• Aberystwyth University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cranfield University Featured Masters Courses
University College Cork Featured Masters Courses
University of Bath Featured Masters Courses
"computational" AND "flui…×
0 miles

Masters Degrees (Computational Fluid Dynamics)

We have 96 Masters Degrees (Computational Fluid Dynamics)

  • "computational" AND "fluid" AND "dynamics" ×
  • clear all
Showing 1 to 15 of 96
Order by 
This course has been designed to reflect the wide applications of Computational Fluid Dynamics. Read more

This course has been designed to reflect the wide applications of Computational Fluid Dynamics. You will learn to understand, write and apply CFD methods across a wide broad range of fields, from aerospace, turbomachinery, multi-phase flow and heat transfer, to microflows, environmental flows and fluid-structure interaction problems. Tailor your course by choosing from a range of specialist modules covering application-specific methods and techniques.

Who is it for?

Designed to meet the education needs of graduates and professional engineers who are looking to kick-start an industrial or research career in the rapidly growing field of Computational Fluid Dynamics. This course bridges the gap between the introductory level of undergraduate courses and the applied expertise acquired by engineers using CFD in industry. You will gain the knowledge and appreciation of CFD methods necessary for a strong foundation to a career in this exciting engineering discipline.

Why this course?

The MSc in Computational Fluid Dynamics provides a solid background so that you will be able to apply CFD methods as a tool for design, analysis and engineering applications. With a strong emphasis on understanding and application of the underlying methods, enthusiastic students will be able to write their own CFD codes during the course.

Sharing some modules with the MSc in Aerospace Dynamics gives you the opportunity to interact with students from other disciplines. In recent years, our students have been had the opportunity for work-based placements at the Aircraft Research Association (ARA), European Space Agency (ESA), Ricardo and DAF Trucks.

Informed by Industry

Our strategic links with industry ensures that all of the materials taught on the course are relevant, timely and meet the needs of organisations competing within the computational analysis sector. This industry led education makes Cranfield graduates some of the most desirable for companies to recruit.

The Industrial Advisory Panel is comprised of senior industry professionals provides input into the curriculum in order to improve the employment prospects of our graduates.

Accreditation

The MSc in Computational Fluid Dynamics will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the educational base for CEng registration.

Course details

The taught modules are delivered from October to April via a combination of structured lectures, and computer based labs.

The core part of the course consists of modules which are considered to represent the necessary foundation subject material. The course is designed to reflect the broad range of CFD applications by providing a range of optional modules to address specific application areas. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Individual project

The taught element of the course finishes in May, at which point you will have an excellent understanding of CFD methods and applications. From May to September you will work full-time on your individual research project. The research project gives you the opportunity to produce a detailed piece of work either in close collaboration with industry, or on a particular topic which you are passionate about.

Recent Individual Research Projects include:

  • A Study of A-pillar Vortices on the Jaguar XF Using Transitional Turbulence Models
  • Aerodynamic Analysis and Optimisation of the Aegis UAV
  • Performance Analysis of Hypervapotron Inlet Region
  • Phase Separation of Oil-water Flow in a Pipe Bend
  • CFD Simulation of a Novel CO Sensor
  • Shock Wave Interaction with Biological Membranes for Drug Therapy
  • High Resolution Implicit Large Eddy Simulation of Ariane 5 Aerodynamics.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Strategic industrial links ensure that the course meets the needs of the organisations competing within the computational sector therefore making our graduates some of the most desirable in the world for companies to recruit. An increasing demand for CFD specialists with in depth technical knowledge and practical skills within a wide range of sectors has seen our graduates employed by leading companies including:

  • Alstom
  • BAE Systems
  • Cummins Turbo Technology
  • BHR
  • ESTEC
  • Hindustan Aeronautics Ltd
  • NUMECA
  • ONERA
  • Rio Tinto
  • Rolls-Royce plc
  • Siemens.

Roughly one third of our graduates go on to register for PhD degrees, many on the basis of their MSc individual research project. Thesis topics are often supplied by individual companies on in-company problems with a view to employment after graduation - an approach that is being actively encouraged by a growing number of industries.




