• Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
University of Lincoln Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Kent Featured Masters Courses
University of Birmingham Featured Masters Courses
Newcastle University Featured Masters Courses
"marine" AND "biotechnolo…×
0 miles

Masters Degrees (Marine Biotechnology)

  • "marine" AND "biotechnology" ×
  • clear all
Showing 1 to 15 of 25
Order by 
This skills-focussed MSc provides students with a thorough knowledge of the biodiversity in our oceans while receiving practical training in cutting-edge techniques and experimental approaches underpinning on-going developments in marine biotechnology. Read more
This skills-focussed MSc provides students with a thorough knowledge of the biodiversity in our oceans while receiving practical training in cutting-edge techniques and experimental approaches underpinning on-going developments in marine biotechnology.
Students learn about existing products developed by marine biotechnologists and gain insight into new and emerging global market opportunities. Seminars led by distinguished industrialists and commercial marine biotechnologists encourage the entrepreneurial spirit, provide inspiration and allow for appreciation of commercial realities.

In addition, students are equipped with key employability skills, including:
-Problem solving and critical thinking.
-Information retrieval, evaluation and presentation.
-Data interpretation and report writing.
-Group working, organisation and leadership.

Through an active approach to learning, students develop confidence to work independently and are encouraged to pursue their main interests.

Key information

-Degree type: MSc, Postgraduate Diploma.
-Study methods: Part time, full time. Campus based.
-Duration: 12 months full time.
-Start date: September.
-Course Director: Dr Andrew Desbois.

Course objectives

This course provides students with:
-An awareness of the diversity of marine organisms and the adaptations that enable them to prosper in their natural habitats.
-A thorough knowledge of the fundamental science and methodologies underpinning on-going developments in marine biotechnology.
-An understanding of the latest advances and global opportunities that exist in the burgeoning field of marine biotechnology.
-Training in practical, investigative and research skills, as well as commercialisation and intellectual property protection.

About the Faculty

The Faculty of Natural Sciences provides a distinctive and distinguished academic arena that explores the complex and challenging inter-relationships between human behaviours, technologies, biological, environmental and aquatic systems.

The Faculty brings together four divisions:
-Institute of Aquaculture.
-Biological and Environmental Sciences.
-Computing Science and Mathematics.
-Psychology.

World-leading original, significant and rigorous research is found in all of our academic disciplines. Our approach is interdisciplinary and research aspires to be cutting-edge, collaborative and excellent – internationally recognised for its quality and relevance.
In the most recent Research Excellence Framework (REF), the Faculty participated in six units of assessment where it excelled in a breadth of disciplines:
-1st in the UK in Aquaculture.
-4th in the UK for Agriculture, Veterinary and Food Science.
-3rd in Scotland (18th in the UK) for Psychology.
-One of only four UK universities with Psychology research rated as having 100% world-leading impact.

Other admission requirements

If English is not your first language you must have one of the following qualifications as evidence of your English language skills:
-IELTS: 6.0 with 5.5 minimum in each skill.
-Cambridge Certificate of Proficiency in English (CPE): Grade C.
-Cambridge Certificate of Advanced English (CAE): Grade C.
-Pearson Test of English (Academic): 54 with 51 in each component.
-IBT TOEFL: 80 with no subtest less than 17.

For more information go to English language requirements: https://www.stir.ac.uk/study-in-the-uk/entry-requirements/english/

If you don’t meet the required score you may be able to register for one of our pre-sessional English courses. To register you must hold a conditional offer for your course and have an IELTS score 0.5 or 1.0 below the required standard. View our range of pre-sessional courses: http://www.intohigher.com/uk/en-gb/our-centres/into-university-of-stirling/studying/our-courses/course-list/pre-sessional-english.aspx

Read less
The oceans do not exist in isolation but are in constant interaction with the atmosphere and underlying geology receiving energy from the sun and to a lesser extent from geothermal sources. Read more
The oceans do not exist in isolation but are in constant interaction with the atmosphere and underlying geology receiving energy from the sun and to a lesser extent from geothermal sources. The highly interdisciplinary field of Marine science, the study of the oceans from the deep sea to shallow coastal seas, aims to understand the biology, chemistry, geology and physics of this dynamic system so central to all our lives.

