• University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
De Montfort University Featured Masters Courses
Durham University Featured Masters Courses
Birmingham City University Featured Masters Courses
University of Dundee Featured Masters Courses
emlyon business school Featured Masters Courses
"maintenance"×
0 miles

Masters Degrees (Maintenance)

We have 477 Masters Degrees (Maintenance)

  • "maintenance" ×
  • clear all
Showing 1 to 15 of 477
Order by 
MSc Maintenance Engineering is suitable for engineers who have recently graduated as well as those with experience who are seeking to extend their knowledge, or update their qualifications with a view to promotion or other new position. Read more
MSc Maintenance Engineering is suitable for engineers who have recently graduated as well as those with experience who are seeking to extend their knowledge, or update their qualifications with a view to promotion or other new position. The course aims to develop students' knowledge in maintenance engineering, tribology, maintenance of complex systems and systems integration. This postgraduate award covers both technical and management aspects of maintenance engineering and forms a suitable basis for a career in a range of roles associated with maintenance engineering on mechanical plants, such as: asset management, plant maintenance and preventative maintenance.

PROFESSIONAL ACCREDITATION

Our MSc Course in Maintenance Engineering is accredited by the Institution of Engineering and Technology as further learning satisfying the educational requirements for Chartered Engineer (CEng) registration.

LEARNING ENVIRONMENT AND ASSESSMENT

The course adopts a range of approaches to the delivery of curriculum including: case studies, lectures, practical sessions, independent learning guided by a tutor and tutorial sessions.

Assessment of learning is conducted by a range of methods including: tutorial questions, examination, use of online assessment via Blackboard questions, extended assignments, presentations, poster defence and written reports.

The course benefits from world-class facilities in tribology, surface engineering and intelligent condition monitoring with a wide range of equipment (laboratory and industrial scale) and computer modelling facilities relevant in maintenance.

OPPORTUNITIES

On successful completion of this programme, students will be eligible to apply for progression to world-leading research degrees within the Jost Institute for Tribotechnology.

The course is suitable for engineers who have recently graduated as well as those with experience who are seeking to extend their knowledge, or update their qualifications with a view to promotion or other new position. The award covers both technical and management aspects of maintenance engineering and forms a suitable basis for a career in a range of roles associated with maintenance engineering on mechanical plants, such as asset management, plant maintenance and preventative maintenance.

Read less
Who is it for?. This programme is for those who have been working within the aircraft maintenance industry (for at least two years).  Current students include engineers, maintenance staff, the majority have a license/professional education. Read more

Who is it for?

This programme is for those who have been working within the aircraft maintenance industry (for at least two years).  Current students include engineers, maintenance staff, the majority have a license/professional education. We also welcome students with a military background. This Aircraft Maintenance Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, MRO and other aviation companies are mostly led by license holders, aircraft engineers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date managers ready to succeed into leadership positions.

The programme is designed to deliver individual success. First initiated by the AJ Walters (AJW) to increase the career opportunities of aircraft engineers, today the programme is recognised as a key resource within the aircraft maintenance industry and as a benchmark for innovation.

Industry approval

This programme is approved by the Royal Aeronautical Society (RAeS). This means the course is recognised by the aviation industry across the world.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:

  • A flight deck and flight test simulator
  • A320 cockpit procedure trainer
  • Wind tunnels and micro turbines
  • Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching

A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Assessment

Each elective is assessed by two pieces of coursework, the core modules are assessed by one piece of coursework and an examination. Each module comprises:

  • Part I: Prior reading before the onsite module where appropriate
  • Part II: Attendance at the institution (or other locations) for the module over three days
  • Part III: Examinations are held at the end of the core modules
  • Part IV: Coursework for assessment. Coursework is required within six weeks of the onsite module.

Modules

We explore aircraft maintenance management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. This means you learn from the former British Airways human resources director in one module, and the industry’s crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

The course is based on completing the Induction Workshop plus eight modules over one to five years, which are taught over three-day periods. Teaching takes place across global locations including London, Dubai and Frankfurt.

Students also take on a project/dissertation in an aircraft maintenance related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules.

Career prospects

This is a professional programme recognised by the aviation industry and approved by the Royal Aeronautical Society.

Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including safety managers, training captains, quality managers, flight safety officers, safety inspectors, safety consultants and accident investigators in civil aviation authorities, airlines and with other aircraft operators and defence forces worldwide.

Graduates may change or transform their careers as a result of the MSc.



Read less
The operational areas addressed by this Master of Science programme may be summarised in two skill profiles, gravitating around the economic-financial management (asset and property management) and technical-operational support services for the built-up environment management (facility management) areas. Read more

Mission and goals

The operational areas addressed by this Master of Science programme may be summarised in two skill profiles, gravitating around the economic-financial management (asset and property management) and technical-operational support services for the built-up environment management (facility management) areas. The objective of the course is to transmit to the student knowledge and skills in building technology and construction, in production and management engineering, in law, in economics, in information technology and in land planning; to provide methods and tools to be used for technical-economic evaluation on purchase or on designing the requalification of buildings.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/management-of-built-environment/