Read less
This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. Read more

This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. The core modules, including 'Applications of CFD', and 'Advances in Ship Resistance and Propulsion', are particularly relevant to the Maritime Computational Fluid Dynamics theme of this course.

Introducing your degree

Maritime Engineering Science is an MSc course designed for graduates, or similarly qualified, with an engineering, scientific or mathematical background, who desire to pursue a career in maritime sector. An introductory module is provided at the start to give students the fundamental knowledge necessary for them to succeed in the course.

The masters course in Maritime Engineering Science / Maritime Computational Fluid Dynamics concentrates on the computational techniques and their applications to the predictions of fluid behaviour and its interactions with structure, core to the engineering in the maritime environment.

Overview

The year will be divided into two semesters. Your compulsory modules will give you an in-depth understanding of CFD methodology, data interpretation and practical applications of numerical procedures. You will also study Application of CFD and advances in ship resistance and propulsion.

In each semester, you will have the chance to broaden your maritime engineering education by selecting option modules including flow control, offshore engineering analysis and design search and optimisation.

The last four months will be devoted to practical research. You will complete a final research project and take advantage of our world-class high performance computing facility for your CFD work as well as CFD test facilities to perform your experimental work.

View the specification document for this course

Career Opportunities

The maritime sector provides many and varied career opportunities in engineering and project management related roles. Maritime Engineering Science graduates are in strong demand with good starting salaries and excellent career progression opportunities.

Our graduates work across many different organisations. The Solent region around Southampton is the main UK hub for the maritime sector with organisations such as Lloyd’s Register, Carnival, BMT Nigel Gee, Maritime and Coastguard agency and many others based nearby. Organisations such BAE Systems, QinetiQ and Babcock support primarily the defence sector and employ a good number of our graduates. The offshore and marine renewable developments are offering excellent prospects both to work in the UK (locally, London or Aberdeen) or worldwide in places such as Singapore, Houston or Perth, etc.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Erasmus Mundus Computational Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has gained a significant international profile as one of the key international centres for research and training in computational mechanics and engineering. As a student on the Master's course in Erasmus Mundus Computational Mechanics, you will be provided with in-depth, multidisciplinary training in the application of the finite element method and related state-of-the-art numerical and computational techniques to the solution and simulation of highly challenging problems in engineering analysis and design.

Key Features of Erasmus Mundus Computational Mechanics MSc

The Zienkiewicz Centre for Computational Engineering is acknowledged internationally as the leading UK centre for computational engineering research. It represents an interdisciplinary group of researchers who are active in computational or applied mechanics. It is unrivalled concentration of knowledge and expertise in this field. Many numerical techniques currently in use in commercial simulation software have originated from Swansea University.

The Erasmus Mundus MSc Computational Mechanics course is a two-year postgraduate programme run by an international consortium of four leading European Universities, namely Swansea University, Universitat Politècnica de Catalunya (Spain), École Centrale de Nantes (France) and University of Stuttgart (Germany) in cooperation with the International Centre for Numerical Methods in Engineering (CIMNE, Spain).

As a student on the Erasmus Mundus MSc Computational Mechanics course, you will gain a general knowledge of the theory of computational mechanics, including the strengths and weaknesses of the approach, appreciate the worth of undertaking a computational simulation in an industrial context, and be provided with training in the development of new software for the improved simulation of current engineering problems.

In the first year of the Erasmus Mundus MSc Computational Mechanics course, you will follow an agreed common set of core modules leading to common examinations in Swansea or Barcelona. In addition, an industrial placement will take place during this year, where you will have the opportunity to be exposed to the use of computational mechanics within an industrial context. For the second year of the Erasmus Mundus MSc Computational Mechanics, you will move to one of the other Universities, depending upon your preferred specialisation, to complete a series of taught modules and the research thesis. There will be a wide choice of specialisation areas (i.e. fluids, structures, aerospace, biomedical) by incorporating modules from the four Universities. This allows you to experience postgraduate education in more than one European institution.