This programme offers students with a background in marine biology, geology or geography the opportunity to integrate their expertise in the wider marine science context.

The programme has one core course and offers a wide variety of options with maximum flexibility allowing students to pursue their studies either at our Orkney Campus or in Edinburgh.

Core course

- Oceanography and Marine Ecology
- Research Project (MSc only)

Optional courses

- Marine Resources and Sustainability
- Diversity of Marine Organisms1
- Applied Research Design & Analysis1
- Climate Change: Causes and Impacts
- Marine Ecotoxicology
- Practical Marine Ecotoxicology1
- Marine Ecology & Fisheries
- Introduction to Marine Planning
- Economics of Renewable Energy
- Environmental Processes
- Energy in the 21st Century
- Marine Biotechnology
- Practical Skills in Marine Biotechnology (Edinburgh Campus only owing to labs and practicals)
- Marine Environmental Monitoring
- Climate Change: Mitigation and Adaptation Measures
- GIS for Marine and Environmental Scientists
- Tropical Coral Reef Field Course
- Practical Skills in Marine Surveying (Orkney Campus only - field work)
- Environmental Policy & Risk
- Development Appraisal
- Development Project

Read less
The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Read more

Overview

The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Increasingly, biotechnology companies are recruiting Master’s students with specialised skills to perform jobs previously the reserve of Doctorate level scientists https://www.sciencemag.org/careers/features/2012/01/wanted-bs-and-ms-scientists-life-sciences-industries.

At the end of the course you will be able to meet the challenges of biotechnology, demonstrate critical thinking and solve problems, exploit opportunities, and know how ideas can be turned into viable businesses or a successful grant application.

Why study Biotechnology at IBERS?

• You want specialist experience and knowledge in biotechnology research and commercial application to give you a competitive edge in the job market and underpin your successful career.
• IBERS has the credentials to deliver these goals.
• With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University, and we regard teaching as particularly important to our mission https://youtu.be/gU5Kd-vlglQ. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey 2016 https://www.aber.ac.uk/en/ibers/ug-study/ugrad-courses/nss/, with three courses recording 100% student satisfaction and a further 10 scoring above the national average. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University.
• IBERS is internationally-recognised for research excellence and works to provide solutions to global challenges such as food security, sustainable bioenergy, and the impacts of climate change. IBERS hosts 2 National bioscience facilities: The National Plant Phenomics Centre https://www.youtube.com/watch?v=8qBsVP0j70k&feature=youtu.be is a state of the art automated plant growth facility that allows the high throughput evaluation of growth and morphology in defined environments, and the BEACON Centre of Excellence for Biorefining http://www.beaconwales.org/ is a £20 million partnership between Aberystwyth, Bangor and Swansea Universities set up to help Welsh businesses develop new ways of converting biomass feedstocks and waste streams into products for the pharmaceutical, chemicals, fuel and cosmetic industries.
• IBERS has a track record of working with academic and industrial partners to develop and translate innovative bioscience research into solutions that help mitigate the impacts of climate change, animal and plant disease, and deliver renewable energy and food and water security. The economic and social impact of IBERS research was recognised in 2011when the institute won the national BBSRC Excellence with Impact.