Career opportunities

Potential employment contexts for graduates in Building Management are: property companies, banks, banking foundations, insurance companies and, in general, companies characterised by an extremely significant amount of property; companies and public bodies managing public and private property assets; facility management companies; property fund management companies; property consulting forms and engineering companies and professional studios.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Management_of_Built_Environment_01.pdf
Strongly interdisciplinary, the Master of Science in Management of Built Environment aims at preparing experts in the field of maintenance and adaptation over time of buildings, from an engineering/architectural (maintenance and requalification) and an economic (valorization and maintenance of property values over time) perspectives. Multidisciplinary knowledge and skills in the field of technical and economic appraisal for the designing and requalification of existing buildings are developed. The teaching regards a large set of courses in different disciplines, such as building technology and construction, production and management engineering, architecture, strongly rooted in the European and Italian tradition which created cities and buildings celebrated worldwide. The program prepares students to compete in the international markets in the field of technical and economic management of existing buildings and urban environment. Two specializations are available:
1) Technical maintenance and management;
2) Economic management.

Given the multidisciplinary set of competences, a number of job opportunities arises. Private and public real estate companies, banks and insurance companies, financial industry, and facility management companies are all natural professional progressions after graduation. The programme is taught in English.

Subjects

Mandatory courses:
- Business economics
- Building types and construction methods
- Logistics and operations management
- Building and construction technologies
- Methods and tools for analysis of urban and territorial systems
- Building maintenance proceedings and methods
- Regional economics and land rent theory
- Administrative law and regulations for contracts

Two curricula available:
Technical maintenance and management
- Durability and maintenance
- Safety management in building projects
- Facility management
- Technical assessment of the built environment
- Tools and models for the design of built environment

Economic management
- Economic maintenance and management
- Valorization of historical buildings
- Valorization of cultural heritage
- Project management
- Financial management of real estate transactions
- Information systems for the maintenance and management
- Evaluation and management of real estate
- Quality facility management
- Economic assessment of urban transformations

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/management-of-built-environment/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/management-of-built-environment/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Read more
World leading aircraft manufacturers predict the number of in-service commercial aircraft doubling to over 43,500 in the next 20 years. Our MSc Aviation Engineering and Management course will provide you with the skills, knowledge and expertise to succeed in the aviation industry.
You’ll develop key problem-solving skills within the field of aviation including airlines, corporate aviation, general aviation, component manufacturing organisations, and related industries, and civil aviation governmental agencies.

You’ll gain an understanding of the various complexities facing aviation businesses through a breadth of industry related modules. Your studies will also cover a wide variety of tools, techniques, and research methods, and how they may be applied to research and solve real-life problems within the aviation industry.

See the website http://courses.southwales.ac.uk/courses/1878-msc-aviation-engineering-and-management

What you will study

The course consists of nine modules with a key theme throughout your studies including the ethical dimensions of decision-making and interpersonal relations. This means you can be confident that you will develop personally and professionally as part of the course, ultimately making yourself more employable. You’ll study the following modules:

- Aircraft Systems Design and Optimization (10 Credits)
This module will give you a comprehensive knowledge of the systems of the aircraft, including preliminary designing of systems primary and secondary systems, operation and maintenance concepts. You will be introduced to novel engineering design methods such as Multi Objective Design (MOD) and multi-disciplinary design optimisation. Part of the module will be delivered with the support of industrial partners and experts, which will bring real scale industrial experience and interaction with the industry.

- Aviation Sustainable Engineering
This module will explore the historical and contemporary perspectives in international aviation framework while looking at the socio-economic benefits of aviation since the Chicago Convention of 1944. You will analyse current and future design and manufacturing trends in the aerospace industry.

- Condition Monitoring and Non-Destructive Testing
This module analyses condition monitoring and non-destructive testing, giving you an appreciation for the key concepts and tools in this subject. You will evaluate the use of these tools in different situations within industry and make recommendations on necessary adjustments.

- Advanced Materials and Manufacture
You will look at a range of modern engineering materials and develop an awareness of the selection criteria for aeronautical and mechanical engineering applications. You will also look at a range of “standard” and modern manufacturing processes, methods and techniques.

- Lean Maintenance Operations & Certification
This module will help you develop and understand concepts in Six Sigma, lean maintenance, operational research, reliability centred maintenance and maintenance planning. You will evaluate and critically analyse processes within highly regulated industries.

- Safety, Health and Environmental Engineering Management
Covering the principles and implementation of the safety, health and environmental management within the workplace, you will look at key concepts in human cognition and other human factors in risk management and accident/incident investigation. You will also gain an understanding of the role of stakeholder involvement in sustainable development.

- Strategic Leadership and Management for Engineers
This module will explore a range of purposes and issues surrounding successful strategic management and leadership as well as appraising a range of leadership behaviours and processes that may inspire innovation, change and continuous transformation within different organisational areas including logistics and supply chain management.

- Research Methods for Engineers
The aim of this module is to provide you with the ability to determine the most appropriate methods to collect, analyse and interpret information relevant to an area of engineering research. To provide you with the ability to critically reflect on your own and others work.

- Individual Project
You will undertake a substantial piece of investigative research work on an appropriate engineering topic and further develop your skills in research, critical analysis and development of solutions using appropriate techniques.

Learning and teaching methods

You will be taught through a variety of lectures, tutorials and practical laboratory work.

You will have 10 contact hours per week, you will also need to devote around 30 hours per week to self-study, such as conducting research and preparing for your assessments and lectures.