Modules

Modules on the Erasmus Mundus MSc Computational Mechanics course can vary each year but you could expect to study the following core modules (together with elective modules):

Numerical Methods for Partial Differential Equations

Continuum Mechanics

Advanced Fluid Mechanics

Industrial Project

Finite Element Computational Analysis

Entrepreneurship for Engineers

Finite Element in Fluids

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Reservoir Modelling and Simulation

Accreditation

The Erasmus Mundus Computational Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

On the Erasmus Mundus MSc Computational Mechanics course, you will have the opportunity to apply your skills and knowledge in computational mechanics in an industrial context.

As a student on the Erasmus Mundus MSc Computational Mechanics course you will be placed in engineering industries, consultancies or research institutions that have an interest and expertise in computational mechanics. Typically, you will be trained by the relevant industry in the use of their in-house or commercial computational mechanics software.

You will also gain knowledge and expertise on the use of the particular range of commercial software used in the industry where you are placed.

Careers

The next decade will experience an explosive growth in the demand for accurate and reliable numerical simulation and optimisation of engineering systems.

Computational mechanics will become even more multidisciplinary than in the past and many technological tools will be, for instance, integrated to explore biological systems and submicron devices. This will have a major impact in our everyday lives.

Employment can be found in a broad range of engineering industries as this course provides the skills for the modelling, formulation, analysis and implementation of simulation tools for advanced engineering problems.

Student Quotes

“I gained immensely from the high quality coursework, extensive research support, confluence of cultures and unforgettable friendship.”

Prabhu Muthuganeisan, MSc Computational Mechanics



Read less
This new and unique course covers a wide range of applications focused on aerospace computational aspects. As mirrored by developments in the motorsport industry, within the next five years there will be a demand for engineers and leaders who will be using 100% digital techniques for aeronautical design and testing. Read more

This new and unique course covers a wide range of applications focused on aerospace computational aspects. As mirrored by developments in the motorsport industry, within the next five years there will be a demand for engineers and leaders who will be using 100% digital techniques for aeronautical design and testing.

Who is it for?

With its blend of skills-based and subject-specific material this course aims to provide students with generic practical skills and cutting-edge knowledge adaptable to the wide variety of applications in the field of aerospace computational engineering.

The part-time option is suitable for qualified engineers to extend their knowledge and incorporate CFD into their skill set.

Why this course?

This course aims to enhance your skills through a detailed introduction to the state-of-the-art computational methods and their applications for digital age aerospace engineering applications. It provides a unique opportunity for cross-disciplinary education and knowledge transfer in the computational engineering of fluid and solid mechanics for aerospace industrial applications. Focusing on fully integrated digital design for aerospace applications you will be able to understand and implement numerical methods on various computing platforms for aerospace applications. You will be able to meet the demand of an evolving workplace that requires highly qualified engineers possessing core software engineering skills together with competency in mathematical analysis techniques.

Sharing modules with the MSc in Computational Fluid Dynamics and the MSc in Computational and Software Techniques in Engineering this course gives you the opportunity to interact with students from other disciplines.

Informed by Industry

Our strategic links with industry ensures that all of the materials taught on the course are relevant, timely and meet the needs of organisations competing within the computational analysis sector. This industry led education makes Cranfield graduates some of the most desirable for companies to recruit. Our industrial partners support this course by providing internship, act as visiting lectures and deliver industrial seminars.

Accreditation

Following the first graduation, this course will seek to obtain accreditation from:

Course details

The taught modules are delivered from October to April via a combination of structured lectures, and computer based labs. Many of the lectures are given in conjunction with some form of programming, you will be given time and practical assistance to develop your software skills.

Students on the part-time programme complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Group project

The Group project is related to digital wind tunnel development.

Individual project

The taught element of the course finishes in May. From May to September you will work full-time on your individual research project. The research project gives you the opportunity to produce a detailed piece of work either in close collaboration with industry, or on a particular topic which you are passionate about.

Assessment

Taught modules: 80%, Group project: 40%, Individual Research Project: 80%

Your career

The MSc in Aerospace Computational Engineering is designed to equip you with the skills required to pursue a successful career working in the UK and overseas in computational aeronautic design and engineering. 

