• Queen Mary University of London Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Arden University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Loughborough University Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
"integrated" AND "phd"×
0 miles

Masters Degrees (Integrated Phd)

  • "integrated" AND "phd" ×
  • clear all
Showing 1 to 15 of 406
Order by 
This individually tailored inter-professional programme focuses on developing highly skilled research-led innovators you are seeking a programme that builds on your essential research skills, leading to the development of high level. Read more
This individually tailored inter-professional programme focuses on developing highly skilled research-led innovators you are seeking a programme that builds on your essential research skills, leading to the development of high level
methodological expertise and practical skills for applied research.

This programme is flexible and student-centred, with an intermediate award of MSc Clinical and Health Research, and an integrated system of doctoral milestones to facilitate progress towards a PhD. Having completed an intensive
modular training programme, you will submit an original piece of research for your doctoral thesis.

Core: Module Designing, Implementing & Communicating Research, Applied Qualitative Research Methods, Clinical Research in Practice, Research Dissertation.

Read less
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based. Read more
The MPhil degree offered by the Department of Oncology is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based.

Each student conducts their MPhil project under the direction of their Principal Supervisor, with additional teaching and guidance provided by a Second Supervisor and often a Practical Supervisor. The role of each Supervisor is:

- Principal Supervisor: takes responsibility for experimental oversight of the student's research project and provides day-to-day supervision.
- Second Supervisor: acts as a mentor to the student and is someone who can who can offer impartial advice. The Second Supervisor is a Group Leader or equivalent who is independent from the student's research group and is appointed by the Principal Supervisor before the student arrives.
- Practical Supervisor: provides day-to-day experimental supervision when the Principal Supervisor is unavailable, i.e. during very busy periods. The Practical Supervisor is a senior member of the student's research team and is appointed by the Principal Supervisor before the student arrives. For those Principal Supervisors who are unable to monitor their students on a daily basis, we would expect that they meet semi-formally with their student at least once a month.

The subject of the research project is determined during the application process and is influenced by the research interests of the student’s Principal Supervisor, i.e. students should apply to study with a Group Leader whose area of research most appeals to them. The Department of Oncology’s research interests focus on the prevention, diagnosis and treatments of cancer. This involves using a wide variety of research methods and techniques, encompassing basic laboratory science, translational research and clinical trials. Our students therefore have the opportunity to choose from an extensive range of cancer related research projects. In addition, being based on the Cambridge Biomedical Research Campus, our students also have access world leading scientists and state-of-the-art equipment.

To broaden their knowledge of their chosen field, students are strongly encouraged to attend relevant seminars, lectures and training courses. The Cambridge Cancer Cluster, of which we are a member department, provides the 'Lectures in Cancer Biology' seminar series, which is specifically designed to equip graduate students with a solid background in all major aspects of cancer biology. Students may also attend undergraduate lectures in their chosen field of research, if their Principal Supervisor considers this to be appropriate. We also require our students to attend their research group’s ‘research in progress/laboratory meetings’, at which they are expected to regularly present their ongoing work.

At the end of the course, examination for the MPhil degree involves submission of a written dissertation (of 20,000 words or less), followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Course objectives

The structure of the MPhil course is designed to produce graduates with rigorous research and analytical skills, who are exceptionally well-equipped to go onto doctoral research, or employment in industry and the public service.

The MPhil course provides:

- a period of sustained in-depth study of a specific topic;
- an environment that encourages the student’s originality and creativity in their research;
- skills to enable the student to critically examine the background literature relevant to their specific research area;
- the opportunity to develop skills in making and testing hypotheses, in developing new theories, and in planning and conducting experiments;
- the opportunity to expand the student’s knowledge of their research area, including its theoretical foundations and the specific techniques used to study it;
- the opportunity to gain knowledge of the broader field of cancer research;
- an environment in which to develop skills in written work, oral presentation and publishing the results of their research in high-profile scientific journals, through constructive feedback of written work and oral presentations.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvocmpmsc

