• Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Swansea University Featured Masters Courses
University of London International Programmes Featured Masters Courses
University of Leeds Featured Masters Courses
University of Cambridge Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Manchester Featured Masters Courses
"clinical" AND "drug" AND…×
0 miles

Masters Degrees (Clinical Drug Development)

We have 158 Masters Degrees (Clinical Drug Development)

  • "clinical" AND "drug" AND "development" ×
  • clear all
Showing 1 to 15 of 158
Order by 
Programme description. Over the last 30 years healthcare research and drug development have been transformed from peripheral activities carried out on an ad hoc basis to become core activities that require trained, professional, staff. Read more
Programme description
Over the last 30 years healthcare research and drug development have been transformed from peripheral activities carried out on an ad hoc basis to become core activities that require trained, professional, staff.

We have developed a modular postgraduate programme in clinical drug development designed to give you the necessary academic background and specialist skills needed to carry out clinical drug development in a contract research organisation , pharmaceutical industry or health service environment.

If you are a nurse, medical doctors or other health professionals working in contract research organisations, the pharmaceutical industry and healthcare, this programme has been designed for you.

Programme outline
This postgraduate programmes shares a common spine with our Healthcare Research Methods programme, which covers the key areas of expertise needed for a successful clinical research programme.If you choose the Clinical Drug Development programme, your initial modules will concentrate on early drug development.

The modular nature of the programmes is designed to fit in with full-time employment. The taught elements of the modules are delivered in three-day blocks every six weeks.

Core modules:

Clinical Study Design
Practical Aspects of Clinical Research and Early Drug Development
Ethics and Regulation
Data Management and Statistics
Specific Topics in Clinical Trial Design
Elective Dissertation
Health Outcomes and Pharmacoeconomics
Marketing Healthcare
Research Project / Dissertation
Drug Discovery and Pre-clinical Research and Development
Toxicology
Module options include:

Health and the Human Body
Healthcare Organisation and Decision Making

Read less
The aim of the Distance Learning (DL) PGDip/MSc in Clinical Drug Development course is to provide students with a multi-disciplinary perspective to facilitate their skills. Read more
The aim of the Distance Learning (DL) PGDip/MSc in Clinical Drug Development course is to provide students with a multi-disciplinary perspective to facilitate their skills. This course is designed for individuals who need an understanding of the drug development process, and provides a detailed picture of the complex and highly interrelated activities required for the development cycle for drugs and biologics, from the process of discovery to successful commercialisation. The DL PGDip/MSc in Clinical Drug Development provides students the edge that pharmaceutical industry requires. It also empowers the professionals working within the field with the skills and understanding required for fast progression within the industry and contract research organisations (CRO-s).
The modular nature of the courses is designed to fit in with the needs of those students who are in full time employment. The taught element of the modules is delivered in three-day blocks every four to six weeks (approximately). For a PGDip award students have to complete in total of 7 modules, while for an MSc award students need to complete 10 modules in total.
Module Titles:
Drug Discovery & Pre-Clinical Research & Development
Toxicology: From Molecules to Man
Clinical Study Design
Practical Aspects of Clinical Research & Early Drug Development
Ethics & Regulation in Clinical Research
Data Management: The Interpretation of Statistics & Pharmacokinetics
Specific Topics in Clinical Trial Design and Elective Project
Health and Pharmaco-Economics
Pharmaceutical & Healthcare Marketing
Dissertation
The final mark will have the following components
• Continuous assessment (module assignment)
• Dissertation

Read less
This MSc offers specialised training in biomedical science with exposure to leading research scientists, biotechnologists and the pharmaceutical industry. Read more

This MSc offers specialised training in biomedical science with exposure to leading research scientists, biotechnologists and the pharmaceutical industry. It provides a foundation for a career in drug development and a comprehensive programme in research methodology, the translation of basic research into therapies and the governance and social implications of health research.

About this degree

Students develop practical understanding of research methods in biomedical science and knowledge of cutting-edge research alongside practical experience in laboratory, clinical or epidemiological research. They develop the ability to evaluate scientific literature and gain an appreciation of ethical and governance requirements of research, including 'Good Clinical Practice' principles. Graduates of this MSc go on to have successful careers in both academia and in industry.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits) and a research dissertation (60 credits).

A Postgraduate Diploma consisting of six core modules (120 credits) is offered.

A Postgraduate Certificate consisting of two core modules (60 credits) is offered.

Core modules

  • Drug Discovery I
  • Drug Discovery II
  • Statistical Methods in Research
  • Ethics and Regulation of Research
  • Clinical Pharmacology and Therapeutics
  • Advanced Pharmacology and Therapeutics

Optional modules

There are no optional modules for this degree.

Research project/report

All MSc students undertake an independent research project which culminates in a report of 10,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, practicals, small-group seminars and laboratory work. Assessment is through presentations, essays, examination and the research project and dissertation.

Further information on modules and degree structure is available on the department website: Clinical Drug Development MSc

Careers

The programme provides an ideal foundation for graduates who wish subsequently to undertake a PhD in biomedical science, and provides key transferable skills for those wishing to pursue careers in drug development.

Recent career destinations for this degree

  • Clinical Trial Practitioner, Barts Cancer Institute
  • Clinical Research Assistant, Alberta Children's Hospital

Employability

This programme runs within the School of Life and Medical Sciences, one of the most highly rated medical research organisations in the UK. Close links with clinical colleagues in the UCLH group of hospitals provides cutting-edge medical expertise and links to world-leading clinical research. Graduates of the programme have pursued careers in the pharmaceutical industry and medicine, and a significant proportion go on to study for PhD degrees at UCL and other institutions worldwide.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Division of Medicine has as its mission the performance of innovative, high-quality biomedical research and excellence in graduate teaching.

