a significant contribution to the goal of establishing the Tyrol as a high-tech location with the ability to compete at the international level and defy the fluctuations of the business cycle. With the implementation of the majors in mechanical and electrical engineering and the specialization in computational mechanics at our partner campus in Paris, MCI continues its way as spear head of the Tyrolean technology offensive.

The goal of the Master program in particular is to equip graduates with a competence in mechatronics that is more than the sum of its parts, i.e. mechanical engineering, electronics and IT. Integration of these three pillars is the key to smart technologies as robotics, automated code generation, multi-physical simulation, systems in systems and smart automation, and their application in electro mobility, industry 4.0 and energy efficiency.

With supporting classes in Leadership, Strategic Management, Marketing and Entrepreneurship, this study program opens up perspectives for knowledge-based careers in the manufacturing and service industries worldwide.

Contents

The Master program in Mechatronics & Smart Technologies lasts four semesters comprising 915 hours of classes.

A semester of the full-time program comprises 15 weeks of lectures. The winter semester starts at the beginning of October until the end of January and the summer semester starts in March and lasts until the end of June.
Classes are entirely taught in English, attendance is required from Monday to Friday with additional block classes as well as project and laboratory work.

For the part-time program, the semesters last 20 weeks, from the beginning of September until the middle of February for the winter semester, and from the end of February until the middle of July for the summer semester. Classes are mainly taught in German but also partly in English. Attendance is required on Fridays from 1.30 to 10 p.m. and on Saturdays from 8 a.m. to 5 p.m., and there are additional block classes as well as project and laboratory work, etc.

Read less
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. Read more
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. The result is mechatronics, a synergistic combination of mechanical components with electronic and IT systems. This technological integration forms new areas of application like electrical and digital technology in machine communication and control.

With the introduction of the Master program in Mechatronics & Smart Technologies, MCI has filled a gap in the educational offering in the west of Austria. With its international orientation and a consistent focus on practical relevance, the program makes a significant contribution to the goal of establishing the Tyrol as a high-tech location with the ability to compete at the international level and defy the fluctuations of the business cycle. With the implementation of the majors in mechanical and electrical engineering and the specialization in computational mechanics at our partner campus in Paris, MCI continues its way as spear head of the Tyrolean technology offensive.

The goal of the Master program in particular is to equip graduates with a competence in mechatronics that is more than the sum of its parts, i.e. mechanical engineering, electronics and IT. Integration of these three pillars is the key to smart technologies as robotics, automated code generation, multi-physical simulation, systems in systems and smart automation, and their application in electro mobility, industry 4.0 and energy efficiency.

With supporting classes in Leadership, Strategic Management, Marketing and Entrepreneurship, this study program opens up perspectives for knowledge-based careers in the manufacturing and service industries worldwide.

Major Mechanical Engineering

The specialization in Mechanical Engineering prepares graduates for the challenges of modern mechanical engineering. The focus here is on simulation, hydraulics, pneumatics and material sciences, and also on mechanics, machine dynamics and handling technology.

Contents

The Master program in Mechatronics & Smart Technologies lasts four semesters comprising 915 hours of classes.

A semester of the full-time program comprises 15 weeks of lectures. The winter semester starts at the beginning of October until the end of January and the summer semester starts in March and lasts until the end of June.
Classes are entirely taught in English, attendance is required from Monday to Friday with additional block classes as well as project and laboratory work.

For the part-time program, the semesters last 20 weeks, from the beginning of September until the middle of February for the winter semester, and from the end of February until the middle of July for the summer semester. Classes are mainly taught in German but also partly in English. Attendance is required on Fridays from 1.30 to 10 p.m. and on Saturdays from 8 a.m. to 5 p.m., and there are additional block classes as well as project and laboratory work, etc.

Read less
EMARO+ is an integrated Masters course conducted by. Ecole Centrale de Nantes (France), Warsaw University of Technology (Poland), the University of Genoa (Italy), and Jaume I University (Spain). Read more
EMARO+ is an integrated Masters course conducted by: Ecole Centrale de Nantes (France), Warsaw University of Technology (Poland), the University of Genoa (Italy), and Jaume I University (Spain).

It has been designed and accepted in the framework of the European Union ERASMUS-MUNDUS programme (ERASMUS+ H2020).

It has 7 associated partners: two Asian Institutions (KEIO University - Japan, SJTU - China) and five industrial partners (IRT Jules Verne - France, Airbus Group Innovations - France), BA Systemes - France, Robotnik - Spain, and SIIT - Italy).