Work Experience and Employment Prospects

Aerospace engineering is an area where demand exceeds supply. As a highly skilled professional in aircraft maintenance engineering, you will be well placed to gain employment in this challenging industry. The aircraft industry is truly international, so there is demand not only in the UK, but throughout the world.

Careers available after graduation include aircraft maintenance planning, engineering, materials, quality assurance or compliance, technical services, logistics, NDT, method and process technical engineering, aircraft or engine leasing, aviation sales, aviation safety, reliability and maintainability, operations and planning, airworthiness, technical support, aircraft surveying, lean maintenance, certification, production planning and control.

Assessment methods

You will be continually assessed coursework or a mixture of coursework and exams. The dissertation allows you to research a specific aviation engineering topic, to illustrate your depth of knowledge, critical awareness and problem-solving skills. The dissertation has three elements of assessment: a thesis, a poster presentation, and a viva voce examination.

Facilities

The aerospace industry has become increasingly competitive and in recognising this, the University has recently invested £1.8m into its aerospace facilities.

Facilities available to our students have been fully approved by the Civil Aviation Authority (CAA). With access to an EASA-approved suite of practical training facilities, our students can use a range of industry-standard facilities.

Our Aerospace Centre is home to a Jetstream 31 Twin Turboprop aircraft, assembled with Honeywell TPE331 Engines and Rockwell-Collins Proline II Avionics. It has a 19-passenger configuration.

The EASA-approved suite contains training and practical workshops and laboratories. Each area contains the tools and equipment required to facilitate the instruction of either mechanical or avionic practical tasks as required by the CAA.

Students use the TQ two-shaft gas turbine rig to investigate the inner workings of a gas turbine engine by collecting real data and subsequently analysing them for engine performance.

Our sub-sonic wind tunnel is used for basic aerodynamic instruction, testing and demonstrations on various aerofoil shapes and configurations.

The single-seater, full motion, three axes Merlin MP521 flight simulator can be programmed for several aircraft types that include the Airbus A320 and the Cessna 150.

Read less
The collaborative degree shows a level of commitment to the development of technical and professional skills that would impress any employer. Students… Read more

The collaborative degree shows a level of commitment to the development of technical and professional skills that would impress any employer. Students – and potential employers – also benefit from the knowledge gained from faculty at two institutions. With the increasing globalization of the technical workforce, degrees that span institutions and provide an international perspective are particularly valuable.

Expand Your Opportunities

In today’s competitive technology environment, top opportunities are going to skilled engineers who have a wide-range of professional capabilities. Aero-Systems Operations (AESOP) is an exceptional program joining UBx expertise in maintenance with UC expertise in engineering. Students at each university may purse UC CEAS' Master of Engineering (MEng) and UBx’s International Diploma collaboratively.

The AESOP curriculum offers a practice-oriented, personalized degree that prepares engineers to excel in the new working world. Advantages of the graduate degree include:

  • Maintain licensure requirements with graduate courses.
  • Gain a unique international graduate study experience 
  • Increase your earning potential.
  • Expand your knowledge and marketability.
  • Broaden your understanding of engineering through interdisciplinary focus.
  • Follow some courses online.

AESOP Curriculum

Core at UC, Fall Semester (9 Credits)

  • AESOP Program Requirement (3 credits – Mandatory)
  • Introduction to Aircraft Systems, Regulations and Maintenance
  • Project / Task Management Development (3 credits – choose one)
  • Examples include, but are not limited to: Engineering Economic Analysis, Quality Control , Project Management, Entrepreneurship and Technology Law
  • Interpersonal Skill Development (3 credits – choose one)
  • Examples include, but are not limited to: Management of Professionals, Leadership, Effectiveness in Technical Organizations

Technical Specialty at UC, Fall Semester (6 Credits)

Choose 2 Courses from Any of the Following Department Offerings:

  • Aeronautical Engineering
  • Mechanical Engineering
  • Electrical, Electronic and Computer Engineering
  • Computer Science

Aero System Operations at UBx, Spring Semester (12 credits)

Airworthiness UBx/ENAC (Mandatory)

Each Module includes theory, applications and lab (3 credits – choose 1)

  • Maintenance Repair & Overhaull
  • Continuous Airworthiness Maint. Org.
  • Maintenance Program Planning

Each Module includes theory, applications and lab (6 credits – choose 1)

  • Avionics Maintenance
  • Structural Maintenance
  • Propulsion System Maintenance
  • Human Machine Interface ENAC

Capstone Project at UBx, Spring Semester (3 Credits, Mandatory)

  • Choice of sponsored research at IMA or internship at Industry


Read less
This programme is only available to study at the Dubai campus. Facilities Management is responsible for co-ordinating all efforts relating to planning, designing and managing buildings and their systems, equipment and furniture to enhance the organisation’s ability to compete in a rapidly changing world. Read more
This programme is only available to study at the Dubai campus.

Facilities Management is responsible for co-ordinating all efforts relating to planning, designing and managing buildings and their systems, equipment and furniture to enhance the organisation’s ability to compete in a rapidly changing world. It involves the integration of multi-disciplinary activities with the built environment and the management of their impact upon the people and the workplace.