Course Content

In the first 2 semesters the course focuses on 2 key areas of biotechnology: industrial fermentation (manufacturing processes, feedstock pretreatment, fermentation, and the biorefining of low cost feedstocks to high value products) and plant biotechnology (synthetic biology, gene editing, precision genome modification, transformation technologies, up and down gene regulation and silencing, and gene stacking). In addition you will receive practical training in state of the art molecular and analytical bioscience techniques and technologies, you will learn of marine, food and health biotechnology, and sustainable use of bio-resources and bioscience to help meet the needs of an ever growing human population. All course modules are delivered by academics and professional practitioners at the forefront of activity in the field.
In the final semester you will work on your own research project with your dissertation supervisor. This could be a project of your own design and will focus on an aspect of biotechnology that you found particularly interesting; it may even be something that you want to develop as a business idea in the future. During your dissertation project you will use the knowledge and the skills that you gained during the first 2 semesters. Your dissertation project will give you an opportunity to become an expert in your topic and to develop research skills that will prepare you for your future career in biotechnology. Your tutor will mentor you in hypothesis driven experimental design, train you in analytical techniques e.g. gas and liquid chromatography, mass spectrometry, vibrational spectroscopy, fermentation, product isolation, biomass processing, the analysis of complex experimental data, and the formation of robust conclusions. You will also be guided in writing your dissertation.

Examples of past dissertation topics

1. Optimisation of ethanol production, xylose utilisation and growth of Candida shehatae 661 on absorbent hygiene product sourced cellulosic material using Taguchi methodology
2. Bioactive compounds in invasive species
3. Designing a system for industrial production of recombinant protein using grass juice as a fermentation medium

Read less
The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists. Read more

Why this course?

The Industrial Biotechnology Innovation Centre (IBioIC) has launched this unique Masters in Industrial Biotechnology. IBioIC has committed to creating the next generation of skilled industrial biotechnologists.

The course meets industrial needs and is at the forefront of developments in science and engineering. It combines the expertise of staff from 13 academic institutions across Scotland. Our industrial partners also provide input to the course.

This is an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

The course will provide you with a strong foundation in basic industrial biotechnology. You’ll also cover advanced state-of-the-art topics in a wide range of industrial biotechnology-related areas. A three-month placement is offered, giving students the opportunity to gain valuable experience working with one of IBioIC’s industrial partners.

See the website

You’ll study

The taught classes are designed to give you a thorough understanding of the current developments in industrial biotechnology.
Two semesters of formal teaching are followed by an intensive research project. You'll carry this out with an industrial partner.
The taught classes cover the following areas and are taught by the following partners:

Core classes include:
- Industrial Biotechnology, Governance and Importance to the Bioeconomy (The Innogen Institute, Edinburgh University)
- Bioprocessing (Strathclyde University)
- Synthetic Biology (Glasgow University)
- Practical Systems Biology (Edinburgh University)
- Downstream Processing (Heriot Watt University)
- Applied Biocatalysis (Strathclyde University)

Elective classes include:
- Blue Biotechnology (SAMS, University of Highlands & Islands)
- Renewable Energy Technologies (Abertay University)
- Advanced Project Management (Strathclyde University)
- Supply Chain Management (Strathclyde University)
- Production Management (Heriot Watt University)
- Resource Efficient Formulation (University of the West of Scotland)

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It is located in a new building with several laboratories. All are fitted with modern equipment.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333+44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Two semesters of formal teaching are followed by an intensive research project, carried out with an industrial partner.

Assessment

The final assessment will be based on performance in exams, coursework and the research project. If necessary there may be a formal oral exam.

Careers

The course provides an exciting opportunity for science and engineering graduates who are looking for a career in an emerging industry that is sustainable, green and essential to the global economy.

Our students enjoyed successful placements with the following companies:
- Qnostics
- GSK
- Xanthella
- SeaBioTech
- Marine Biopolymers
- AMT
- Ingenza
- Unilever
- Innogen
- CRODA
- CelluComp
- NCIMB

A total of 70% of our 2014 cohort have found full-time jobs or have undertaken further study as a result of the experience gained throughout their placement.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Research in biotechnology at Newcastle spans the Faculty of Medical Sciences (FMS) and the Faculty of Science, Agriculture and Engineering (SAgE). Read more

Course overview

Research in biotechnology at Newcastle spans the Faculty of Medical Sciences (FMS) and the Faculty of Science, Agriculture and Engineering (SAgE). We invite proposals for MPhil and PhD projects in biotechnology across the fields of medical sciences, biological, agricultural and environmental sciences, and marine science and technology.