The programme of study lasts two academic years (120 ECTS) split into four equally loaded semesters. The student has to spend the first two semesters in one European institution and the second two semesters in another European institution. Another mobility during the fourth semester to an Asian partner or to an industrial partner is possible.

The language of instruction is English, but local language and culture courses of the hosting countries are included in the programme of study. The aim of the first two semesters is to provide the students with a solid interdisciplinary background across the main areas of robotics (Cognition, Action, Perception). During the third semester, depending on the host institution, the student will deal with one or more of the following sectors: industrial robot systems, service robots (domestic, health, rehabilitation, leisure), intelligent vehicules and security robots. The fourth semester is dedicated to the Masters Thesis. The student carries out his/her research work under the joint supervision of two advisors from two different consortium institutions.

Students that graduate from the EMARO masters course obtain two masters degrees from the European institutions where they studied. The obtained degrees are officially recognised and give full access to PhD study programmes.

The Consortium delivers a Diploma supplement describing the nature, level, context, content and status of the studies that were pursued and successfully completed by the student.

The Masters is designed to promote a high-quality educational offer in the area of advanced and intelligent robotics. After graduation the students will have mastered the different areas of robotics (Mathematical modeling, Control Engineering, Computer Engineering, Mechanical design) in order to be able to deal with Robotics systems as a whole rather than just to concentrate on one particular area.

Although the EMARO+ programme is applied primarily within the context of robotic systems, the concepts covered can be applied to a much wider range of other engineering and economical systems. The career prospects for EMARO+ graduates are therefore excellent. They can be employed in many industrial and economical companies, as the courses are relevant to today’s high technology society.

Read less
Mechatronics is a unique study area that integrates mechanical, electronic and control engineering to create the complex systems that underpin modern automated processes. Read more
Mechatronics is a unique study area that integrates mechanical, electronic and control engineering to create the complex systems that underpin modern automated processes. The course provides coherent and up to date coverage of Mechatronics with specialist modules available in Mechanical, Electronic and Robotics areas. The approach spans specification and design to realisation, with particular emphasis on the application of industry standard CAD tools and DSP devices to develop solutions to practical engineering problems.

NOTE Are you a student from outside the EU? If you are we have designed a version of this award especially for you! It is called the Extended International Master in Mechatronics. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success.

Course content

The course consists of a taught programme followed by an individual project. The taught programme is based on eight modules. Normally these modules are taken over two semesters for the full time route. The individual project is then studied over a further semester to complete the Masters Award.

Semester 1 runs from September to January and Semester 2 from February to June. Study of the MSc normally commences in September. This course has an industrial placement route.

Core modules are:
-Design Technologies for Master
-Research Methods & Project Management
-Embedded Real Time Systems
-MSc Project

Option Modules are:
-Energy Management
-Photovoltaic Technology
-Digital Electronic Systems
-Digital Signal Processing
-Applied Structural Integrity
-Structural Integrity
-Control Systems
-Advanced Engineering Materials
-Sustainable Design & Manufacture

“This course can be completed within 1 year. However this timescale is dependent on students starting the course in September, passing all modules, undertaking their project during the summer semester and experiencing no other delays (such as health issues). Many students choose to delay their project start and enjoy a well-deserved summer break to ‘re-charge their batteries’ which also has academic benefits. In this case a more realistic duration is 15 months for September starters and 18 months for January starters.”

Employment opportunities

Future option for graduates include employment in local, national and international industries normally initially in Research and Development roles although many progress to management positions. Alternatively graduates may choose to pursue further academic qualifications and register for a PhD programme.

Read less
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. Read more
This course is offered in response to sustained international demand for highly skilled graduates in mechanical engineering for manufacturing and process engineering industries. On completion of the course, you will be able to:

- show a thorough understanding of the principles and theoretical bases of modern manufacturing techniques, automation, and production processes
- identify appropriate manufacturing systems for different production requirements and analyse their performance
- apply appropriate technology, quality tools and manufacturing methodology to design, re-design and continuously improve the manufacturing operations of engineering companies
- plan, research, execute and oversee experiments and research projects, critically analyse and interpret data, and effectively disseminate results
- work effectively as a member of a multidisciplinary team, be self-motivated, able to work independently and demonstrate leadership

Visit the website: http://www.ucc.ie/en/ckr27/

Course Details

The course is 12 months in duration starting in September and consists of 60 credits in Part I from September to March, and 30 credits in Part II from June to September. You take 10 taught modules from the list below to the value of 50 credits and also undertake a preliminary research project (ME6019) worth 10 credits in Part I. If you obtain a minimum of 50% in the taught modules and the preliminary project, you will be eligible to progress to Part II and undertake a major four-month research project (ME6020) worth 30 credits, and submit a dissertation leading to the award of the MEngSc degree.