The MSc/Diploma in Facilities Management develops competencies and skills to enable its graduates to manage facilities effectively for a changing business world. Facilities Management provides proactive support and dynamism to the core business of an organisation through a coordinated and well managed approach to secondary business functions. Graduates from the programme will gain the skills necessary to fully realise the potential of facilities management in providing effective and productive environments which meet the needs of today’s businesses.

The MSc is fully accredited by the Royal Institution of Chartered Surveyors and the British Institute of Facilities Management.

Programme Content

The growth of facilities management offers great opportunities for professionals who are competent in the core roles required for 21st Century facilities management. . The programme comprises 5 core courses and 3 elective cours

Course Choice

•Service Procurement and Provision – mandatory
This course looks at the key services that make up a modern facilities management operation ranging from interior design, landscaping and courtesy services to the more traditional property related services concerned with the upkeep of facilities. The course provides a theoretical basis for service procurement; the selection of service providers; and risk management models. It considers the organisational, human and cultural impact of facilities and ways in which improved services can affect facility performance. Within the course, ongoing performance measurement systems are also described which enable the effective management of service contracts.

•Space Planning and Management - mandatory
This course provides a strategic overview of space from a business perspective. It identifies the supply and demand process in relation to property portfolios and considers tools and techniques that enable the effective modelling and use of space. It examines the concept of flexibility and reuse in the context of a changing organisational context. Alternative space strategies are examined in the course in tandem with new ways of working. It also considers how space can be used to support work-life balance strategies in organisations.

•Asset Maintenance Management - mandatory
This course examines the effective management and maintenance of operational property. Key aspects include: maintenance policy and standards; planned and responsive maintenance; asset appraisal and evaluation; information management; maintenance; property portfolios; acquisitions and disposals.

•Contracts & Procurement - mandatory
This course considers facilities management in the broader context of the construction cycle. The advent of new procurement methods such as the Private Finance Initiative (PFI) have inevitably drawn facilities managers into the larger issue of construction projects and their procurement, This course considers procurement arrangement options, principles of contract law, procurement through Public Private Partnerships, construction contracts, negotiation, as well as conflicts and disputes. Facilities managers have an ever increasing contribution to make in this process in the capacity of informed client.

•Sustainable Practices in Facilities Management - mandatory
This course examines a number of key issues in facilities management which are rapidly gaining significance within the industry. The purpose of the course is to familiarise the facilities manager with contemporary issues in facilities management and the relevant guidelines, assessment procedures, and standards for sustainable and strategic facilities issues. Key issues covered include: sustainability, energy management, waste management, the working environment, and comfort and productivity in the workplace.

For BIFM accreditation, students should undertake the following three elective courses:

People & Organisational Management in the Built Environment - optional
Business Management for Built Environment Professionals – optional
Project Management (Theory and Practice) - optional

Alternatively, students can choose (subject to timetabling) three other electives from a range of management courses offered by the School, including:

Value and Risk Management – optional
Macroeconomics, Finance and the Built Environment - optional
Corporate Property Asset Management - optional
Property Investment and Finance – optional

Read less
Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. Read more

Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. It is estimated that 10% of annual typical plant cost is spent maintaining plant. Maintenance costs are likely to influence competitiveness on a global scale and this allows Maintenance Managers to make major impacts on their companies' bottom line.

The programme is a key element in increasing industrial competitiveness and is a sophisticated discipline which embraces management techniques, organisation, planning and the application of substantial electronic, engineering and analytical knowledge to manufacturing processes, transport, power generation and the efficient operation of industrial, commercial and civic buildings. The aim of the programme is to give companies the technical and managerial expertise to thrive in the global marketplace.

On completion of the course students will be able to obtain one of the following degrees: MSc, Postgraduate Diploma (PGDip), Postgraduate Certificate (PGCert).

Course Content

The programme consists of course units which include various aspects of applied management and technology in the field of REAM. It is designed such that after enrolment participants already working in industry will benefit from the structure and content of the course in order to enhance their capability in Reliability Engineering and Asset Management. Our teaching staff are internationally recognised professionals with years of experience working in industry and academic institutions.

The course is offered as indicated below:

HOME/EU

MSc - Full time 1 year; Part time in attendance 3 years*; Distance Learning 3 years**

PG(Diploma) - Full time 1 year; Part time in attendance 2 years*; Distance Learning 2 years**

PG(Certificate) - Part time in attendance1 year*; Distance Learning 1 year**

*4 x 1 week teaching blocks per year; **Attendance = 1 day residential course per module; 2 modules per term - attendance not compulsory but recommended

International

MSc - Full time 1 year; Distance Learning 3 years**

PG(Diploma) - Distance Learning 2 years**

PG(Certificate) - Distance Learning 1 year**

** Attendance = 1 day residential course per module; 2 modules per term - attendance not compulsory but recommended

Accreditation

The course is fully accredited by The Institution of Mechanical Engineers and approved by The Society of Operations Engineers.

Student Experience

Read what students say about the course.

Special features

Reliability Engineering & Asset Management offers a flexible approach to learning as follows:

Full-time in attendanceDirect Taught )

Students undertake eight units. Each taught unit lasts one week and is followed by time for coursework and revision for examinations. Students start work immediately on their project and the programme is completed in one year.

Part time in attendanceDirect Taught )

Students undertake eight units. Each taught unit lasts one week and is followed by time for coursework and revision for examinations. Students start work on their project in the final year and this option is completed in three years.