Format

The MPhil course is a full time research course. Most research training provided within the structure of the student’s research group and is overseen by their Principal Supervisor. However, informal opportunities to develop research skills also exist through mentoring by fellow students and members of staff. To enhance their research, students are expected to attend seminars and graduate courses relevant to their area of interest. Students are also encouraged to undertake transferable skills training provided by the Graduate School of Life Sciences. At the end of the course, examination for the MPhil degree involves submission of a written dissertation, followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Learning Outcomes

At the end of their MPhil course, students should:

- have a thorough knowledge of the literature and a comprehensive understanding of scientific methods and techniques applicable to their own research;
- be able to demonstrate originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- the ability to critically evaluate current research and research techniques and methodologies;
- demonstrate self-direction and originality in tackling and solving problems;
- be able to act autonomously in the planning and implementation of research; and
- have developed skills in oral presentation, scientific writing and publishing the results of their research.

Assessment

Examination for the MPhil degree involves submission of a written dissertation of not more than 20,000 words in length, excluding figures, tables, footnotes, appendices and bibliography, on a subject approved by the Degree Committee for the Faculties of Clinical Medicine and Veterinary Medicine. This is followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Continuing

The MPhil Medical Sciences degree is designed to accommodate the needs of those students who have only one year available to them or, who have only managed to obtain funding for one year, i.e. it is not intended to be a probationary year for a three-year PhD degree. However, it is possible to continue from the MPhil to the PhD in Oncology (Basic Science) course via the following 2 options:

(i) Complete the MPhil then continue to the three-year PhD course:

If the student has time and funding for a further THREE years, after completion of their MPhil they may apply to be admitted to the PhD course as a continuing student. The student would be formally examined for the MPhil and if successful, they would then continue onto the three year PhD course as a probationary PhD student, i.e. the MPhil is not counted as the first year of the PhD degree; or

(ii) Transfer from the MPhil to the PhD course:

If the student has time and funding for only TWO more years, they can apply for permission to change their registration from the MPhil to probationary PhD; note, transfer must be approved before completion of the MPhil. If granted permission to change registration, the student will undergo a formal probationary PhD assessment (submission of a written report and an oral examination) towards the end of their first year and if successful, will then be registered for the PhD, i.e. the first year would count as the first year of the PhD degree.

Please note that continuation from the MPhil to the PhD, or changing registration is not automatic; all cases are judged on their own merits based on a number of factors including: evidence of progress and research potential; a sound research proposal; the availability of a suitable supervisor and of resources required for the research; acceptance by the Head of Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

The Department of Oncology does not have specific funds for MPhil courses. However, applicants are encouraged to apply to University funding competitions: http://www.graduate.study.cam.ac.uk/finance/funding and the Cambridge Cancer Centre: http://www.cambridgecancercentre.org.uk/education-and-training

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The Department of Psychiatry is an internationally leading centre for research and teaching in psychiatry, with particular focus on the determinants of mental health conditions, their treatments and the promotion of mental health through innovative translational research. Read more
The Department of Psychiatry is an internationally leading centre for research and teaching in psychiatry, with particular focus on the determinants of mental health conditions, their treatments and the promotion of mental health through innovative translational research. The Department’s senior staff support several research groups, covering various aspects of mental health and disorder throughout the life course.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvpcmpmsc

Course detail

The MPhil degree offered by the Department of Psychiatry is a 12 month full time programme and involves minimal formal teaching; students are integrated into the research culture of the Department and the Institute in which they are based.

Each student conducts their MPhil project under the direction of their Principal Supervisor, with additional teaching and guidance provided by an Advisor, to increase access to staff members and accommodate a diversity of viewpoints.

The subject of the research project is determined during the application process and is influenced by the research interests of the student’s supervisor, i.e. students should apply to study with a group leader whose area of research most appeals to them.

To broaden their knowledge of their chosen field, students are strongly encouraged to attend relevant seminars, lectures and training courses. We also require our students to attend their research group’s research-in-progress/laboratory meetings, at which they are expected to regularly present their ongoing work.

Format

The MPhil course is a full time research course. The supervisor and details of the proposed research project are determined during the application process.

Most research training is provided within the structure of the student’s research group and is overseen by their Principal Supervisor. The student should expect to receive one to one supervision at least weekly in term time.

The structure of the MPhil course enables the students to significantly develop their analytical and research skills, and is intended as preparation for further research.