ME6001 Manufacturing Systems (5 credits)
ME6002 CAD/CAM (5 credits)
ME6003 Production Management (5 credits)
ME6004 Operations Research and Project Economics (5 credits)
ME6007 Mechanical Systems (5 credits)
ME6008 Mechatronics and Robotics (5 credits)
ME6009 Industrial Automation and Control (5 credits)
ME6010 Technology of Materials (5 credits)
ME6012 Advanced Robotics (5 credits)
PE6002 Process Automation and Optimisation (5 credits)
PE6003 Process Validation and Quality (5 credits)
PE6007 Mechanical Design of Process Equipment (5 credits)
PE6009 Pharmaceutical Engineering (5 credits)
CE3010 Energy in Buildings (5 credits)
CE4016 Energy Systems in Buildings (5 credits)
CE6024 Finite Element Analysis (5 credits)
EE4012 Biomedical Design (5 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/engineering/page05.html

Format

Each module typically consists of 24 lectures, 12 hours of continuous assessment, plus additional supplemental reading and study, carried out over one of two 12-week semesters from September to December (Semester 1), or January to March (Semester 2). The exact workload in each teaching period will depend on the choice of modules. In addition, a substantial weekly commitment to the project module ME6019 is expected over both semesters.

Assessment

Individual modules have different methods of assessment but this typically consists of a single end-of-semester examination in December or April/May, plus continuous assessment throughout the relevant semester. This continuous assessment may consist of a combination of in-class tests, formal laboratories or practicals, design exercises, project work, written reports and presentations. Any repeat examinations are held in August.

Students who pass but fail to achieve an average mark of at least 50% across the taught modules excluding the Preliminary Research Project (ME6019) or do not achieve a mark of at least 50% in the Preliminary Research Project (ME6019) will be eligible for the award of a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems). Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Mechanical Engineering (Manufacturing, Process and Automation Systems).

Careers

In response to increasing demand for highly skilled graduates in the field of mechanical engineering applied to the manufacturing and pharma-chem industries, this course will produce mechanical engineering postgraduates who are proficient in the development and realisation of modern manufacturing, process and automation systems. This is achieved through developing an understanding of the concepts of manufacturing systems, and the skills to analyse, design and implement manufacturing systems in practice. This is combined with an understanding of process automation and operational management. The course will equip you with an-up-to date knowledge of manufacturing techniques and processes.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This programme offers a broad range of advanced subjects across the mechanical engineering disciplines. It’s aimed at graduate engineers who wish to pursue a career in industry using advanced engineering techniques, or those who want to gain in-depth knowledge for a career in research in industry or academia. Read more
This programme offers a broad range of advanced subjects across the mechanical engineering disciplines. It’s aimed at graduate engineers who wish to pursue a career in industry using advanced engineering techniques, or those who want to gain in-depth knowledge for a career in research in industry or academia.

We emphasise the application of computational methods and packages in mechanical engineering analysis design and manufacture to solve complex engineering problems, but you’ll choose from a wide variety of options that allow you to tailor your studies to suit your own interests or career ambitions. You could gain specialist knowledge in mechatronics and robotics, automotive engineering, tribology, aerospace engineering and many more.

You’ll be taught in world-class facilities by researchers who are making breakthroughs in their fields. It’s an excellent opportunity to gain a wide range of knowledge and skills that will prepare you for an exciting and challenging career.

Read less
Mechatronics is an exciting, growing field that combines mechanical, electronic and control systems to create a complete device. It mostly relates to the mechanical systems that perform relatively fast and precise motions and therefore require sophisticated electronic devices and control algorithms. Read more
Mechatronics is an exciting, growing field that combines mechanical, electronic and control systems to create a complete device. It mostly relates to the mechanical systems that perform relatively fast and precise motions and therefore require sophisticated electronic devices and control algorithms. This hands-on course will help you develop the multidisciplinary knowledge that the fast-moving industrial, commercial and domestic sectors demand of their technical professionals.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Academic teaching is complemented by presentations from industry experts and by industrial trips, such as the UK annual NI Days conference, held in London.
-You will enjoy group assignments, supporting each other's learning and have opportunities to develop your ability to work in teams. You will also benefit from an industry-relevant final project. The presentation, which is part of the final project, will prepare you for your job interview.