This MSc programme provides an opportunity for students to develop theoretical knowledge, understanding and practical skills in research methodology. These include statistical methods applied to medical research, drug development in a specific biomedical area or health specialty, and the ethics and governance of applied health research.

Over the course of the year, students will have the opportunity to build a network of contacts from both academia and industry, improving their future career prospects.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This MRes offers specialised training with exposure to research scientists and members of the pharmaceutical industry. It provides a foundation year for a research career in drug development and a comprehensive programme in research methodology. Read more

This MRes offers specialised training with exposure to research scientists and members of the pharmaceutical industry. It provides a foundation year for a research career in drug development and a comprehensive programme in research methodology. Students will undertake a significant research project during this MRes.

About this degree

Students develop practical understanding of research methods in biomedical science and knowledge of cutting-edge research techniques alongside practical experience in laboratory, clinical or epidemiological research. They develop the ability to evaluate scientific literature and gain an appreciation of ethical and governance requirements of research, including 'Good Clinical Practice' principles.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (75 credits) and a research dissertation (105 credits).

A Postgraduate Diploma (120 credits) is offered.

Core modules

  • Drug Discovery 1
  • Statistical Methods in Research
  • Clinical Pharmacology
  • Advanced Clinical Pharmacology or Ethics and Regulation Research

Optional modules

There are no optional modules for this programme.

Dissertation/research project

All MRes students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, practicals, small group seminars and laboratory work. Assessment is through presentations, essays, examination and the research dissertation.

Further information on modules and degree structure is available on the department website: Clinical Drug Development MRes

Careers

Graduates of the programme have used the qualification to pursue careers in the pharmaceutical industry and medicine, while a significant proportion of students go on to study for PhD degrees at UCL and other institutions worldwide.

Recent career destinations for this degree

  • Post-Doctoral Researcher, King's College London

Employability

This programme runs within the School of Life and Medical Sciences, one of the most highly rated medical research organisations in the UK. Close links with clinical colleagues in the UCL group of hospitals provides cutting-edge medical expertise and links to world-leading clinical research.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Division of Medicine has as its mission the performance of innovative, high-quality biomedical research and excellence in graduate training.

This MRes programme provides an opportunity for students to develop theoretical knowledge, understanding and practical skills in research methodology. These include statistical methods applied to medical research and drug development in a specific biomedical area.

Over the course of the year, students will have the opportunity to build a network of contacts from both academia and industry, increasing their future career prospects.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics. Read more

Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics.

Your studies will combine the biological sciences with chemistry, giving you the skills to target, design, synthesise, create and assess new drugs. You'll also learn about protecting intellectual property, assessing the financial viability of drugs and the pre-clinical and clinical trial processes.

Tailor your studies to your strengths, interests and career goals. You'll learn a mix of academic and practical skills that are closely aligned to the needs of industry.

The Master of Drug Discovery and Development is best suited to very able students with backgrounds in chemistry or relevant life-science subjects such as biochemistry, biomedical science, pharmacy or pharmacology. It is an intensive one-year taught programme, unique in New Zealand.

Learn from the best

Learn from academics and professionals who are leaders in the field and have experience in successfully taking drugs to market. Each course is taught by at least three academics so you'll be exposed to a wide range of expertise.

Drug Discovery and Development is taught by the Schools of Chemical and Physical Sciences and Biological Sciences in collaboration with the University's Ferrier Research Institute and the Centre for Biodiscovery.

You'll be able to take advantage of the research expertise of the Ferrier Research Institute in drug design and development, and if you're doing a Master's, you'll be working alongside the more than 30 scientists who make up the largest carbohydrate research team in the world. The Institute also has its own manufacturing facility so you'll have the opportunity to observe the drug development process from discovery to product.

You'll also benefit from the programme's links with the Centre for Biodiscovery where you will interact with the research teams that are actively discovering, designing and assessing novel bioactive compounds.

Drugs in the real world

Get wise to the real-world issues facing pharmaceutical development and make the most of the hard-earned experiences of staff who have worked in the local and international biotech industry. Learn not only how to handle chemicals on a large scale, but to develop the mindset to do this in a way that is safe, reliable and robust—so you end up providing medicines that will change people’s lives.

Victoria offers three postgraduate qualifications in Drug Discovery and Development. Choose the one that suits your career goals, time constraints and financial situation.

  • Master of Drug Discovery and Development
  • Postgraduate Diploma in Drug Discovery and Development
  • Postgraduate Certificate in Drug Discovery and Development

If you begin by enrolling in the Certificate or Diploma programme you can continue on to complete your Master's. Or if you enrol in the Master's but can't complete it, for whatever reason, you may have completed enough points to be awarded a Certificate or Diploma.

What you'll study

Each qualification includes the core courses DRGD 401 Chemical Biology and Drug Discovery, and a choice between DRDG 402 Drug Design or CHEM 421 Organic Chemistry and Bio-organic Chemistry.

After that you'll choose from selected courses from the study areas of Drug Discovery and Development, Biomedical Science, Biotechnology, Chemistry, Clinical Research and Microbiology.

All three qualifications give you the opportunity to do at least some research.

Postgraduate Certificate

You'll complete four courses worth 60 points made up of the two core courses and two further choices.

Postgraduate Diploma

You're likely to take seven courses that will include the two core courses, your elective options and the 30-point Research Preparation course.