We offer MPhil and PhD supervision in the following research areas:

Medical sciences

In medical sciences our research focuses on translational medicine, from drug discovery and development to effective product commercialisation and process optimisation. Our key areas are: the development of drugs for the treatment of cancer and psychiatric disorders; novel antibiotic innovation; design and development of integrated electrochemical and bio-microelectromechanical (bio-MEMS) sensors for application to point-of-care diagnosis of disease processes and sensor technologies for real-time, high content intracellular analysis using polymer-based nanosensor systems.

Biological, agricultural and environmental sciences

In biological, agricultural and environmental sciences our research focuses on: the search and discovery of commercially significant natural products; the production of crops with novel traits; the fundamental role played by micro-organisms in the turnover of pollutants and the production of high value novel compounds, including pharmaceuticals and pesticides.

Marine science and technology

Our work has led to pioneering advancements in developing novel antibiotics and omega-3 oils from plankton. We also explore the industrial applications of marine organisms such as the development of environmentally friendly antifouling coatings.

Training and skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Faculty of Medical Sciences Graduate School.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/biotechnology-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/biotechnology-mphil-phd/#howtoapply

Read less
Bodies of water, including oceans, large lakes, seas and estuaries, make up the largest part of the earth's surface. Well above 70% of the earth´s surface consists of water, which is essential for all life. Read more
Bodies of water, including oceans, large lakes, seas and estuaries, make up the largest part of the earth's surface. Well above 70% of the earth´s surface consists of water, which is essential for all life. Humans extract both directly and indirectly a major part of their food from the seas, photosynthesis in the oceans is responsible for approximately half of the global oxygen production, the oceans continue to yield unknown life forms at an astonishing rate. In spite of the importance of the water bodies of this earth, much of them remains unknown.

If you are interested in gaining more in-depth knowledge of this world, of the ecosystems associated with water, in a scientific manner, the Master of Science in Marine and Lacustrine Science and Management offers you what you need. This combination of disciplines makes the programme unique, not only in Flanders, but also in Europe. Students with most scientifically oriented bachelor diplomas can start the programme directly.

Career opportunities

This multidisciplinary Master´s diploma is your admission ticket to a fascinating professional world and can be the start of an international career. As a scientist with a broad education, you are the right person for functions that require an integrated approach. The integration of knowledge from across various disciplines is valuable, and you can contribute significantly in various jobs that are concerned with marine and lacustrine domains, wherever they are in the world. The programme is broad and deep and can complement a wide range of scientific professions.

Contents

This 2-year master programme addresses students with a background in sciences. It provides you with strong fundamental and applied knowledge and prepares you for an active role in the scientific research and management of marine ecosystems. The programme adopts a multidisciplinary approach integrating physical, chemical geological, ecological and societal aspects and including nature conservation and sustainable development.

This programma trains students in:
1. playing a key role in high quality scientific marine research
2. providing advice in marine management based on sound scientific knowledge
3. becoming critically minded, problem-solving and communicative scientists

You can major in one of four specialisations:
• Biodiversity and Ecology
• Conservation Biology and Ecosystem Management
• Environmental Impact and Remediation
• Earth System Sciences

The programme is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS). A limited number of scholarships is available for students coming from certain developing countries.

The diversity of professional, disciplinary and cultural backgrounds of both students and lecturers ensures that the programme has a truly unique international character.

Visit the Marine and Lacustrine Science and Management (Oceans & Lakes) page on the Vrije Universiteit Brussel website for more details!

Read less
Algal Biotechnology is a new and rapidly expanding discipline that seeks to understand and harness the resources from one of the most diverse groups of organisms on the planet. Read more
Algal Biotechnology is a new and rapidly expanding discipline that seeks to understand and harness the resources from one of the most diverse groups of organisms on the planet.

Algae, and their natural products, are still relatively untapped. They have a huge range of potential applications globally including pharmaceuticals, nutraceuticals, biofuels, ethical cosmetics, novel enzymes, green fertilisers, green insecticides, bioremediation materials, and many more.