Our courses attract enquiries from companies in the rapidly expanding engineering IT industry sector across the world who wish to recruit high quality graduates who have strong technical programming skills in industry standard languages and tools. They are in demand by CAD vendors, commercial engineering software developers, aerospace, automotive and other industries and research organisations, and have been particularly successful in finding employment.

Some of our graduates go onto PhD degrees. Project topics are most often supplied by individual companies on in-company problems with a view to employment after graduation – an approach that is being actively encouraged by a growing number of industries.



Read less
The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. Read more

The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. The aim of this postgraduate course is to train and educate thermofluid engineers to enable them to meet present and future demands of the industry and to equip them with the necessary skills to engage in employment or further research.

The course is suitable for engineering/science graduates and professionals who not only wish to enhance their expertise in thermofluids but also to develop their competence in the use of state-of-the-art analytical, computational and experimental methods; advanced methods which are specifically designed for the analysis of heat and fluid flow in both industrial and research applications.

The objectives of this course are to produce postgraduate specialists with:

  • advanced understanding of heat and fluid flow processes and their role in modern methods of power generation
  • in-depth understanding of numerical and experimental techniques in heat and fluid flow

Teaching on the course is delivered by academics from our world-leading research group in the field of turbulence modelling and heat transfer.

Special features

Thermal Power and Fluid Engineering Merit Award

The three students who achieve the highest performance in this MSc course in 2016-17 will receive an award.

The winners of the Thermal Power and Fluid Engineering Merit Award are presented with a certificate by the Head of the School, Prof Andy Gibson, and are awarded a cash prize. The awards are £3,000 for the top student, £2,000 for the second and £1,000 for the third student in each semester.

The winners of the award this semester were: Aseem Bhavnesh Desai (1st), Robert O'Donoghue (2nd) and Luca Cappellone (3rd).

Teaching and learning

This is a full-time course studied over 12 months with one start date each year in September. Every year this MSc course in Thermal Power and Fluid Engineering attracts a large number of applications from all around the world, which allows us to select only the best candidates.

Throughout the course, alongside the teaching, special emphasis is placed on both computational and experimental work; the aim is to provide insight through experimentally observed phenomena, and also to provide practical/computational experience of a wide range of measurement and data analysis techniques. Thus, the course has a strong practical orientation which is supported by our School laboratories and facilities and it aims to produce engineers who are able to engage in the design, development and testing of internal combustion engines, turbines or power producing devices. Whilst on the course, students have the opportunity to participate in a number of industrial visits. Relevant companies sometimes offer projects to our students as a result of these visits.

The MSc is continually reviewed and now includes course units such as research and experimental methods, advanced fluid mechanics, advanced heat transfer, engineering thermodynamics, power engineering and computational fluid dynamics. Students are assessed based upon a combination of coursework, laboratory calculations, exams and projects. Upon successful completion of taught modules the students are required to do a research dissertation .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The MSc in Thermal Power and Fluid Engineering trains graduates in the theory and practice of a broad range of industrially relevant topics within the fields of thermodynamics and fluid mechanics. It is specifically designed to meet the needs of the modern engineer both in industry and in research. Most of our research is derived and funded by industry, and we have always been proud of maintaining strong links with our industrial partners. Teaching staff on this course have research-based collaborations with multinational companies such as Boeing, Airbus, Rolls Royce, Jaguar Land rover, Électricité de France, Procter and Gamble, Unilever, Dyson, Alstom and many others.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

Our recent graduates have gone on to work in internationally renowned companies including:

  • Airbus, UK
  • Électricité de France, UK
  • Jaguar Land Rover, UK
  • Dassault Systèmes, France
  • Honda Motors, UK
  • Doosan Global, UK
  • ExxonMobil, UK
  • Saudi Aramco, KSA
  • Engro Chemicals, Pakistan
  • Abu Dhabi National Oil Company, UAE
  • ANSYS, UK
  • ABB Group, UK
  • Exa GmbH, UK

Please see our Alumni profiles to find out more about some of our graduates.