Master's

You'll study for your Master's in two parts over three trimesters. In Part 1, the first two trimesters, you're likely to take seven courses that will include the core courses and a 30-point Research Preparation course.

In Part 2, you'll complete a full research project. Choose between DRDG 561 Applied Research Project, where you'll complete one or more problem-solving projects, or DRGD 590 Research Project, where you'll focus on medicinal chemistry and the formulation of active pharmaceutical products. In some cases you may be able to replace the research project with the thesis course DRGD 595.

Your Master's may be endorsed with a specialisation in either Drug Discovery, Drug Development or Chemical Biology. Check the requirements to find out what you need to do for these.

Workload and duration

You can expect a workload of 40–45 hours a week for much of your studies.

The MDDD can be completed in 12 months full time, or in two years of part-time study but you'll need to discuss this option with the programme directorfirst. The Diploma will take you two trimesters and the Certificate one trimester.

Location

You'll study at Wellington's Kelburn campus where you will have access to state-of-the-art research facilities. Students doing a research programme will also work in partnership the world-renowned Ferrier Research Institute in Lower Hutt.

Research topics

Be part of a dynamic and collaborative scientific research community. Past students' research areas in drug discovery and development have included:

  • development of a new scaled-up catalytic process for a high value fine chemical
  • isolation and characterisation of a novel bioactive from a New Zealand marine organism
  • formulation of a novel therapeutic for cancer immunotherapy.

Community

Become part of an active community of scientists. Postgraduate study at Victoria will help you build valuable relationships and networks with peers, university staff and future colleagues. You'll have unprecedented access to world industry leaders who visit as guest lecturers and run seminars with students.

Careers

You'll have the broad skills you need to work in drug discovery in companies, universities, research institutes or with drug regulatory authorities. You might work within the pharmaceutical, bioanalytical or chemical industries, or take your skills into nutraceuticals or agrichemicals.



Read less
Our MSc Model-based Drug Development course provides the knowledge and skills for making evidence-based decisions at various stages of drug development. Read more

Our MSc Model-based Drug Development course provides the knowledge and skills for making evidence-based decisions at various stages of drug development.

It covers the scientific and regulatory aspects of evaluating a drug, with emphasis on the use of modelling and simulation methods. You will learn why these methods are so highly valued by industry and regulatory authorities as effective, cost-saving, decision-making tools. Learning is reinforced via hands-on application of the skills to real data.

The course has been developed with an emphasis on mechanistic approaches to assessing and predicting pharmacokinetics and pharmacodynamics (PKPD), such as physiologically-based pharmacokinetics (PBPK) .

As this comes under the general umbrella of systems biology, you will be able to apply your knowledge of modelling and simulation in various areas of research within the pharmaceutical industry.

Full-time students benefit from immersion in the varied biomedical research environment at The University of Manchester, including interaction with research staff at the renowned Centre for Applied Pharmacokinetic Research .

Alternatively, part-time students already working in the pharmaceutical industry can take advantage of the flexible, distance learning mode of the course, which allows you to fit study around other commitments.

Aims

The aim of the course is to provide specialist knowledge and skills that are highly relevant for a career linked to drug development and pharmaceutical industry.

It is designed for science, engineering or mathematics graduates who want to acquire:

  • awareness of the commercial and regulatory factors in drug development;
  • understanding of the physiological, chemical, and mathematical foundations used to define the safe and effective use of potential medicines;
  • training in the use of mathematical modelling and simulation methods to guide drug development.

The course aims to:

  • provide background information on the theory and methods for quantitative assessment of drug absorption, distribution and elimination;
  • provide an understanding of the role of pharmacometrics in the process of drug development;
  • provide background information on in vitro assays used to characterise ADME properties of new drug entities;
  • indicate the mathematical framework that is capable of integrating in vitro information with knowledge of the human body to predict pharmacokinetics;
  • provide familiarity and experience of using different software platforms related to pharmacometric data analysis including R, Phoenix, NONMEM, MATLAB, Simcyp, WinBUGS and MONOLIX;
  • equip you to reflect upon influential research publications in the field, to critically assess recent published literature in a specific area;
  • provide awareness of the elements of a convincing research proposal based on modelling and simulation;
  • provide the opportunity to undertake a project and carry out original research.

Special features

Distance learning option

Our distance learning option is ideal for scientists linked to the pharmaceutical industry who wish to expand their expertise while working in the industry.

Full-time mode

The full-time mode allows suitably trained mathematics, science or engineering graduates to focus on obtaining the advanced skills needed for a career in this area. We utilise a blended learning approach in which online learning content is supported by regular face-to-face contact with tutors.

Hands-on learning

Your learning will be reinforced over the duration of the course via hands-on application of your skills to real data.

Additional course information

The course focuses on the following topics.

  • Pharmacokinetics: addressing how a drug dose is administered to the body and the fate of drug molecules that enter the body.
  • Pharmacodynamics: addressing the chemical and physiological response of the body to drug.
  • Pharmacometrics: the science that quantifies drug, disease and trial information to aid efficient drug development and/or regulatory decisions (definition used by the US FDA).
  • Systems pharmacology: analysis of interactions between drug and a biological system, using mathematical models.
  • In vitro: in vivo extrapolation using physiologically based pharmacokinetic models (IVIVE-PBPK).

Teaching and learning

The course emphasises the development of problem-solving skills. A large portion of the learning involves structured problems requiring you to apply theory and practical skills to solve typical problems that arise in drug development.

The following teaching and learning methods are used throughout the course:

  • taught lectures;
  • hands-on workshops;
  • self-directed learning to solve given problems;
  • webinars and tutorials by leading scientists in industry/academia;
  • supervised research;
  • mentorship in solving problems and writing the research dissertation;
  • independent study.