The aim of this biotechnology masters is to produce highly motivated scientists with the skills, knowledge and abilities to secure exciting careers in this rapidly expanding area of research and industry.

Special Features

• You will have access to state-of-the-art laboratory facilities at the Scottish Association for Marine Science UHI in Oban and benefit from face-to-face tuition delivered by active biotechnology researchers.
• You will gain direct hands-on experience in this rapidly expanding field and be given the opportunity to engage with industry experts.
• The extended research project will enable you to develop an in-depth understanding of a particular area of interest.

Modules

As a fundamental part of advancing your research and employability skills, you will be given an opportunity to develop:

Practical laboratory and analytical skills
Project and financial management
Research writing and presentation
Public engagement and knowledge exchange
To achieve the award of Masters by Research you must complete a research project and dissertation.

Locations

This course is available at Scottish Association for Marine Science UHI, Scottish Marine Institute, Oban, PA37 1QA

Funding

From 2017, eligible Scotland domiciled students studying full time can access loans up to 10,000 from the Student Awards Agency for Scotland (SAAS).This comprises a tuition fee loan up to £5,500 and a non-income assessed living cost loan of £4,500. EU students studying full time can apply for a tuition fee loan up to £5500.

Part-time students undertaking any taught postgraduate course over two years up to Masters level who meet the residency eligibility can apply for a for a tuition fee loan up to £2,750 per year.

Full details can be found on the SAAS website. Applications for loans open in April.

Students from the rest of the UK who meet the eligibility requirements may be able to apply for a loan from the Student Loan Company

You may also be able to apply for a government Professional and Career Development Loan

Please visit the Scholarships and Funding website http://www.uhi.ac.uk/en/studying-at-uhi/first-steps/how-much-will-it-cost/tuition-fees-postgraduate

See Scholarships tab below for full details

Top five reasons to study at UHI

1. Do something different: our reputation is built on our innovative approach to learning and our distinctive research and curriculum which often reflects the unique environment and culture of our region and closely links to vocational skills required by a range of sectors.
2. Flexible learning options mean that you can usually study part time or full time. Some courses can be studied fully online from home or work, others are campus-based.
3. Choice of campuses – we have campuses across the Highlands and Islands of Scotland. Each campus is different from rich cultural life of the islands; the spectacular coasts and mountains; to the bright lights of our city locations.
4. Small class sizes mean that you have a more personal experience of university and receive all the support you need from our expert staff
5. The affordable option - if you already live in the Highlands and Islands of Scotland you don't have to leave home and incur huge debts to go to university; we're right here on your doorstep

How to apply

If you want to apply for this postgraduate programme click on the ‘visit website’ button below which will take you to the relevant course page on our website, from there select the Apply tab to complete our online application.
If you still have any questions please get in touch with our information line by email using the links beow or call on 0845 272 3600.

International Students

An exciting and diverse student life awaits our international students. Choose to study in one of the larger urban centres of the region, such as Perth, Inverness or Elgin, or in one of the smaller towns or island communities, including the Western and Northern Isles. http://www.uhi.ac.uk/en/studying-at-uhi/international

English Language Requirements

Our programmes are taught and examined in English. To make the most of your studies, you must be able to communicate fluently and accurately in spoken and written English and provide certified proof of your competence before starting your course. Please note that English language tests need to have been taken no more than two years prior to the start date of the course. The standard English Language criteria to study at the University of the Highlands and Islands are detailed on our English language requirements page http://www.uhi.ac.uk/en/studying-at-uhi/international/how-to-apply-to-uhi/english-language-requirements

Read less
From its years of academic research and industrial consultancy experience as one of the main UK Marine Technology Centres, the University recognises the need for an interdisciplinary approach to both the development and the protection of ocean resources. Read more
From its years of academic research and industrial consultancy experience as one of the main UK Marine Technology Centres, the University recognises the need for an interdisciplinary approach to both the development and the protection of ocean resources. In these times of rapid global change, it is essential that scientists and environmental decision-makers understand the fundamentals of the technologies involved in different development options, whilst engineers should be encouraged to adopt an understanding of the environmental, socio-economic and political aspects of any proposed project. The course covers all these areas.