The MPhil programme provides:

- a period of sustained in-depth study of a specific topic;
- an environment that encourages the student’s originality and creativity in their research;
- skills to enable the student to critically examine the background literature relevant to their specific research area;
the opportunity to develop skills in making and testing hypotheses, in developing new theories, and in planning and conducting experiments;
- the opportunity to expand the student’s knowledge of their research area, including its theoretical foundations and the specific techniques used to study it;
- the opportunity to gain knowledge of the broader field of research in psychiatry;
- an environment in which to develop skills in written work, oral presentation and publishing the results of their research in high-profile scientific journals, through constructive feedback of written work and oral presentations.

At the end of the course, examination for the MPhil degree involves submission of a written dissertation, followed by an oral examination based on both the dissertation and a broader knowledge of the chosen area of research.

Continuing

The MPhil in Medical Science (Psychiatry) degree is a one-year degree, i.e. it is not intended to be a probationary year for a three-year PhD degree.

However, it is possible to continue from the MPhil to the PhD in Psychiatry course via the following options:

1. Complete the MPhil then continue to the three year PhD course:

If the student would like to continue with their research and has secured funding for a further THREE years, after completion of their MPhil they may apply to be admitted to the PhD course as a continuing student. The student would be formally examined for the MPhil and if successful, they would then continue onto the three year PhD course as a probationary PhD student, i.e. the MPhil is not counted as the first year of the PhD degree; or

2. Transfer from the MPhil to the PhD course:

If the student has time and funding for only TWO more years, they can apply for permission to change their registration from the MPhil to probationary PhD; note, transfer must be approved before completion of the MPhil.

If granted permission to change registration, the student will undergo a formal probationary PhD assessment (submission of a written report and an oral examination) towards the end of their first year and if successful, will then be registered for the PhD, i.e. the first year would count as the first year of the PhD degree.

Please note that continuation from the MPhil to the PhD, or changing registration is not automatic; all cases are judged on their own merits based on a number of factors including: evidence of progress and research potential; a sound research proposal; the availability of a suitable supervisor and of resources required for the research; acceptance by the Head of Department and Degree Committee.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Pinsent Darwin Fund (managed by the Graduate School of Life Sciences)

Sims Fund (administered by Fees & Graduate Funding, Student Registry)

Other funding opportunities (e.g. through research grants) might become available depending on funds

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Read more
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Food production must increase without a simultaneous increase in resource use.

Improvements in crop yield and production efficiency often come through the utilisation of individual elements of new research. Integrated Crop Management (ICM) however utilises multiple facets of research simultaneously to bring about larger, more sustainable results. This course focuses on incorporating the latest research to develop students’ critical and analytical thinking in subjects such as pest dynamics, genetic improvement, crop technology, sustainable practice and soil management.

This MSc, delivered at Myerscough and awarded by the University of Central Lancashire will integrate these topics alongside a broader critical evaluation of crop sciences enabling you to design bespoke ICM programmes for given situations.
It is aimed at graduates in biological sciences who are looking to find employment as agronomists, farm advisors, agro-technical specialists particularly in allied agricultural industries. Successful completion of this MSc degree will also facilitate progression to PhD level research in food production science.

COURSE CONTENT:

Year 1

Integrated approaches in high-input cropping systems

High-input crop production systems typically focus on achieving both high yields and profitability. This module explores the science and agronomic principles of a range of crops under such management regimes as well as their associated problems and limitations. Consideration will be given to integrated management approaches currently being adopted by industry as well as the major drivers of these changing practices. These include legislation, resistance to agrochemicals and public acceptance.

Invertebrate Dynamics in Crop Production

Approximately 10-15% of global crop production is lost to invertebrate pests. Conversely, invertebrates constitute a significant ecosystem service through pest predation and pollination. In any integrated production system, the management of invertebrates is therefore fundamental to effective crop production. This module will focus on critical evaluation of current research on invertebrate ecology and dynamics and applying this to their potential impacts on conventional cropping systems. Concepts of pest population dynamics, herbivory and species life histories will be considered in relation to their effects on the crop. Alongside this, their ‘value’ as pollinators, predators, vectors and the effects of lethal and sub-lethal pesticide doses will be evaluated.