Coursework and assessment

We assess your achievement of the learning outcomes for this course through:

  • unit assignments (submitted electronically);
  • unit examinations;
  • research project dissertation and oral presentation.

Career opportunities

This course was originally developed for scientists working within the pharmaceutical industry who wished to qualify as modellers with hands-on experience. The qualification will enhance your abilities within your current role or provide you with skills to progress into new posts.

The course is also appropriate for science and engineering graduates who wish to enter the industry. The role of modelling and simulation or pharmacometrics is assuming greater and greater importance in the pharmaceutical industry.

Pharmaceutical companies and government regulatory agencies are recognising its value in making best use of laboratory and clinical data, guiding and expediting development and saving time and costs.

A range of well-paid jobs exist in this area across the globe. Scientific and industry publications often discuss the current shortage and growing need for modellers.



Read less
Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies. Read more

Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies.

You will learn how to master experimental cancer through a combination of traditional teaching and hands-on learning, spending a year as a member of the Experimental Cancer Medicine Team at The Christie while also taking four structured taught units.

The taught units will see you learn the details of designing and delivering Phase 1 clinical studies, understanding the pre-clinical data required before a clinical programme can commence, and how to optimise early clinical studies to provide evidence for progressing a promising drug into Phase II/III clinical testing.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

Nursing and physician students will be expected to participate in patient care, including new and follow-on patient clinics, treatment and care-giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

You will be able to choose two aspects of your direct clinical trial research experience to write up for your two research projects in a dissertation format. This will give you the skills and knowledge required to critically report medical, scientific and clinically related sciences for peer review.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Special features

Extensive practical experience

You will spend most of your time gaining hands-on experience within The Christie's Experimental Cancer Medicine Team.

Additional course information

Meet the course team

Dr Natalie Cook is a Senior Clinical Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie. She completed a PhD at Cambridge, investigating translational therapeutics and biomarker assay design in pancreatic cancer.

Professor Hughes is Chair of Experimental Cancer Medicine at the University and Strategic Director of the Experimental Cancer Medicine team at The Christie. He is a member of the research strategy group for Manchester Cancer Research Centre. He serves on the Biomarker evaluation review panel for CRUK grant applications.

Professor Hughes was previously Global Vice-President for early clinical development at AstraZeneca, overseeing around 100 Phase 0/1/2 clinical studies. He was previously Global Vice-President for early phase clinical oncology, having been involved in over 200 early phase clinical studies.

Dr Matthew Krebs is a Clinical Senior Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie.

He has a PhD in circulating biomarkers and postdoctoral experience in single cell and ctDNA molecular profiling. He is Principal Investigator on a portfolio of phase 1 clinical trials and has research interests in clinical development of novel drugs for lung cancer and integration of biomarkers with experimental drug development.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be assessed through oral presentations, single best answer exams, written reports and dissertation.

For each research project, you will write a dissertation of 10,000 to 15,000 words. Examples of suitable practical projects include the following.

Research proposal

  • Compilation of a research proposal to research council/charity
  • Writing a protocol and trial costings for sponsor
  • Research and write a successful expression of interest selected by grant funder for full development

Publication-based/dissertation by publication

  • Writing a clinical study report
  • Authoring a peer-review journal review/original article

Service development/professional report/ report based dissertation

  • Public health report/outbreak report/health needs assessment/health impact assessment
  • Proposal for service development/organisational change
  • Audit/evaluate service delivery/policy
  • Implement recommended change from audit report

Adapted systematic review (qualitative data)

  • Compiling the platform of scientific evidence for a new drug indication from literature
  • Review of alternative research methodologies from literature

Full systematic review that includes data collection (quantitative data)

  • Referral patterns for Phase 1 patients

Qualitative or quantitative empirical research

  • Design, conduct, analyse and report an experiment

Qualitative secondary data analysis/analysis of existing quantitative data

  • Compilation, mining and analysis of existing clinical data sets

Quantitative secondary data analysis/analysis of existing qualitative data/theoretical study/narrative review

  • Policy analysis or discourse analysis/content analysis
  • A critical review of policy using framework analysis

Facilities

Teaching will take place within The Christie NHS Foundation Trust , Withington.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high-calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.



Read less
Accelerated training for the Biopharmaceutical Industry. This unique professional training programme has been designed and developed in collaboration with the multinational Contract Research Organisation, . Read more

Accelerated training for the Biopharmaceutical Industry

This unique professional training programme has been designed and developed in collaboration with the multinational Contract Research Organisation, Covance.

The course is 20 months long, covering campus-based taught modules in the first six months, followed by a 12-month guaranteed paid placement in industry where you can expect to earn around £20,000.

During your training you’ll gain an integrated understanding of the full biological drug development pathway and the regulatory framework. The focus will be on large molecule drugs: monoclonal antibodies like Herceptin, bio-similars and antibody-drug conjugates; gene therapies and the technologies that underpin the discovery and development pathway.

You’ll be taught by leading industrialists and internationally renowned academics working at the forefront of their fields in the areas of science that support drug development. The curriculum is delivered primarily via project work in teams, and is assessed with outputs that are commonplace in industry, including presentations and reports to clients, regulators, investors/sponsors etc.

To prepare you for work in industry, you’ll also have access to cutting-edge practical technologies and gain hands-on practical training in protein purification, characterisation, formulation and assessment of binding function. In addition, you’ll use cell-based assays to look at drug potency, all performed in a strict regulated environment.