CORE MODULES

Marine Resources: Utilisation, Interactions and Control
Marine Ecotoxicology
Marine Biotechnology
Coastal and Estuarine and Pollution Control
Research Project (MSc only)

Read less
The biodiversity of the marine environment is of enormous importance to humans as a resource for food, pharmaceuticals and ecosystem services. Read more
The biodiversity of the marine environment is of enormous importance to humans as a resource for food, pharmaceuticals and ecosystem services. The School's Centre for Marine Biodiversity and Biotechnology (CMBB) focuses on research using traditional and newly developing molecular methods to study these important marine resources and products. The rapid loss of biodiversity both on land and in the sea makes it especially important that good knowledge is obtained to enable the appropriate management of the lesser known marine resources.

The programme covers a broad range of issues in four taught core courses enabling students to choose four other taught courses from a variety of options available within the School and elsewhere in the University's programme of MSc programmes.

CORE COURSES

Marine Conservation and Sustainability
Diversity of Marine Organisms
Applied Research Design and Analysis
Marine Monitoring and Pollution Control
Marine Biotechnology

Read less
Molecular Biology with Biotechnology (MSc). This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. Read more
Molecular Biology with Biotechnology (MSc)

This taught MSc course in the School of Biological Sciences provides intensive training in this important area of Biology and is designed both for fresh graduates and for those wishing to develop and extend their expertise in this area. The course has a strong practical emphasis and will provide the advanced theoretical and practical background necessary for employment in the Biotechnology industry, as well as equipping students with the knowledge required to pursue advanced studies in this area.
Course structure

The course consists of a taught component and a Research project. During the taught phase of the degree, you will take modules in Marine Biotechnology, Molecular and Medical Laboratory Techniques, Techniques of Molecular Biology and Biotechnology; Systems Biology; Plant Biotechnology, Environmental Biotechnology and Medical Biotechnology.

Topics covered in these modules will include Agrobacterium Ti plasmid based plant transformation vectors and the development of transgenic crops; the use and interpretation of microarrays and proteome systems; the development of transgenic fish and the diagnosis of fish diseases using molecular markers; bioremediation, biomining and the use of bacteria to degrade novel organic pollutants; stem cell technologies and the diagnosis of genetic disease using single nucleotide polymorphisms. image of students in the labDuring this part of the course, you will also take part in intensive laboratory exercises designed to introduce you to essential techniques in molecular biology and biotechnology including nucleic acid and protein extraction, PCR and QTL analysis, northern, southern and western blotting etc. In addition, most of the taught theory modules will have an associated practical component. The Research project will take place during the summer and will be conducted under the direct supervision of one of the staff involved in teaching the course. Students will be able to choose their Research project from a wide range of topics which will be related to the taught material.

Career options

The 21st century post genomics era offers a wide range of job opportunities in the agricultural, medical, pharmaceutical, aquaculture, forensics and environmental science areas. The rapidly developing economies of China and India in particular have recognised the enormous opportunities offered by Biotechnology. Job openings in sales and marketing with companies who have a science base are also common. Some graduates will also choose to extend their knowledge base by undertaking PhD programmes in relevant areas.

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
The Department of Biochemistry offers MSc and PhD degree programs in both Biochemistry and Food Science. The programs are designed to equip students with the knowledge and experience required of modern researchers. Read more
The Department of Biochemistry offers MSc and PhD degree programs in both Biochemistry and Food Science. The programs are designed to equip students with the knowledge and experience required of modern researchers. The research specializations of our faculty encompass different frontiers of metabolic regulation and nutritional biochemistry; food science, food engineering and marine biotechnology; molecular and cell biology; and the structures and functions of macromolecular complexes such as muscle and lipid membranes.