Contemporary agronomic research and development

Research into agronomy, technology and management is of critical importance if the industry is to continue to adapt to modern pressures and challenges worldwide. This module will explore the research path including laboratory to field trials and, ultimately, application into practice. Case studies will be explored where research and development has made or could make a significant impact to management practice.

Year 2

Integrated approaches in low-input cropping systems

Low-input cropping systems seek to optimise crop yields whilst using fewer inputs when compared to conventional crop production systems. In parts of the world this is due to a lack of financial and physical resources whilst in others this is due to perceived environmental benefits. This module explores the science of the integrated management of crops under such systems, including enhanced soil management and factors influencing nutrition and disease control. Limitations will also be considered as will approaches that conventional crop production could learn from low-input management systems.

Global Drivers for Agricultural Change

This module examines the global drivers behind the need to refocus agricultural production to meet the needs of the increasing world population and mitigate the impacts of climate change. It will focus on concepts such as the effects of globalisation; the economic issues with pesticide development; the globalisation and privatisation of agricultural technology and the use of targeted pest control techniques. Furthermore, the module will assess the impacts of corporate responsibility and the necessity of having sustainable global supply chains.

Research Methodology and Design

This module provides students with the essential personal, organisational, management, theoretical and statistical skills needed to work at Postgraduate Level. It will explore research philosophies, research process and design and the process of questionnaire development and design. The module will develop skills in advanced data organisation, presentation, dissemination and problem solving.

Year 3

Masters Dissertation

The dissertation is a triple module and allows students to design and conduct a substantial piece of independent, supervised research related to the field of study. The dissertation is an independent piece of academic work which allows the student to identify and work in an area of interest to them and manage the research process to agreed deadlines.

Read less
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing. Read more
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.

Degree information

The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.

Students undertake modules to the value of 180 credits. Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).
-Project Report 1 at either UCL or Cambridge
-Project Report 2 at either UCL, Cambridge or industry
-Transferable Business Skills

Optional modules - students choose three optional modules from the following:
-Nanotechnology
-Biosensors
-Advanced Photonic Devices
-Photonic Systems
-Solar-Electrical Power: Generation and Distribution
-Photonic Sub-systems
-Broadband Technologies and Components
-Management of Technology
-Strategic Management
-Telecommunication Business Environment

Elective modules - students choose a further two elective modules from the list below:
-Solid State Devices and Chemical/Biological Sensors
-Display Technology
-Analogue Integrated Circuits
-Robust and Nonlinear Systems and Control
-Digital Filters and Spectrum Estimation
-Image Processing and Image Coding
-Computer Vision and Robotics
-Materials and Processes for Microsystems
-Building an Internet Router
-Network Architecture
-Software for Network Services
-Optical Transmission and Networks
-Nanotechnology and Healthcare
-RF Circuits and Sub-systems
-Physics and Optics of Nano-Structure
-Broadband Communications Lab
-Analogue CMOS IC Design Applications

Dissertation/report
All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).

Careers

Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.

Employability
Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, BAE Systems, Selex ES; medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through placements based both in the UK and overseas. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The Centre organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. A recent 2014 graduate is now working as a Fiber Laser Development Engineer for Coherent Scotland. Another is a Patent Attorney for HGF Ltd.

Why study this degree at UCL?

The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.

The centre provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.

This centre, aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.

Read less
The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. Read more
The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. The course covers a broad range of topics in applied entomology, plant pathology and nematology and all students receive training in fundamental skills which will enable them to enter either a pest/disease management work environment or a research career in applied entomology, plant pathology or pest management. There is, however, considerable flexibility within the course thus enabling each student to focus on specialist subjects consistent with their interests and future career intentions.

The course

The continuing production of safe, wholesome food in an environmentally sensitive manner is a major political issue for national governments and internationally within global commodity markets. A report produced by the UK Cabinet Office in 2008 (Food Matters: Towards a Strategy for the 21st Century) predicts that the global population will rise to 9Bn by 2050 rising from a current estimate of nearly 6.8Bn. This increase in population size will substantially increase the demand for food. The global estimates vary in magnitude, but it is thought approximately 25% of crops are lost to pests and diseases, such as insects, fungi and other plant pathogens (FAO Crop Prospects and Food Situation 2009).