Part time by Distance Learning

Students undertake eight units, all in distance learning format, each of about three months duration. Teaching will begin with a short introduction allowing students to acclimatise to the Virtual Learning Environment, Blackboard 9. The programme is complete after three years. Students undertake their project in the final year. 

Teaching and learning

The coherent atmosphere in the classroom is to maintain high standards and quality and as such places are limited. Our teaching methods are similar to knowledge transfer concepts as well as case studies without involving much mathematical theories.

Teaching style

Direct Taught - Full and Part time

Each course unit runs for an intensive week-long period and tuition takes place at the University.

Distance Learning

For part-time Distance Learning students, the entire course is delivered via Blackboard, an online virtual learning environment. Two course units per semester are undertaken on-line accessing web-based teaching material which will include text, images, video and animation in parallel, over a three month period. Most importantly web-based teaching generates an interactive environment with real, active communication between students and staff and between groups of students throughout the programme. Distance Learning students will need to visit the University for a 2-day residential per semester for face-to-face discussion with their Unit leader .

Coursework and assessment

Each taught unit of the programme is followed by an assignment which is applied in the work place for part-time students or at the university for full-time students plus an examination either at the University or at higher education institute or British Council in the student's home country.

Assessment is by written examination and assignment. The assignment, which follows the taught element of the unit, accounts for 50% of the total marks, the examination 35% and an in-unit assignment the remaining 15%.

Examination period

Semester 1 - 2nd and 3rd week of January

Semester 2 - 2nd and 3rd week of May

Dissertation Project

The dissertation project is intended to address a real issue in Reliability Engineering and Asset Management and is studied in depth, relating problems in the field to theory, case studies and solution reported in the literature, and often creating innovative proposals and field trials. All students have access to laboratory resources where appropriate.

Course unit details

REAM is a modular programme which consists of eight units, some of which include field and lab work followed by a major project. The earlier units address the management of the maintenance process, including such topics as asset management and maintenance strategy; asset maintenance systems and condition monitoring. Later more specialised units deal with auditing, advanced vibration monitoring, reliability and risk. Units on the full time programme are direct taught, however, part time students can choose either direct taught or web-based distance learning.

All delivery modes cover the same syllabus and lead to the same qualification. View examples of programme structures of individual degree programmes; Full-time , Part-time and Distance Learning . Please see examples of past dissertation projects .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 



Read less
Rotating machinery is employed today in a wide variety of industrial applications including oil, power, and process industries. With the continuing expansion of the applications of rotating machinery, qualified personnel are required by the increasingly large numbers of users. Read more

Rotating machinery is employed today in a wide variety of industrial applications including oil, power, and process industries. With the continuing expansion of the applications of rotating machinery, qualified personnel are required by the increasingly large numbers of users.

Rotating Machinery, Engineering and Management is a specialist option of the MSc in Thermal Power providing a comprehensive background in the design and operation of different types of rotating equipment for power, oil, gas, marine and other surface applications.

Who is it for?

Designed for those seeking a career in the design, development, operation and maintenance of power systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. This course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

Why this course?

The MSc option in Rotating Machinery, Engineering and Management is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of optional modules and select an appropriate research project. An intensive two-week industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will receive a thorough grounding in the operation of different types of rotating machinery for aeronautical, marine and industrial applications.

We have been at the forefront of postgraduate education in thermal power and gas turbine technology at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development.

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstrom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF).

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course consists of approximately eight to twelve taught modules and an individual research project. The taught programme consists of eight compulsory modules and up to four optional modules. The modules are generally delivered from October to April.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner. 

Previous Individual Research Projects have included:

  • Performance and economic study on the viability of combined cycle floating power barge
  • Risk-based maintenance for azep
  • Implementation of the nutating disk engine in high bypass turbofan
  • Load minimisation of tidal turbines
  • Gas turbine airfleet maintenance case study
  • Airfleet maintenance study
  • Advanced bottoming cycle technology
  • Cavitation simulation in centrifugal pump.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace/Energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
WHAT YOU WILL GAIN. Skills and know-how in the latest and developing technologies in mechanical. engineering. Practical guidance and feedback from experts from around the world. Read more

WHAT YOU WILL GAIN:

• Skills and know-how in the latest and developing technologies in mechanical

engineering

• Practical guidance and feedback from experts from around the world

• Live knowledge from the extensive experience of expert lecturers, rather  than just theoretical information gained from books and College

• Credibility and respect as the local mechanical engineering expert in

            your firm

• Global networking contacts in the industry

• Improved career choices and income

• A valuable and accredited Master of Engineering (Mechanical) or Graduate

 Diploma of Engineering (Mechanical)

Next intake is scheduled for June 25, 2018. Applications now open; places are limited.

INTRODUCTION

The Master of Engineering (Mechanical) addresses the specific core competencies and associated underpinning knowledge required of Mechanical, Design, and Maintenance Engineers. The program offers twelve units and a project thesis to provide the knowledge and skills required to become professional and self-confident mechanical engineers. Students with a background in mechanical, instrumentation & control, electrical, or industrial plant and systems engineering will especially benefit from this program as it prepares them for further career development in the mechanical design and maintenance industries.