The MSc program involves courses and a thesis and can be completed in two years of full-time study.

Read less
The Department of Biochemistry offers MSc and PhD degree programs in both Biochemistry and Food Science. The programs are designed to equip students with the knowledge and experience required of modern researchers. Read more
The Department of Biochemistry offers MSc and PhD degree programs in both Biochemistry and Food Science. The programs are designed to equip students with the knowledge and experience required of modern researchers. The research specializations of our faculty encompass different frontiers of metabolic regulation and nutritional biochemistry; food science, food engineering and marine biotechnology; molecular and cell biology; and the structures and functions of macromolecular complexes such as muscle and lipid membranes.

The MSc program involves courses and a thesis and can be completed in two years of full-time study.

Read less
The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Read more

MSc Bioinformatics

The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Bioinformaticians apply information technology to store, retrieve and manipulate these data and employ statistical methods capable of analysing large amounts of biological data to predict gene functions and to demonstrate relationships between genes and proteins.

Programme summary

DNA contains information about life, but how is this information used? Biological data, such as DNA and RNA sequence information produced by next-generation sequencing techniques, is accumulating at an unprecedented rate. Life scientists increasingly use bioinformatics resources to address their specific research questions. Bioinformaticians bridge the gap between complex biological research questions and this complex data. Bioinformaticians use and develop computational tools to predict gene function(s) and to demonstrate and model relationships between genes, proteins and metabolites in biological systems. Bioinformatics is an interdisciplinary field that applies computational and statistical techniques to the classification, interpretation and integration of large-scale biological data sets. If different data types are joined then complex interactions in biological systems can be studied. The use of systems biology methods to study complex biological interactions offers a wealth of possibilities to understand various levels of aggregation and enables control of biological systems on different scales. Systems biology approaches are therefore quickly gaining importance in many disciplines of life sciences, such as in applied biotechnology where these methods are now used to develop strategies for improving production in fermentation. Other examples include bioconversion and enzymatic synthesis, and in the study of human metabolism and its alterations where systems biology methods are applied to understand a variety of complex human diseases, including metabolic syndromes and cancer. The Wageningen Master programme focuses on the practical application of bioinformatics and systems biology approaches in many areas of the Life Sciences. To ensure that students acquire a high level of understanding of modelling and computing principles, the students are trained in the fundamentals of database management, computer programming, structural and functional genomics, proteomics and systems biology methods. This training includes advanced elective courses in molecular biology and biostatistics.

Thesis tracks

Bioinformatics
The bioinformatics track focuses on the practical application of bioinformatics knowledge and skills in molecular life sciences. It aims at creating and using bioinformatics resources to address specific research questions. The knowledge and skills gained can be applied in many life science disciplines such as molecular & cell biology, biotechnology, (human) genetics, health & medicine and environmental & biobased technology.

Systems Biology
The systems biology track focuses on the study of the complex interactions in biological systems and on the emerging properties derived from these. Systems biology approaches to complex biological problems offer a wealth of possibilities to understand various levels of aggregation. It enables control of biological systems on completely different scales, ranging from the molecular cellular level to marine, plant, or animal ecosystems to a desired state. The knowledge and skills gained can be applied in many life science disciplines including molecular & cell biology, applied biotechnology, genetics, medicine and vaccine development, environmental and biobased technology.

Your future career

Bioinformatics and Systems Biology are new fast growing biology based interdisciplinary fields of research poorly served by the traditional curricula of Life Sciences. As demand has outpaced the supply of bioinformaticians, the first job after graduation is often a PhD project at a research institute or university. It is expected that five years after graduation, about one third will stay employed as a scientist at a university or research centre, while the others choose for careers at research-oriented pharmaceutical and biotechnological companies.