This course will help give you the experience and skills to become highly employable. Many pharmaceutical companies are expanding their biopharmaceutical capability, which is creating demand and opportunities for talented, well-trained people. At the same time, these companies report difficulties in recruiting employees with relevant skill sets and those with broad industrial experience are greatly sought after.

Course content

This course will provide you with an understanding of biological drug development focusing on each of the major steps of the process:

  • discovery
  • manufacturing
  • pre-clinical testing
  • clinical trials
  • market access and
  • the regulatory and legal aspects framework that ensure safe practice and the development of safe and effective medicines.

Course structure

The course is 20 months long, covering the campus-based taught elements in six to seven months, followed by a 12-month guaranteed paid work placement involving a research project where you’ll experience at first hand the working environment of this industry.

Work placement: an integral part of your training

An integral part of this course is your first paid job in industry. This is a 12-month guaranteed work and research experience in industry or placement hosted within the university research laboratories developed and co-supervised with industry. Students can expect to earn up to £20,000 over the duration of their placement.

The placements will all include a practical research project where you will gain in-depth practical experience of at least one technical function of the drug development process (discovery, manufacturing, pre-clinical testing, clinical safety and efficacy).

You will commence your project in May, six-months after the start of the programme and will be completed by the following April. Graduation is scheduled immediately thereafter, making you available for employment immediately after your placement.

These are typical modules/components studied and may change from time to time. Read more in our Terms and conditions.

Year 1

Over the first six to seven months starting in September you will study 100 credits worth of taught modules.

Compulsory modules:

  • Biopharmaceutical Development Pathway 5 credits
  • Biopharmaceutical Drug Discovery and Pre-Clinical Testing 20 credits
  • Manufacturing Biopharmaceuticals 20 credits
  • Integrated Drug Development Plan 10 credits
  • Biopharmaceutical Development: Clinical 10 credits
  • Commercialising Biopharmaceutical Products 10 credits
  • Practical Skills for a Regulatory Environment 25 credits

Year 2

Seven months after the start of the course (April/May), you will start a 12-month industrial placement where you will undertake a research project worth 80 credits.

Compulsory modules:

  • Industrial Placement & Research Project 80 credits

For more information on typical modules, read Biopharmaceutical Development MSc in the course catalogue

Learning and teaching

The learning and teaching on the course has been constructed to align with activities performed in industry, preparing you to be work-ready immediately after you finish.

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

This course will challenge you to think creatively, solve problems and develop strong communication and teamwork skills. You’ll experience a wide range of teaching methods, including formal lectures, interactive workshops, practical classes and industry site visits.

You’ll extensively use of real-life, industry specific case studies to illustrate theoretical and practical concepts and multiple opportunities to work in teams, including the opportunity to lead a team. A wide range of ‘authentic’ assessments will be used that students will experience in the workplace including submissions to regulatory authorities, client reports and presentations to industry panel members.

Career opportunities

Your first steps into an industrial career

The course is designed to train talented scientists wishing to pursue a career in drug development in the international biopharmaceutical industry.

You’ll be exposed to senior industrialists working as tutors throughout the course and can take this opportunity to obtain career advice. You’ll also work in industry full time for 12 months, which is an outstanding opportunity for you to develop a competitive career plan.

With this degree, you’ll have the relevant knowledge and experience to fast-track your career as, for example, an analytical scientist, project manager, or coordinator, in areas such as research, quality control, manufacturing, project management, non-clinical, clinical, and market access.

As a student on this course you’ll have unique access to an industry-mentor and a personal tutor (academic member of staff) for the duration of your studies. You’ll also get support in planning your career through sessions that develop your CVs and applications.



Read less
This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body. Read more

This programme provides a broad overview of the drug discovery and development process and is designed for graduates in science-based subjects as preparation for either PhD-level research or a career in the pharmaceutical industry or with a government regulatory body.

About this degree

You will gain hands-on experience of molecular modelling and computer-based drug design, and analytical and synthetic techniques and be exposed to modern platforms for drug discovery and methods of drug synthesis.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules

  • Modern Aspects of Drug Discovery
  • The Process of Drug Discovery and Development I
  • The Process of Drug Discovery and Development II

Optional modules

Students choose two from the following:

  • Anticancer Personalised Medicines
  • New Drug Targets in the CNS
  • Pharmacogenics, Adverse Drug Reactions and Biomarkers
  • Advanced Structure-based Drug Design

Dissertation/report

All students undertake a laboratory-based research project which is assessed at the end of the year by a written report and oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars supported by the Blackboard e-learning system and practical classes. Assessment is through a combination of written examination and coursework. The research project is assessed by written report and oral presentation.

Further information on modules and degree structure is available on the department website: Drug Discovery and Development MSc

Careers

Students who complete the Drug Delivery and Development MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Recent career destinations for this degree

  • PhD Medicinal Chemistry, UCL

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

Lectures and seminars from industry-based scientists and visits to industrial and biotechnological research laboratories are key features of this programme.

Our graduates include international students from 24 different countries

The programme covers marketing, licensing and the regulatory affairs that form an integral part of the development process

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Our MSc in Clinical Biochemistry will give you a thorough grounding in a discipline that deals with the clinical analysis of body fluids and other biological material to aid the diagnosis, therapy and monitoring of diseases. Read more

Our MSc in Clinical Biochemistry will give you a thorough grounding in a discipline that deals with the clinical analysis of body fluids and other biological material to aid the diagnosis, therapy and monitoring of diseases.

Clinical biochemists are typically clinical scientists who work in hospital laboratories providing advice and interpretation of analytical results to other healthcare professionals such as clinicians, general practitioners and nurses.