The aim of this master program is to provide students with skills in mechanical engineering technology and maintenance and to take advantage of the growing needs of the mechanical industry.

The Materials unit will teach students knowledge and applications of traditional and new-age materials. The Heat Transfer unit provides the knowledge base every mechanical engineer must possess in this area. Industrial Hydraulics and Pneumatics covers the theory, applications and maintenance of these systems. The Drives, Pumps and Compressors unit studies topics ranging from bearings, gears, to details on pumps and compressor technology. Process Engineering will enable students to evaluate and apply complex process calculations through application of control principles. Industrial Gas Turbines, the new vital prime movers, will be covered in all their facets. Computer Aided Design and Manufacturing looks at using CAD systems to design and model 3D mechanical systems – from parts to assemblies. Finite element analysis is an effective tool for mechanical design. Advanced Fluid Dynamics will concentrate on applications that every mechanical engineer handling processes should be competent in. Tribology, the study of friction, wear and lubrication, is of vital importance in mechanical engineering.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participants' creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

ENTRANCE REQUIREMENTS

Entry Requirements: Master of Engineering (Mechanical)

  To gain entry into this program, applicants need one of the following:

a) a recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice.

b) an EIT Bachelor of Science (Engineering) degree in a congruent** field of practice.

c) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee.

d) a 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program.

AND

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0), or equivalent as outlined in the EIT Admissions Policy.HE

* With integrated compulsory 12-week professional industry experience, training or project work of which 6 weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Mechanical Engineering content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

• Mechanical Engineering

• Mechanical and Material Systems

• Mechatronic Systems

• Production Engineering

• Robotics

• Manufacturing and Management Systems

• Industrial Automation Engineering

• Instrumentation, Control and Automation

PROGRAM STRUCTURE

Students must complete 48 credit points comprising 12 core units and one (1) capstone Thesis. There are no electives in this program. The program duration is two years full time, or equivalent. Subjects will be delivered over four (4) terms per year, and students will take 2 subjects per term. There will be a short break between years. Each semester is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 - 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. Please refer to ‘When will the sessions take place?’ in the Frequently Asked Questions. All you need to participate is an adequate Internet connection, speakers and, if possible, a microphone. The software package and setup details will be sent to you prior to the first webinar.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.



Read less
This course develops the combination of technical knowledge and management expertise that are required to successfully deliver multi-million pound engineering projects. Read more
This course develops the combination of technical knowledge and management expertise that are required to successfully deliver multi-million pound engineering projects.

Course overview

This Masters-level course equips you to be the type of person who can lead a technical team to deliver on time and on budget. You will build on your technical background while adding business and management skills. These skills include project control, supply chain management, risk management and quality optimisation.

Our supportive tutors also help you develop the ‘soft’ skills of working with others and leading projects. For example, you will gain expertise in negotiation and collaboration, effective communication, handling conflict and politics, and managing change.

Modules include ‘Engineering Operations Management’, ‘Project Risk and Quality Management’ and ‘Decision Support for Management’. Your Masters project will involve a real-world project that is supported by a sponsor. It will include both a research and a practical element, and it is an opportunity to impress not only your academic assessors but also potential employers.

Sunderland has long-standing expertise in engineering management and strong links with employers. We host the Institute for Automotive & Manufacturing Advanced Practice (AMAP) which provides problem-solving solutions to manufacturers of all capabilities. We are a leading research group in automotive, manufacturing and maintenance engineering. This research informs our teaching and facilitates your own research as part of your Masters project.

Course content

The course mixes taught elements with independent research and supportive supervision. At MA level, responsibility for learning lies as much with you as with your tutor.

Modules on this course include:
-Research Skills and Academic Literacy (15 Credits)
-Project Management and Control (30 Credits)
-Engineering Operations Management (15 Credits)
-Decision Support for Management (15 Credits)
-Managing People and Project Leadership (15 Credits)
-Project Risk and Quality Management (15 Credits)
-Advanced Maintenance Practice (15 Credits)
-Masters Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, group work, research, discussion groups, seminars, tutorials and practical laboratory sessions.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include individual written reports and research papers, practical assignments and the Masters project.

Facilities & location

The University of Sunderland has excellent facilities with specialist laboratories and modelling software.

Engineering facilities
Our specialist facilities include laboratories for electronics and electrical power, and robotics and programmable logic controllers. We also have advanced modelling software that is the latest industry standard. In addition, the University is the home of the Institute for Automotive and Manufacturing Advanced Practice (AMAP), which builds on Sunderland’s role as a centre of excellence in the manufacturing and assembly of cars.

University Library Services
We’ve got thousands of books and e-books on engineering topics, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.
Some of the most important sources for engineers include:
-British Standards Online which offers more than 35,000 documents covering specifications for products, dimensions, performance and codes of practice
-Abstracts from the Institute of Electrical and Electronics Engineers and Institution of Engineering and Technology. These include journals, conference proceedings, technical reports and dissertations. A limited number of articles are full-text
-Science Direct, which offers more than 18,000 full-text Elsevier journals
-Archives of publications from Emerald, including over 35,000 full-text articles dating back to 1994 that span engineering and management subjects

IT provision
When it comes to IT provision you can take your pick from hundreds of PCs as well as Apple Macs in the David Goldman Informatics Centre and St Peter’s Library. There are also free WiFi zones throughout the campus. If you have any problems, just ask the friendly helpdesk team.