Alumnus Tom van den Bergh.
"It is sometimes difficult for doctors to diagnose genetic diseases caused by missense mutations. A missense mutation does not necessarily mean that you have the gene-associated disease and will become ill since not all missense mutations lead to appreciable protein changes." Tom created a database for Fabry’s disease for his final thesis. He wrote a computer programme that reads publications and stores all information about Fabry mutations in its database. Genetic researchers can, in turn, quickly access this database to determine if the mutation they found in a patient has already been addressed in literature and what the effects were.

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Biotechnology

Read less
This course provides in-depth study in the chosen specialisation. The course adds significantly to a relevant undergraduate degree through coursework and major research in the approved area of interest within the program. Read more

Introduction

This course provides in-depth study in the chosen specialisation. The course adds significantly to a relevant undergraduate degree through coursework and major research in the approved area of interest within the program. By enhancing the student's knowledge of their chosen field of study through advanced coursework units and extensive, independent research, the Master of Science (Thesis and Coursework) opens up a range of possible career opportunities, depending on the student's area of specialisation.
This is a Research Training Scheme course for domestic students.

Course description, features and facilities

A Master of Science by thesis and coursework degree is suitable for qualified students who wish to undertake further research in any of the following subject areas:

Agricultural Economics;
Agricultural Science;
Animal Science;
Botany;
Climate Studies;
Conservation Biology;
Ecology and Evolution;
Environmental Economics;
Environmental Management;
Environmental Science;
Genetics and Breeding;
Geography;
Geoscience;
Hydrogeology;
Marine Science;
Mineral Geoscience;
Natural Resource Management;
Plant Production Science;
Soil Science and Land Rehabilitation;
Urban and Regional Planning;
Water Management and Hydrology; and
Zoology.

Structure

Key to availability of units:
S1 = Semester 1; S2 = Semester 2; S3 = summer teaching period; N/A = not available in 2015;
NS = non-standard teaching period; OS = offshore teaching period; * = to be advised

All units have a value of six points unless otherwise stated.

Note: Units that are indicated as N/A may be available in 2016 or 2017.

Take unit(s) to the value of 42 points:

S1, S2 SCIE5590 Literature Review and Research Proposal
S1, S2 SCIE5721 Master of Science Thesis (full-time) (36 points)
S1, S2 SCIE5722 Master of Science Thesis (part-time) (36 points)

Take unit(s) to the value of 6 points:

Group A

S1 AGRI5501 Advanced Breeding and Biotechnology in Action 1
NS AGRI5502 Advanced Breeding and Biotechnology in Action 2
S2 AGRI5503 Animal Production Systems
NS AGRI5504 Organic Agriculture
NS BIOL5501 Plant Diversity in WA: Evolution and Conservation
NS BIOL5502 Animal Resource Management
S2 BIOL5503 Sampling Techniques in Wildlife Research
NS BIOL5505 Marine Neuroecology and Behaviour
NS ECON5510 Applied Demand and Production Analysis
NS ECON5511 Climate, Energy and Water Economics
NS ENVT5502 Marine and Coastal Planning and Management
NS ENVT5503 Remediation of Soils and Groundwater
NS ENVT5510 Soil Dynamics
NS ENVT5511 Advanced Geographic Information Systems
NS ENVT5512 Ecosystem Biogeochemistry
NS GEOS5501 Advanced Hydrogeology
NS, S1, S2 GEOS5502 Hydrogeology Industry Placement
NS GEOS5504 Mining Hydrogeology
NS GEOS5505 Multiscale Tectonic Systems
NS MING5501 Applied Structural Geology
NS MING5502 Exploration Targeting
N/A MING5503 Ore Deposit Field Excursion
NS MING5504 Advanced Ore Deposits
NS MING5505 Mineral Exploration Data Analysis
S1, S2 PLNG5510 Advanced Studies in Geography and Planning
NS PLNG5511 Climate Change Policy and Planning
NS PLNG5512 Regional Planning
NS SCIE5500 Scientific Modelling
NS SCIE5505 Global Change and the Marine Environment

Career opportunities

This degree is designed for professionals interested in further study who are seeking to familiarise themselves with recent developments in the field or to enhance their intellectual and research skills.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X