The Crop Pest and Disease Management course will offer students training in techniques to facilitate crop food production. The course covers a broad range of topics in applied entomology, plant pathology and nematology and all students receive training in fundamental skills which will enable them to enter either a pest/disease management work environment or a research career in applied entomology, plant pathology or pest management. There is, however, considerable flexibility within the course thus enabling each student to focus on specialist subjects consistent with their interests and future career intentions.

Research projects are available in a wide range of subjects covered by the research groups within the Crop and Environment Sciences Department and choices are made in consultation with expert staff. Projects at linked research institutes in the UK and overseas are also available. The course is underpinned by an extensive programme of research at Harper Adams and long-standing collaborations with research institutes and other organisations in the UK and overseas.

How will it benefit me?

Having completed the MSc you will be able to identify the underlying causes of major pest and disease problems and recognize economically important insects, plant diseases and weeds.

You will also be able to apply integrated pest control methods and oversee their application. The course will focus on the ecological and management principles of pest control and you will learn to evaluate the consequences of pesticide use and application on the biological target. You will also receive training in the evaluation of the economic and environmental costs of integrated approaches to pest control in relation to biological effectiveness. Ultimately, the course will enable students to produce integrated pest and disease management solutions that pay due regard to agricultural, horticultural, social and environmental requirements.

In addition, there is considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions

The research project for the MSc will allow you to test hypotheses relevant to pest and disease management research by designing, carrying out, analysing and interpreting experiments or surveys. You will learn to evaluate and interpret data and draw relevant conclusions from existing pest and disease management case studies.

The MSc covers a broad range of topics relevant to pest and disease management and all students receive training in fundamental skills which will enable them to enter a vocational work environment or pursue a research career. There is, however, considerable flexibility enabling each student to focus on specialist subjects consistent with their interests and future career intentions.

Careers

Previous graduates from the course have mainly gone on to work for ADAS or commercial biological control companies, the agro-chemical industry or horticulture sector. Others have joined Research Institutes such as Forest Research, FERA, or Rothamsted Research. Typically 30% of MSc Integrated Pest & Disease Management graduates will go into research careers or onto PhD courses.

Read less
Information systems (IS) today are large, complex, varied in form and distributed, serving different types of people who use a variety of devices to access information. Read more
Information systems (IS) today are large, complex, varied in form and distributed, serving different types of people who use a variety of devices to access information. Specialists who recognise diverse business needs, and have a systematic approach to understanding the impact of technology on organisations, are essential to the success of any IS/IT strategy. Equal in importance to the architectures of systems and the supporting technologies, is the management and delivery of content, whether in the form of data, documents, images and sound.

Increasingly, the fundamental systems comprise digital architectures and networks which then embody and enable the distribution of digital content. Developed information systems are in reality socio-technical systems incorporating people, technologies and content. The information systems specialist becomes a more broadly based information professional as they extend their range and scope of operations towards the end users and their environments. Providing services to users and people at large and ensuring information resources deliver value is equally a part of the wider world of information systems.

Course detail

This course builds on typical undergraduate computing courses studied at level 4 and 5 or equivalent ( such as HND) by offering a level 6 entry route 'integrated' to a level 7 Masters course.

The two year combination provides a route to develop new knowledge and skills in areas critical to the introduction and success of modern information systems for enterprises. The course also provides a route for people with other backgrounds and experience to engage with the world of information systems. It helps you gain a full understanding of how information systems are designed and constructed, and of the impact of technology and its integration into an organisation. It will also give you the skills you need to work effectively in a business-consulting environment, and provide a solid basis for research.

To qualify for the award of MSc Information Systems (Integrated), candidates on the integrated pathway must study five level 6 modules consisting of 20 credits each and two 10 credits each, and six level 7 modules consisting of 20 credits and a 60 credits dissertation module.