They are also involved in the development of new analytical methods and improvement of clinical services, including quality assurance and audit. 

Through this MSc, you will gain a core knowledge and understanding of the normal physiology and pathophysiology of the major organs and endocrine systems, as well as more specialist areas such as paediatric biochemistry and drug monitoring.

You will also develop a core knowledge and understanding of clinical disorders and how biochemical parameters and laboratory methods are used for the investigation, diagnosis and management of patients.

Aims

We aim to give you:

  • an advanced understanding and applied knowledge of the theory and practice of clinical biochemistry;
  • a critical understanding of how biochemical investigations are employed to develop a clinical diagnosis;
  • the necessary professional and research skills to promote lifelong learning and career development.

Special features

Innovative teaching

We utilise mobile technology in our teaching by providing you with an iPad for you to use throughout your studies. You will benefit from interactive teaching environments that simulate the clinical laboratory where you will apply your theoretical knowledge to solve real-life clinical case scenarios.

Laboratory research experience

You have the option to spend 10 weeks in the laboratory conducting research to present in your dissertation.

Professional teaching and learning

Most of the course is taught by NHS professionals working in the field of clinical biochemistry. You will also learn alongside students from a variety of health science backgrounds within pathology, helping you to integrate within a health service laboratory team in the future.

Teaching and learning

We use a range of teaching and learning methodologies throughout the course, including lectures, tutorials, workshops and interactive clinical case tutorials using mobile technology and iPads. Some of these will be delivered online.

Find out more by visiting the postgraduate teaching and learning page.

Coursework and assessment

We will assess your progress using a range of formative and summative assessments, such as MCQs, ECQs, written and verbal presentations.

The assessments will be constructed to assess your knowledge and understanding while at the same time refining and expanding your intellectual and transferable skills.

Course unit details

The units that form part of the MSc are listed in the Course unit list further down the page.

There are also two PGCert pathways available, each comprising the following units:

PGCert Clinical Biochemistry (Foundation)

  • Analytical Methods (15 credits)
  • Introduction to Clinical Biochemistry (15 credits)
  • Major Organs (15 credits)
  • Endocrinology (15 credits)

PGCert Clinical Biochemistry (Advanced)

  • Diseases of Major Organs (15 credits)
  • Endocrinology (15 credits)
  • Nutrition and Drug Monitoring (15 credits)
  • Paediatric Biochemistry (15 credits)

Facilities

You will be able to access a range of facilities throughout the University.

You will undertake your theoretical learning on the main University campus.

Your research project may be carried out in a laboratory within the University or at teaching hospitals in Greater Manchester.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service .

CPD opportunities

Individual units from this MSc can be taken as standalone courses for continuing professional development .

Career opportunities

Our course attracts a wide range of students from a bioscience and medical background from home and abroad.

Many students study this course as a springboard for further academic research or as a stepping stone before applying for the NHS Scientist Training Programme (STP).

The course may also help individuals with their own career progression if they are already working within a clinical laboratory. The course also attracts intercalating medical students and professionals who may wish to specialise in clinical biochemistry/chemical pathology.

Accrediting organisations

This course is approved by the Association for Clinical Biochemistry.



Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Your programme of study. If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. Read more

Your programme of study

If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. This industry area is rapidly expanding due to new discoveries across biotechnology, biologics, Internet of Things, customised drug treatments and diagnostics at source. This has lead to many new companies being formed, customised and small batch medicines apart from large batch pharmaceutical research and production.

University of Aberdeen is world renowned in this area with the invention of Insulin to treat diabetes which won a Nobel Prize and strengths in medical research areas which also include food and nutrition and disease treatment. You learn about bio-business, how drugs are developed and managed. The university has strong links with GSK, Pfizer, and AstraZeneca plus Novabiotics and others.

In our MSc in Drug Discovery and Development we train students in major areas of biochemical and molecular pharmacology and therapeutics relevant to the drug discovery and development business. This includes training in molecular pharmacology, drug metabolism and toxicology, therapeutics, pharmacokinetics, pharmacovigilance, regulatory affairs and clinical pharmacology.

Courses listed for the programme

Semester 1

  • Introduction to Bio-Business and Commercialisation of Bioscience Research
  • Drug Metabolism and Toxicology
  • Generic Skills
  • Basic Skills - Introduction
  • Small Molecule Drug Discovery

Semester 2

  • Advanced Bio- Business and the Commercialisation of Bioscience Research 2
  • Pharmokinetics
  • Basic Research Methods
  • Biologic Drug Discovery

Semester 3

  • Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • We work closely with industry and our research strengths have spanned over 50 years with many coming from the inception of the   University in 1495
  • The degree will give you the skills and knowledge to work in the pharmaceutical industry but you may wish to continue your research towards drug discovery and start up
  • You learn bio-business but you also learn how bio-business is commercialised

Where you study

  • University of Aberdeen
  • 12 Months or 24 Months
  • Full Time or Part Time
  • September start
  • 12 months or 24 months

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
This course is designed to advance and enhance a career in Clinical Research in the pharmaceutical industry, health service, contract research organisations, regulatory authorities, data management organisations and in medical writing. Read more
This course is designed to advance and enhance a career in Clinical Research in the pharmaceutical industry, health service, contract research organisations, regulatory authorities, data management organisations and in medical writing.

It aims to provide the postgraduate students with an enhanced level of knowledge, understanding and skills in clinical research. It presents an overview of clinical trial processes and the regulations for bringing in a new chemical entity, and it provides an enhanced level of knowledge and understanding of therapeutic areas and their treatments in relation to clinical trials, drug registrations and drug safety.