Accrediting organisations

This Masters Course is accredited by the IMechE, the Institution of Mechanical Engineers which is the UK's professional body of Mechanical Engineers. This means that graduates from this course are recognised by the IMechE as having the academic qualifications required of candidates for the status of Chartered Engineer.



Read less
Graduate education in Computational Science and Engineering (CMSE) at Koç University is offered through an interdisciplinary program among the Departments of the College of Arts and Sciences and the College of Engineering. Read more
Graduate education in Computational Science and Engineering (CMSE) at Koç University is offered through an interdisciplinary program among the Departments of the College of Arts and Sciences and the College of Engineering. In this program graduate students are trained on modern computational science techniques and their applications to solve scientific and engineering problems. New technological problems and associated research challenges heavily depend on computational modeling and problem solving. Because of the availability of powerful and inexpensive computers model-based computational experimentation is now a standard approach to analysis and design of complex systems where real experiments can be expensive or infeasible. Graduates of the CMSE Program should be capable of formulating solutions to computational problems through the use of multidisciplinary knowledge gained from a combination of classroom and laboratory experiences in basic sciences and engineering. Individuals with B.S. degrees in biology, chemistry, physics, and related engineering disciplines should apply for graduate study in the CMSE Program.

Current faculty projects and research interests:

• Computational Biology & Bioinformatics
• Computational Chemistry
• Computational Physics
• Molecular Dynamics and Simulation
• Parallel and High Performance Computing
• Computational Fluid Dynamics
• Dynamical and Stochastic Systems
• Quantum Mechanics of Many Body Systems
• Electronic Design Automation
• Numerical Methods
• Simulation of Material Synthesis
• Structural Dynamics
• Biomedical Modeling and Simulation
• Virtual Environments

Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field. Read more

This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field.

The programme will develop from fundamental topics, including modern approaches to understanding properties of the systems on a molecular scale and advanced numerical methods, to the actual processes, with a particular emphasis on energy efficiency, to the summer dissertation projects where the acquired skills in various areas are put into practice, in application to actual chemical engineering problems.

Programme structure

The programme develops from compulsory courses, emphasizing modern computational techniques and research methods, to a range of options. It is complemented by a strong management and economics component, culminating in a research project leading to a masters thesis.

Compulsory Courses

  • Numerical Methods for Chemical Engineers
  • Molecular Thermodynamics
  • Introduction to Research Methods

Optional Courses

Students must select one of the following courses during semester one:

  • Chemical Reaction Engineering
  • Fire Science and Fire Dynamics
  • Process Safety
  • Computational Fluid Dynamics
  • Group Design Project (Power Station with Carbon Capture and Storage)

Plus, five or six courses (depending on the weighting of the course) from the options listed below in semester two:

  • Adsorption
  • Separation Processes
  • Membrane Separation Processes
  • Batchwise and Semibatch Processing
  • Oil and Gas Systems Engineering
  • Polymer Science and Engineering
  • Supply Chain Management
  • Modern Economic Issues in Industry
  • Technology and Innovation Management
  • Nanotechnology
  • Engineering in Medicine
  • Nanomaterials in Chemical and Biomedical Engineering

Learning outcomes

  • A working knowledge of modern modelling and simulation approaches to understanding properties of chemical systems at a molecular level.
  • A working knowledge of advanced experimental techniques, such as for example particle image velocimetry, spectroscopy and infra-red thermography, as applied in engineering research and development.
  • Ability to transform a chemical engineering problem into a mathematical representation; broad understanding of the available numerical tools and methods to solve the problem; appreciation of their scope and limitations.
  • An understanding of the basic design approaches to advanced energy efficient separation processes.
  • Ability to transfer and operate engineering principles in application to other fields, such as biology.
  • Proficiency in using modern chemical engineering software, from molecular visualisation to computational fluid dynamics to process engineering.