Modules

Year One (Level 6)
• Strategies and Systems or Advanced Business Systems
• Development Methodologies
• Computer Security
• Advanced Databases
• Project Preparation
• Project
• IT Industry
Year Two (Level 7)
• Project Management
• Consultancy and Technological Innovation
• Enterprise Architecture
• Knowledge Management
• Learning and Professional Development
• Employability Skills and Employment
• HCI for Information Systems (optional)
• Mobile Applications Development ( optional)
• Data Architectures ( optional)
• UML Component Modelling(optional)
• Security Management ( optional)
• Research Methods
• Dissertation

Note: students select one option from the list offered

Format

Teaching consists of lectures, seminars and laboratory work to provide a basis for the intensive individual study you need to undertake to maximize your investment of time and potential outcomes from taking the course.

Assessment

Course assessed work is a significant part of the total assessment. There is practical work, report writing, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

The course aims to provide routes into a number of careers:
- information officers
- librarians, information service staff
- content and intelligence gatherers
- analysts
- researchers
- editors
- searchers and intermediaries
- advice and assistance workers
- data managers
- management information systems staff
- multimedia content workers
- mapping specialists and cartographers
- marketing research
- public relations and communication staff.

Outstanding graduates have gone on to further study at the level of MPhil and PhD at UWL and at other institutions. We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course: http://www.uwl.ac.uk/students/postgraduate/how-apply

Scholarships and bursaries

Information about scholarships and bursaries can be found here: http://www.uwl.ac.uk/students/postgraduate/scholarships-and-bursaries

Read less
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Read more
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Research projects may be chosen from any area of computational, physical, inorganic or organic chemistry.

Course components include:
• An advanced chemistry practical unit
• Two research projects in areas of choice
• Taught units in advanced chemistry
• Optional taught units in chemistry, biological sciences and management
• Modules in transferable skills, including scientific presentations and report writing.

Why study Chemistry with us?

- Outstanding facilities: X-ray powder diffraction, single crystal X-ray diffraction, Mass spectrometry, NMR (250/300/400/500 MHz, multinuclear facility)
- Programmes accredited by the Royal Society of Chemistry
- Outstanding publications, substantial grant income from research councils and industrial partners has resulted in a strong demand for our postgraduates and postdoctoral workers

What will I learn?

The MRes is a self-contained qualification, and graduates will be well-suited for posts in all sectors of the chemical industry, including the pharmaceutical industry and government institutions.

Students who complete a MRes degree will be well qualified to proceed to a three-year PhD programme or the MRes can be studied as the first year of our Integrated PhD programme. They should have a competitive edge in relation to undergraduate students applying for doctoral studies.

Career Opportunities

Career opportunities
Recent Bath graduates have gone on to employment or postdoctoral research in the UK, USA (Princeton, Harvard and Yale), the Netherlands, France, Luxembourg, Norway, Brunei and New Zealand.

Employers include the NIST Center for Neutron Research, Tocris, EPSRC and the Royal Society of Chemistry.

Find out more about the department here - http://www.bath.ac.uk/chemistry/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
Developmental biology is the science of the processes governing the growth and development of organisms. Read more
Developmental biology is the science of the processes governing the growth and development of organisms. This programme focuses on the fundamentals of developmental biology in a range of vertebrates, including studies of the genes and molecules that control cell growth, differentiation and morphogenesis that give rise to tissues, organs and individuals.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers. The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-developmental-biology/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/science/graduate-school/taught-programmes/).

For further details please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
This programme concentrates on understanding the molecular principles underlying the biology of microorganisms such as bacteria, viruses, fungi and yeasts. Read more
This programme concentrates on understanding the molecular principles underlying the biology of microorganisms such as bacteria, viruses, fungi and yeasts. In particular we study gene expression and regulation, gene transfer, genome structure, epidemiology, cell communication, and pathogenicity and virulence factors.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers. The programmes also addresses the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-molecular-microbiology/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
Molecular Plant Scientists attempt to understand the biology of plants at the molecular level. Read more
Molecular Plant Scientists attempt to understand the biology of plants at the molecular level. We study, in particular, mechansims of microbial pathogenicity and host plant defence in temperate and tropical species, cell and molecular biology of pollen-stigma recognition and signalling in flowering plants, plant hormone and G protein signalling pathways, genomics and gene networks, and molecular biology of stress responses in the important tropical crop cassava.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation.It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers.

The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-molecular-plant-sciences/

Why study Biology & Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/).