The course is designed to increase the knowledge and skills of the student not only in Clinical Research but also in a diverse range of therapeutic areas. This allows the individual to move confidently between these therapeutic areas and therefore increase their potential value to employers. In the dissertation year, students are encouraged to carry out projects which have direct value to their employer and this potentiates the worth of their studies.

Distinctive features

• Lecturers from Pharmaceutical Industry provide an up-to-date development in Clinical Research
• Clinical Research trainers deliver a variety of teaching methods
• The therapeutic modules widen the skills of the student in an array of medical settings
• The diversity of employment backgrounds of participants affords an ideal environment for networking with other clinical research personnel.

Structure

The programme is studied over 3 calendar years of part-time study and is in a modular format. 

Taught modules are undertaken in the first two years, two in each year. Participants who successfully complete these modules may either receive a Postgraduate Diploma (PGDip) in Clinical Research as an exit award, or progress on to carry out an individual project in the third year for the MSc qualification.

Initial PgDip topics covered in the first two years include:

Clinical Research
Drug Development
Therapeutics of the Respiratory and Central Nervous Systems
Advanced Clinical Research
Regulatory Affairs
Complementary Therapeutics
Pharmacovigilance
Cardiovascular and Immunological Diseases and Oncology

The MSc is attained through completion of a dissertation in Year 3.

Teaching

The course will be taught through a series of lectures and workshops, coursework assignments and course journal preparations aimed at developing transferable skills in critical analysis.

Self-directed study forms an important part of the course, and you will be directed in study skills and guided in the areas for study. You will be expected to manage your own time to undertake significant independent study during the dissertation phase in particular.

 Students are expected to attend all timetabled sessions and are also expected to engage in independent study. Course materials are delivered in our Virtual Learning environment (Learning Central). 

Assessment

Knowledge and understanding are assessed both formatively and summatively by written examinations and by performance in course work, practice based course-work assignments, project work and dissertation.

Project work including the design of clinical report forms and other practice based assignments and case studies are assessed from written reports with feedback.  Statistical skills are acquired via didactive methods and tested using practice-based scenarios, likewise in relation to medicines safety and the detection of fraud in clinical research.  Critical appraisal skills are acquired throughout the programme through the interpretation and analysis of published clinical research data.  Production of the dissertation requires a substantive literature review and leads to enhanced written and presentational skills, the dissertation being examined by thesis.

Career Prospects

The course is designed to give students the skills and knowledge needed to advance and enhance a career in Clinical Research in the pharmaceutical industry, Health service, contract research organisations, regulatory authorities, data management organisations and in medical writing.

Successful students on this programme will have an advanced standing both clinically and academically, taking them to the forefront of the profession, and enhancing their personal and professional development.

Read less
This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself. Read more

This exciting new programme has been introduced as a spin-off from the very successful Drug Discovery MSc in response to the increasing opportunities which now exist for research scientists who can evaluate the business potential of their science as well as generate the science itself.

About this degree

This MSc contains the science core of the Pharmaceutics MSc and combines a broad overview of the drug discovery and development process with specialisation in management training and awareness, and strategic partnering and business development skills.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (120 credits), and a dissertation (60 credits).

Core modules

  • The Process of Drug Discovery
  • The Process of Drug Development
  • Modern Aspects of Drug Discovery
  • Pharma Management

Optional modules

  • There are no optional modules for this programme.

Dissertation/report

All students undertake a business development project based on an aspect of science from drug discovery either at the UCL School of Pharmacy or in industry.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials and seminars and practical classes. Assessment is through a combination of written examination and coursework. The business development project is by written report and oral presentation to the class and a judging panel of scientists and managers.

Further information on modules and degree structure is available on the department website: Drug Discovery and Pharma Management MSc

Careers

Students who complete the Drug Discovery and Pharma Management MSc will progress to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs.

Recent career destinations for this degree

  • Clinical Research Associate, Qualitis
  • Consultant, Prescient Healthcare Group
  • Data Analyst, ABPI (Association of the British Pharmaceutical Industry)
  • International Clinical Trial Co-ordinator, Ferring Pharmaceuticals
  • MRes in Molecular Plant and Microbioscience, Imperial College London

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The Pharma Management component of this MSc is led by Dr Nigel Ratcliffe, formerly Vice-President for regulatory and commercial affairs at Astra Zeneca.

Students visit a leading research laboratory e.g. GlaxoSmithKline to look at computer-based molecular modelling, how physico-chemical properties are determined, the robotic compound library, and high throughput screening. The visit is supplemented by material and instruction and the discovery process of a drug will be worked through in detail.

Students attend a one-day research conference on an aspect of drug discovery and development organised by the Society for Medicines Research where there is opportunity to interact with leading industrialists and researchers in the field.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Medicines Management has been at the top of our agenda since its inception in the early 1990s. Now it is at the top of the national pharmacy agenda. Read more

Overview

Medicines Management has been at the top of our agenda since its inception in the early 1990s. Now it is at the top of the national pharmacy agenda. Our Clinical Pharmacy programme for hospital pharmacists was first established in 1981, and we are proud of our high completion rate.

We are continually updating the programme to meet the changing requirements of the health service and individual practitioners. We are happy to put you in touch with some of our former students for their independent view. It is highly acclaimed by students, employers, purchasers and external course assessors for its structure, content and end value in relation to service, professional and career development.