Location
The course is based at our Sir Tom Cowie Campus at St Peter’s. The Campus is on the banks of the River Wear and is less than a mile from the seaside. It’s a vibrant learning environment with strong links to manufacturers and commercial organisations and there is a constant exchange of ideas and people.

Employment & careers

This course equips you for a wide range of engineering management roles throughout the engineering and manufacturing sector. Employers recognise the value of qualifications from Sunderland, which has been training engineers and technicians for over 100 years.

As part of the course, you will undertake a project that tackles a real-world problem. These projects are often sponsored by external clients and we encourage and support you to find your own client and sponsor. This relevant work experience will enhance your skills, build up a valuable network of contacts and further boost your employability.

Potential management roles include:
-Project manager
-Design engineer
-Manufacturing engineer
-Mechanical engineer
-Electrical engineer
-Product engineer
-Maintenance engineer

Engineering management provides good career prospects with salaries ranging from £30,000 up to around £80,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
This course provides an essential foundation for future leaders in organisations who wish to optimise the value in-use and cost in-use for long-life engineering assets such as planes, trains, ships, vehicles, power-plants, machine tools, buildings etc. . Read more

This course provides an essential foundation for future leaders in organisations who wish to optimise the value in-use and cost in-use for long-life engineering assets such as planes, trains, ships, vehicles, power-plants, machine tools, buildings etc. 

Many of the premier UK industrial organisations are increasingly dependent upon Through-life Engineering Services (TES) to compete, gain market share, generate revenue and profit. This course offers through-life thinking to enable change leaders in organisations to embrace new and integrated approaches to develop superior through-life support capability to meet shareholder and stakeholder demands.

Who is it for?

Developed by Cranfield University in conjunction with Rolls-Royce and Bombardier Transportation, this MSc has been designed for individuals at organisations where there is a growing emphasis on revenue being derived from providing the services that keep products operating effectively, rather than the design, manufacture and delivery of original equipment (hardware). The individual will be engaged in a discipline related to through-life management, support, asset management, and/or maintenance. The course is relevant to TES dependent organisations, engineers, business administrators, logistics, finance and commercial practitioners. 

We aim to enhance your skills, and address the need for highly trained individuals involved in the support of complex equipment and systems. The skills gained in the course is expected to contribute to the achievement of competitive advantage for your organisation. The course is structured to allow maximum benefit from learning with minimum time away from the working environment.

Focused on educating leaders in the fields of through-life engineering services systems, design and planning, maintenance assessment and operations management, engineering and technology including condition-based maintenance and health management, standards and regulation, information technology, contracts and policy, life extension and obsolescence management, cost modelling and control.

Informed by Industry

Our courses are designed to meet the training needs of industry and have a strong input from experts in their sector. In particular the guidance provided by the TES Council (including organisations such as Rolls-Royce, MoD, BAE Systems, Babcock International and Leonardo) have been instrumental in making the course cutting edge. Students who have excelled have their performances recognised through course awards. The awards, presented on Graduation Day, are provided by high profile organisations and individuals, and are often sponsored by our industrial partners.

Accreditation

The MSc in Through-Life System Sustainment is subject to ratification by Institute of Engineering & Technology (IET), Royal Aeronautical Society (RAeS) & Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council as meeting for the requirements for Further Learning for registration as a Chartered Engineer following an accreditation assessment in March 2015. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Please note accreditation applies to the MSc award. PgDip and PgCert do not meet in full the further learning requirements for registration as a Chartered Engineer.

Course details

The MSc course comprises eight assessed modules (in the form of six assignments and two exams), in which students gain an understanding of world-class business practice, an industry led group and an individual project. Students are also supported through individual coaching and an online learning platform. 

The current fee for the MSc is £18,400 over two years. This is composed of: £2,000 per year registration fee and £1,800 per module (eight in total). If a candidate completes in three years there will be an additional years’ registration fee to pay.

Group project

The group project gives a team of students the opportunity to take on responsibility for a consultancy type project working for an industrial sponsor. The group project is determined in collaboration with the sponsor organisation and will aim to solve real-world problems. Note: A dissertation can replace the group project.

The project details an investigative research project on the subject of the Digital Twin. The project reviews a wide range of literature to identify the state of the art and also conducts a survey to provide detailed insight. The concept of a Digital Twin is defined and a potential Digital Twin is mapped using systems engineering techniques. This definition and system map is then used to assess the potential benefits of the Digital Twin to an in-service product. The paper describes the development of a use case on an HP Turbine blade to demonstrate how the Digital Twin can improve decision making. The paper concludes with a Roadmap which defines the capabilities, requirements and benefits which will be necessary to develop a full scale Digital Twin.

Individual project

The individual project allows students to demonstrate their ability to think and work in an original way and overcome genuine real life challenges. Your sponsor nominates the topic - the individual project is conducted in the workplace.

Assessment

Taught modules 40%, Group project (or dissertation) 20%, Individual project 40%

Your career

Successful completion of this course takes you onto careers with higher levels of responsibility, a broader base of skills and capability and a greater level of professionalism.



Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

This Master offers:

- A broad range of scientific knowledge combining a multidisciplinary engineering training with an in-depth specialisation in the chosen major.
- Students the necessary tools to begin a productive career in engineering practice or research.
- Close contact with highly qualified academic staff and specialists from industry and research institutes.
- The best international context you can think of in Europe. Study in Brussels, the capital of Europe!
- A gateway to a challenging and exciting future.
- Students the opportunity to become an engineer with scientific and technological efficiency

The program trains engineers with scientific and technological efficiency. The program is academic, meaning that it is characterized by close links to scientific research in the related fields as well as the profession.

Students must obtain a scientific balance between thorough, critical knowledge and practical skills, with emphasis on independence, creativity and inventiveness.

The academically educated engineer must be eager to study throughout his/her career in order to be able to assimilate the results of research and learn new skills. He/she must be able to solve problems. In addition, he/she should have both social and language skills.

Specific objectives

- To train engineers specialized in machine construction, the automobile industry, thermal installations, aircraft construction, consulting firms, application of machinery, maintenance of chemical, petrochemical and nuclear companies, production, distribution and application of electric energy (including power electronics and maintenance of industrial installations)
- To specialize in electromechanical engineering while maintaining a broad-based education by balancing the specialization with more general subjects.

Choose between four majors

This master enables students to build a broad ranging scientific knowledge combined with a multidisciplinary engineering traiwithning an in-depth specialization in the chosen major: Aeronautics, Energy, Mechatronics-Construction or Vehicle Technology and Transport.

Aeronautics: students will become engineers who are competent in the many aspects of cutting-edge technologies in the aeronautics sector and their spin-off possibilities in other industrial sectors. The programme includes all aspects of construction, exploitation and maintenance of aircraft and spacecraft.

Energy: students will become engineers who are specifically well-acquainted with systems for production, transport distribution and electronic conversion of energy, as well as its transformation into mechanical energy. Sustainable energy, rational use of energy and energy management are also covered.

Mechatronics-Construction: students will become engineers who are able to optimally design, produce, maintain and apply complex electromechanical systems..

Vehicle Technology and Transport: students will become engineers who can design systems in which transportation of people and goods are central, with special attention to innovative, environmentally friendly vehicles

Curriculum

Available on http://www.vub.ac.be/en/study/electromechanical-engineering/programme

Read less
Building Information Modelling (BIM) in Design, Construction and Operations is fast becoming the industry standard approach to designing, analysing, and managing building lifecycle. Read more
Building Information Modelling (BIM) in Design, Construction and Operations is fast becoming the industry standard approach to designing, analysing, and managing building lifecycle. On this course you will learn a holistic approach to everything from design and construction to maintenance, operation, and sustainability from industry and research experts using state-of-the-art BIM software. You will also benefit from regular talks from BIM experts and close links to the industry and BIM Regional Hub: South West.

Key benefits

This course is accredited by the Royal Institute of Chartered Surveyors (RICS). A RICS-accredited course assures employers you hold a high-quality, industry-relevant qualification. It's also the first step to becoming a chartered surveyor.

Course detail

A unique feature of this course is that you have the opportunity to be placed with a company to deliver a BIM Organisational Strategy and a BIM Implementation Plan. You will also provide companies with BIM research that has real business value producing an organisational strategy and implementation plan to ensure their BIM is aligned with business strategy. You will then research a BIM-related topic of your choice in-depth for your dissertation.

The expertise in the Faculty of Engineering and Technology sets this course apart. The MSc in Building Information Modelling (BIM) in Design Construction and Operations is challenging, as we cover a lot of ground, and prepare you in all aspects of BIM, so you are better equipped for employment. To do this we split the course, so its half theory and half practice, using the latest modelling and management, analysis and visualisation tools. You will learn to understand the complete building lifecycle, exploring innovative sustainable and collaborative practices in building information modelling and management, and examine a range of existing and emerging BIM issues.

Modules

• BIM in Design Co-ordination (15 credits)
• BIM in Construction Operation (15 credits)
• BIM in Business and Practice (30 credits)
• BIM in Operation and Maintenance (15 credits)
• Low/Zero-Impact Buildings (15 credits)
• Construction Project Management Practice (15 credits)
• Construction Contract Law (15 credits)
• Dissertation (60 credits)

Format

The course uses a variety of teaching methods, including lectures, seminars, workshops and tutorials. We expect you to learn both in groups and independently, as well as using online resources. The programme team will provide all the support and help you need, and encourage you to learn effectively.

Scheduled learning includes lectures, seminars, tutorials, project supervision, demonstration and workshops, supervised BIM workshops and essential reading, case study preparation, and written assignments.

Assessment

We use a range of assessment methods, but your knowledge is tested mainly through BIM 'real-life' projects, with a focus on the various aspects of built environment lifecycle, including design, construction, operation and maintenance. We also assess through written work, coursework and verbal presentations.

Careers / Further study

This course is designed to create the next generation of BIM leaders ready to work with technical professionals on project teams. It's highly relevant to architects, project managers, and construction professionals. Professionals with BIM expertise and knowledge are increasingly sought after in industry, academia, training and consultancy, and this course can lead to a variety of career options, including BIM Designers, BIM Managers and Digital Engineers. Other linked careers include teaching and research in further and higher education, training, and consultancy such as BIM Modelling Services. You may even choose to set up your own BIM company.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less

Show 10 15 30 per page



Cookie Policy    X