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
This programme focuses in particular on modern research in developmental biology, stem cell biology and tissue engineering with its potential applications to medicine and is a collaborative programme within the Centre for Regenerative Medicine. Read more
This programme focuses in particular on modern research in developmental biology, stem cell biology and tissue engineering with its potential applications to medicine and is a collaborative programme within the Centre for Regenerative Medicine.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation.It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers. The programmes also address the scientific, ethical and commercial context within which the research takes place.All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-regen-medicine/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/science/graduate-school/taught-programmes/).

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
The MRes in Biosciences enables students to customise their course according to their needs and future career ambitions by selecting diverse topics and projects under the guidance of the Director of Studies who advises on suitable taught units and laboratory projects. Read more
The MRes in Biosciences enables students to customise their course according to their needs and future career ambitions by selecting diverse topics and projects under the guidance of the Director of Studies who advises on suitable taught units and laboratory projects.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-biosciences/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
This programme involves the integration of structural biology and bioinformatics approaches in order to understand the activity of proteins, including enzymes, antibodies and receptors, at a molecular level. Read more
This programme involves the integration of structural biology and bioinformatics approaches in order to understand the activity of proteins, including enzymes, antibodies and receptors, at a molecular level. This understanding provides a platform for techniques such as structure-based drug design, biocatalysis and protein engineering, which are the basis for many recent advances in biotechnology.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers. The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-protein-structure-function/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the bioscience

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/postgraduate/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
The postgraduate programme in applied linguistics and communication began at Birkbeck in 1965, making it one of the oldest and most established linguistics courses in the world. Read more
The postgraduate programme in applied linguistics and communication began at Birkbeck in 1965, making it one of the oldest and most established linguistics courses in the world. It is unique, as it provides students with opportunities to explore many topics in applied linguistics and communication in a comprehensive and interdisciplinary manner. Furthermore, lecturers specialise in various areas of multilingualism and multiculturalism, offering a range of modules to suit individual interests.

You first complete 2 compulsory modules - Introduction to Applied Linguistics and Research Methods and Design - but then you are able to choose from a range of option modules, including, for example: Second Language Acquisition; Bilingualism; International Management Communication; Sociolinguistics; Language, Culture and Communication; Language Teaching and Learning in a Multilingual and Multicultural Contexts; and Linguistic Description and Corpus Application.

The core module Research Methods and Design aims to equip you with professional and technical knowledge in qualitative and quantitative research methods. It will also prepare you for undertaking your own empirical and/or theoretical research into language and language behaviour in the form of an extended literature review or dissertation.

The programme aims to introduce you to multiple sub-domains and topics that reflect the research interests of staff, e.g. code-switching, first and second language acquisition, intercultural communication, language pedagogy and assessment, language impairment, language policy, language and identity, corpus linguistics, and speech production and perception.

All academic staff are active in state-of-the-art teaching and research. Applied linguistics and communication at Birkbeck enjoys a strong international reputation for its quality teaching and research.

The programme is suitable for people with diverse career goals: those who wish to further their career prospects and professional development, or those who have an interest in doctoral research and aspire to work in higher education. In particular, the programme is beneficial for those who do not have specific research interests at the beginning of their degree, but who intend to identify and focus on an area of research after exploring various disciplines in applied linguistics and communication and immersing themselves in the research and learning culture of a renowned department.

Our students work in a rich research environment that is supported by excellent resources, including a multimedia library and computing facilities. We have a large MPhil/PhD community and this programme offers the opportunity to progress to our integrated PhD programmes in Applied Linguistics, Intercultural Communication, Language Teaching or TESOL.

Our postgraduate students join a vibrant and diverse community supported by the Birkbeck College Applied Linguistics Society, which is student run. There is an annual Postgraduate Student Research Conference which is organised by the Society every summer. In addition, the Research Centre for Multilingual and Multicultural Research hosts a lecture series given by international visiting scholars. Birkbeck also actively collaborates with the larger community of applied linguists throughout University of London colleges. The Institute of Education, School of Oriental and African Studies and University College London are all within walking distance in Bloomsbury, as well as King's College London. The British Library and the British Museum are also a short walking distance away.

Read less

Show 10 15 30 per page



Cookie Policy    X