In the fast changing world of Pharmacy and health care provision, standing still is not an option, but you may, understandably, feel under-equipped to meet the new challenges. Let Keele help you meet the challenges set by the Government’s plan for the profession, Pharmacy in England. Our distance learning programme in Clinical Pharmacy for hospital pharmacists aims to provide you with a wider view of health care, and equip you with sufficient knowledge, skills and confidence to be able to develop and extend your clinical and professional role as part of a multidisciplinary health care team. The programme links to the NHS Knowledge and Skills Framework to enable you to meet the relevant competencies and provide evidence for your continued professional development.

The Clinical Pharmacy Programme is designed to allow you choice and flexibility in your progression to Certificate, Diploma and Masters awards, to meet your specific professional development needs and advance your professional practice.

See the website https://www.keele.ac.uk/pgtcourses/clinicalpharmacy/

Course Aims

Keele’s Pg Clinical Pharmacy Programme aims to:
- Build on your existing knowledge of disease states, pharmacology and pharmacokinetics to enable you to apply this in a clinical setting

- Equip you to assess drug therapy for effectiveness, safety, compatibility, patient acceptability and cost, and use this information to make effective interventions and develop and document pharmaceutical care plans

- Encourage you to develop an understanding of the principles of pharmaceutical care and problem-solving approach to clinical practice

- Provide you with a wider view of health care and equip you with sufficient knowledge and skills to be able to develop and extend your professional role

- Increase your confidence in your ability to contribute to patient care as part of the multidisciplinary health care team

- Provide you with a structured learning programme that will help you apply your knowledge and skills in daily practice

- Encourage you to develop a reflective approach to your clinical pharmacy practice

- Encourage you to develop the self-discipline of private study and self-directed learning that will be continued beyond Keele’s Programme in your Continuing Professional Development (CPD) as an independent learner

In addition, you will develop valuable practical skills including written and oral communication, and the ability to design a project, collect, analyse and interpret data.

Course Content

The Clinical Pharmacy programme can be completed via the following flexible pathways to accumulate academic credits at Masters Level:
- CPD Plus+ – register for individual short courses of 10 credits. You can register on a number of occasions in any academic year. Completing 6 CPD Plus+ courses will provide the postgraduate Certificate award and 12 courses the Diploma award.

- CPD Plus+ Open Learn – provides opportunity to negotiate some or all of the content and learning outcomes to meet your specific needs (available as 10, 15 and 30-credit modules)

- Certificate in Clinical Pharmacy – register for 9 months and you’ll complete your choice of 6 of the optional modules from our CPD Plus+ portfolio.

- Diploma in Clinical Pharmacy – register for 21 months and in the first year you will complete the 6 modules as described for the Certificate and an additional 6 modules of your choice in Year 2.

- Professional MSc – Building on the Diploma course students study a further three modules: Research Methods (15 credits), Advanced Practice Development (15 credits) and Independent Learning Project (30 credits)

The CPD Plus+ short courses that are currently available, and which also form the course content for Certificate and Diploma courses are:
- Cardiovascular Disease 1
- Cardiovascular Disease 2
- Central Nervous System Diseases
- Critical Care and Parenteral Nutrition
- Education Theory and Practice for Health Professionals (includes two f2f study days)
- Endocrine Disease
- Quality in Healthcare & Evidence-Based Practice (includes Critical Appraisal)
- Gastrointestinal Disease
- Hepatic Disease
- HIV & AIDS
- Infections
- Joint Disease
- Malignant Disease
- Medicines Optimisation and Patient Centred Care
- Mental Health
- Monitoring Therapy
- Neonatal and Child Health
- Personal Effectiveness and Collaborative Working
- Renal Disease
- Respiratory Disease
- Surgical

Teaching & Assessment

The Clinical Pharmacy Programme is designed principally for distance-learning. We provide mainly online distance-learning materials so that you can study where and when it is most convenient for you. Our methods of delivery allow us to revise and update the course quickly to meet your changing needs as a pharmacist.

The Clinical Pharmacy Programme is fully supported by a team of experienced, friendly, and approachable academic, administrative and technical staff based at Keele. The Programme is also supported by our network of experienced, practising hospital pharmacists who fulfil the roles of clinical co-ordinators and tutors. You’re not on your own! And, don’t forget the network of other pharmacists on the course whom you can contact. You will require the equivalent of 1-2 days (approximately 10-15 hours) each week to complete your course. Remember that the online nature of our course materials, and the fact that a good proportion of the assessed work focuses on your daily practice, means that you can integrate study and work.

Assessment is entirely by coursework for the Certificate, Diploma and MSc courses. A variety of assessment methods are used.

All of the modules contain Practice-Based Assignments that will assess your knowledge, problem-solving skills, and data interpretation skills in relation to application of knowledge to practice, patient care and medicines management. Case Presentations assess your ability to critically appraise the literature and relate published theory to everyday practice.

An Audit Project, Practice-Based Assignments , Project Protocol Development and the Independent Study Project Report assess ‘thinking’ and practical skills, and your ability to plan, conduct and report on an investigation. They also assess your ability to critically appraise the literature and relate published theory to everyday practice. Your Reflective Portfolio also assesses your ability to relate theory to practice, and self evaluation of, and reflection on, your own performance and CPD needs.

The nature of the assessments develops your written and oral communication skills. Practical skills and key life/transferable skills are assessed within the methods described above. Each method of assessment is supported by clear criteria for marking; these are explained in the relevant Course Handbooks. The minimum pass mark is 50%. The summative assessment is supported by a variety of formative assessment activities that include online discussions, formative feedback on elements of the reflective portfolio, contributions to study days and feedback on draft proposals.

Additional Costs

For all programmes you will need regular access to a computer, email and the internet. However apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for our postgraduate programmes.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less

Show 10 15 30 per page



Cookie Policy    X