On completion of the research dissertation, the students will be able to:

  • Plan and execute a significant research project
  • Apply a range of standard and specialised research instruments and techniques of enquiry
  • Identify, conceptualise and define new and abstract problems and issues
  • Develop original and creative responses to problems and issues
  • Critically review, consolidate and extend knowledge, skills practices and thinking in chemical engineering
  • Communicate their research findings, using appropriate methods, to a range of audiences with different levels of knowledge and expertise
  • Place their research in the context of the current societal needs and industrial practice
  • Adhere to rigorous research ethics rules
  • Exercise substantial autonomy and initiative in research activities
  • Take responsibility for independent work
  • Communicate with the public, peers, more senior colleagues and specialists
  • Use a wide range of software to support and present research plans and findings

Career opportunities

Our graduates enjoy diverse career opportunities in oil and gas, pharmaceutical, food and drink, consumer products, banking and consulting industries. Examples of the recent employers of our graduates include BP, P&G, Mondelēz International, Doosan Babcock, Atkins, Safetec, Xodus Group, Diageo, Wood Group, GSK, Gilead Sciences, ExxonMobil, Jacobs, Halliburton, Cavendish Nuclear to name a few. This wide range of potential employers means that our graduates are exceptionally well placed to find rewarding and lucrative careers. According to the Complete University Guide, the chemical engineering programme at the University of Edinburgh is ranked one of the top in the UK in terms of graduates prospects.

Find out more about career opportunities:

The MSc in Advanced Chemical Engineering may also lead to further studies in a PhD programme. With the 94% of our research activity rated as world leading or internationally excellent (according to the most recent Research Excellence Framework 2014), Edinburgh is the UK powerhouse in Engineering. As an MSc student at Edinburgh you will be immersed in a research intensive, multidisciplinary environment and you will have plenty of opportunities to interact with PhD, MSc students and staff from other programmes, institutes and schools.

Find out more about our research:



Read less
Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce. Read more

Demand for aerospace engineering graduates is rising, both in the UK and overseas. In fact, the UK aerospace industry is the second biggest in the world after the USA, and it’s home to some of the world’s leading aerospace companies such as Airbus, Astrium, BAE Systems, GKN and Rolls-Royce.

Taught by expert academics in a leading research environment, this programme will equip you with the knowledge and skills to succeed in an exciting and challenging sector. You’ll study aerospace structures and structural analysis, along with optional, specialist modules in areas such as aerodynamics and computational fluid dynamics, aircraft design, systems and optimisation methods, rotary wing aircraft and propulsion.

Our Aerospace Engineering Industrial Advisory Board is actively engaged in ensuring this course meets the needs of industry and reflects trends in the sector. It also provides industrial talks and seminars and advice and support to our students during their professional projects.

In addition to our advanced CAD facilities for design work, we have the latest industry-standard software for computational fluid dynamics and finite element modelling of material stress analysis, programming and structural and multidisciplinary optimisation.

Accreditation

We are currently seeking accreditation from the Institute of Mechanical Engineers (IMechE) and the Royal Aeronautical Society.



Read less
This course, which is accredited by Royal Aeronautical Society, provides a strategic overview of aerospace engineering and management issues. Read more
This course, which is accredited by Royal Aeronautical Society, provides a strategic overview of aerospace engineering and management issues. It will help you to develop a wider perspective and understanding of the challenges facing the aerospace engineering industry, and includes subjects such as entrepreneurship, business, finance, research techniques and green environmental issues.

What will you study?

You will gain a broad understanding of the practical requirements of aerospace engineering, as well as an in-depth knowledge of aerospace stress analysis and advanced materials, alongside computational fluid dynamics (CFD) for aerospace applications. Complementary subjects covered include computer-integrated product development, advanced CAD/CAM plus green engineering and energy efficiency. In addition, the Engineering Research Techniques, Entrepreneurship and Quality Management module will develop your business and management skills. The Aerospace Group Design Project module provides you with the experience of working in a multidisciplinary team within an engineering organisation – with real industrial constraints. You'll get the chance to apply the theory you've learnt to real-world contexts and evaluate methodologies, whilst developing your critical thinking and creativity.
As well as the professional, analytical and management skills necessary for employment, the course will provide you with the transferable skills required in the workplace, such as communication, IT, teamwork, planning, decision making, independent learning ability and problem solving.