What will you study?

Although mechatronics may be perceived in combination with robotics, as robots are indeed fast and precise mechanical systems, it also has wider applications, such as in hard-disk drives for computers, tracking cameras for surveillance applications, intelligent actuators in automotive systems and many other areas including devices used in the field of healthcare and rehabilitation, like intelligent prosthetic devices.

The hands-on approach on the course, using our state-of-the art multidisciplinary laboratories with equipment from National Instruments, Freescale, Agilent Technology and many more, adds value to this postgraduate degree. The course dovetails with research activities of the teaching staff, implementing the latest advances in our research. Utilising applied research, you have the opportunity to do your own research within an individual industry-relevant 'capstone' project. This includes preparation of a scientific paper, giving an opportunity for that first breakthrough into publishing your work.

Assessment

Coursework and/or exams, presentations, industrial or research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Control Systems with Embedded Implementation
-Mechatronic Design and Automation
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Advanced Control and Robotics
-Digital Signal Processing

Read less
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. Read more
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. The aim of the MEngSc (Electrical and Electronic Engineering) programme is to provide advanced coursework with options for a research element or industrial element, and additional professional development coursework. Students choose from a range of courses in Analogue, Mixed Signal, and RF Integrated Circuit Design, VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, Adaptive Signal Processing and Advanced Control. A range of electives for the coursework-only stream includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship

Visit the website: http://www.ucc.ie/en/ckr47/

Course Details

The MEngSc (EEE) has three Streams which include coursework only, coursework with a research project, or coursework with an industrial placement. Students following Stream 1 take course modules to the value of 60 credits and carry out a Minor Research Project to the value of 30 credits. Students following Stream 2 take course modules to the value of 60 credits and carry out an Industrial Placement to the value of 30 credits. Students following Stream 3 take course modules to the value of 90 credits, up to 20 credits of which can be in topics such as business, law, and innovation.

Format

In all Streams, students take five core modules from the following range of courses: Advanced Analogue and Mixed Signal Integrated Circuit Design, Advanced RF Integrated Circuit Design, Advanced VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, and Adaptive Signal Processing and Advanced Control. In addition, students following Stream 1 (Research Project) and Stream 2 (Industry Placement) carry out a Research Report. Following successful completion of the coursework and Research Report, students in Streams 1 and 2 carry out a research project or industry placement over the summer months.

Students who choose the coursework-only option, Stream 3, take additional courses in lieu of the project or placement. These can be chosen from a range of electives that includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship.

Assessment

Part I consists of coursework modules and mini-project to the value of 60 credits. These are assessed using a combination of written examinations and continuous assessment. Successful completion of the initial tranche of coursework modules qualifies the student to progress to Part II, the research project, industrial placement, or additional coursework to the value of 30 credits in the cases of Streams 1, 2, and 3, respectively.

Placement and Study Abroad Information

For students following Streams 1 and 2, research projects and industrial placements are normally in Ireland. Where the opportunity arises, a research project or work placement may be carried out outside Ireland.

Careers

MEngSc (Electrical and Electronic Engineering) graduates will have a competitive advantage in the jobs market by virtue of having completed advanced coursework in Electrical and Electronic Engineering and, in the case of Streams 1 and 2, having completed a significant research project or work placement.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. Read more
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. UNB’s mechanical engineering program offers students exciting and diverse program options including: biomedical engineering, instrumentation and control, manufacturing engineering, materials characterization and processing, and mechatronics.

Students have access to various labs, and the department is linked with various research groups and institutes, for example, the Advanced Manufacturing Lab (High performance machining, manufacturing and materials characterization), Robotics and Mechanisms Laboratory, Silicon Hall (research lab for micro & nano fabrication and bionanotechnology), Bioenergy and Bioproducts Research Lab, Institute of Biomedical Engineering.

Research Areas

-Acoustics & Vibration
-Advanced Process Controls
-Advanced Manufacturing and Materials Processing
-Biofuels and Biomass Processing
-Biomedical Engineering and Biomaterials
-Composites
-High-performance machining
-Laser machining micro/nano processing
-Material Characterization
-Multiscale modeling in solid and fluid mechanics
-Mechatronics & Design
-Nanostructured Coatings
-Renewable Energy Systems
-Robotics & Applied Mechanics
-Smart Sensors
-Solid Mechanics
-Thermofluids & Aerodynamics

Read less

Show 10 15 30 per page



Cookie Policy    X