Assessment

Coursework and/or exams, industrial project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Aerospace Applications
-Aerospace Stress Analysis and Advanced Materials
-Aerospace Group Design Project

Option modules (choose one)
-Green Engineering and Energy Efficiency
-Advanced CAD/CAM Systems
-Engineering Projects and Risk Management

Read less
Important. if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course. Read more
Important: if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course.

Choose Kingston's Mechanical Engineering MSc

This course, accredited by the Institution of Mechanical Engineers, is designed to provide you with the latest technological knowledge and industrial management skills, at an advanced level of study, in specific aspects of mechanical engineering that are in demand from industry. The course also provides you with a strategic overview of engineering and management skills necessary to take on leadership roles in major engineering projects.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices, whilst the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This course will provide a broad and in-depth understanding of mechanical design engineering, modern materials application and advanced manufacturing technology. You will employ advanced computer-based mechanical engineering design analysis and problem solving, using cutting-edge technologies such as finite elements analysis (FEA), computational fluid dynamics (CFD) and mechanism design analysis and control. What's more, you will develop the entrepreneurial management and business skills necessary to take on leadership roles in major engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and solve a real-world problem.

Assessment

Coursework and/or exams, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Engineering Applications
-Advanced Stress Analysis and Materials
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/mechanical-engineering-msc-ft-dtfmez6/

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

Module Overview
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. Read more
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. This course is designed with an engineering focus that deals with applications, combined with the business element; applicable whether you work for a large organisation or a small to medium-size enterprise.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-The programme provides hands-on skills in 3D CAD and solid modelling, FEA and CFD analysis, Polysun and WindPRO simulations using industry-standard software.
-You can undertake a wide range of challenging and interesting sponsored and non-sponsored projects in the specific areas of wind power, solar power, biofuels and fuel-cells-related technologies.
-Excellent career progression and internship with leading renewable companies: around 80% of students who have graduated from this programme have been recruited by the relevant industries as a consultant such as Atkins, Alstom Power, Inditex, Vattenfall, Shell, SGS UK Ltd and many others.
-Completion of this programme would be an ideal progression to PhD level of research studies if you are interested in following an academic or research career in novel areas of renewable energy.

What will you study?

The course provides an in-depth knowledge of renewable energy systems design and development, commercial and technical consultancy and project management within the sustainable engineering environment.

You will gain technical skills in and knowledge of solar power, wind power, biofuel and fuel cell technologies, as well as renewable energy business and management. In addition, you will gain practical skills in up-to-date computer-aided simulation technologies such as Polysun for solar energy applications, WindPRO for wind farm applications and ECLIPSE for biomass applications.

Option modules enable you to specialise in project engineering and management, as well as risk management or engineering design and development. Advanced topics, such as 3D solid modelling, computer-aided product development and simulation, and computational fluid dynamics (CFD) analysis and simulation allow you to gain further practical and theoretical knowledge of analytical software tools used in product design.

Assessment

Coursework, exams, individual project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

If you start this course in January, you will complete the same modules as students who started in September but in a different format – please contact us at for more information.

Core modules
-Biomass and Fuel Cell Renewable Technology
-Solar Power Engineering
-Wind Power Engineering
-Project Dissertation

Option modules (choose one)
-Engineering Projects and Risk Management
-Computational Fluid Dynamics for Engineering Applications
-Computer Integrated Product Development

Read less
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?. The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Read more
Would you like to stand out in the employment job market by advancing your current qualification to master’s level?

The MSc Mechanical Engineering course will provide you with advanced knowledge and skills in key aspects of mechanical engineering. Throughout the duration of this course you will develop a critical awareness of ethical and environmental considerations, in addition to learning about advanced mechanical engineering practice and theory.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Accredited by the Institution of Mechanical Engineers (IMechE), this course fully meets the academic requirements to become a Chartered Engineer.

At a time when there is an international shortage of mechanical engineers there has never been a better time to enter this dynamic and rewarding industry.

Learn From The Best

You’ll be taught by tutors who have many years of experience in the various aspects of the engineering industry. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent. (Research Excellence Framework 2014.)

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. We’ve built up numerous industrial links during the 50+ years that we’ve been offering engineering courses. These links help ensure high quality placements and collaborative projects.

Northumbria has the advantage of being located in the North East of England, which is a centre of manufacturing and technical innovation. As well as Nissan, the region’s #1 company, there is a strong concentration of automotive, engineering, chemicals, construction and manufacturing companies.

Teaching And Assessment

The initial semesters of this course focus on taught subjects that cover topics such as computational fluid dynamics and heat transfer, multidisciplinary design and engineering optimisation, composite materials and lightweight structures, advanced stress and analysis and thermo-mechanical energy conversion systems.

Teaching is primarily delivered by lectures, seminars and workshops, all of which are assessed by methods such as assignments, exams and technical reports. All of this course’s assessments have been devised to closely mirror the outputs required in a real working environment.

On completion of the taught modules you will undertake a substantial piece of research related to an area of mechanical engineering that particularly interests you. Our teaching team will be on-hand to offer support and guidance throughout every stage of your course.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7001 - Computational Fluid Dynamics and Heat Transfer (Core, 20 Credits)
KB7006 - Composite Materials and Lightweight Structures (Core, 20 Credits)
KB7008 - Advanced Stress and Structural Analysis (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Throughout the duration of your course you will have access to our dedicated engineering laboratories that are continuously updated to reflect real-time industry practice.

Our facilities include mechanical and energy systems experimentation labs, rapid product development and performance analysis, materials testing and characterisation, 3D digital design and manufacturing process performance.

You will be given the opportunity to get hands-on with testing, materials processing, moulding, thermal analysis and 3D rapid manufacture to help you create the products and systems required for the projects you will work on during your course.

Your learning journey will also be supported by technology such as discussion boards and video tutorials. You will also participate in IT workshops where you will learn how to use the latest industry-standard software.

Videos of lectures will on many occasions be made available through Panopto video software to further support teaching delivery.

You will also have access to all Northumbria University’s state-of-the-art general learning facilities such as dedicated IT suites and learning areas.

Research-Rich Learning

When studying at Northumbria University you will be taught by our team of specialist staff who boast a wealth of multi-dimensional expertise.

Our teaching team includes a dynamic mix of research-active industrial practitioners, renowned researchers and technologists, whose combined knowledge ensures you leave with an in-depth understanding of key mechanical engineering practice and research.

You will be encouraged to undertake your own research–based learning where you will evaluate and critique scientific papers and write research-based reports based on the information gathered.

We aim to regularly welcome industry specialists to deliver guest lecturers to further enable you to understand real-world issues and how they link to the concepts, theories and philosophies taught throughout your course.

The department of Mechanical and Construction Engineering is a top-35 Engineering research department with 79% of our outputs ranked world-leading or internationally excellent according to the latest UK-wide research assessment exercise (REF2014, UoA15). This places us in the top quartile for world-leading publications among UK universities in General Engineering.

Give Your Career An Edge

The MEng Mechanical Engineering course will equip you with all of the skills required to progress within the engineering industry and competition of your master’s degree will give you a competitive edge thanks to the additional skills and knowledge you will acquire.

Our accreditation with the IMechE ensures that this course’s content is in-line with the latest developments within this sector, making our course highly valued by employers.

By completing this course you will have completed the academic requirement to become a Chartered Engineer, a status that is associated with improved employability and higher salaries.

Employability is embedded throughout all aspects of your course and you will leave with enhanced key skills such as communication, computing and teamwork.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

Your Future

Mechanical Engineering overlaps with a number of engineering disciplines meaning there are many career paths available to you once you have completed this course.

Many graduates choose to pursue a career in the expansive engineering sector, in roles such as designers, analysts, project managers or consultants.

You may also wish to progress your knowledge to PhD level and this course will provide you with a solid foundation that you can easily build on and advance to an even higher level.

Engineering is a growth industry and currently there is a shortage of engineers. 90% of our graduates are in work or study within six months of graduating and, of those in work, 80% are employed in a professional or managerial job (Unistats 2015).

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation

Solid Mechanics

Finite Element Computational Analysis

Advanced Fluid Mechanics

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Computational Case Study

Communication Skills for Research Engineers

Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less

Show 10 15 30 per page



Cookie Policy    X