• University of Glasgow Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
Middlesex University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Greenwich Featured Masters Courses
University of Birmingham Featured Masters Courses
Cardiff University Featured Masters Courses
"cardiovascular" AND "phy…×
0 miles

Masters Degrees (Cardiovascular Physiology)

  • "cardiovascular" AND "physiology" ×
  • clear all
Showing 1 to 15 of 77
Order by 
Human & Applied Physiology enables students to gain a theoretical and practical understanding of the functioning of the muscular, respiratory and cardiovascular systems at rest and during exercise, including the effects of extreme environmental conditions on whole body physiology. Read more
Human & Applied Physiology enables students to gain a theoretical and practical understanding of the functioning of the muscular, respiratory and cardiovascular systems at rest and during exercise, including the effects of extreme environmental conditions on whole body physiology. Leads to careers in teaching and research, medicine, physiotherapy, health services, physical education.

Key benefits]

- The original and foremost programme in human and applied physiology in the UK.

- Training in a wide variety of practical laboratory skills pertaining to human physiology.

- A knowledge base of human physiology particularly relevant for careers in biomedical research and medicine.

- Lectures from world leading experts in a variety of different fields.

- Unique exposure of human physiology applied to aviation and military medicine only available at King's College London.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/human-and-applied-physiology-msc.aspx

Course detail

- Course description -

The programme is run by King's College London Department of Physiology. It provides a theoretical and practical basis for explaining the functioning of the muscular, respiratory and cardiovascular systems at rest and during exercise. This extends to the effects of extreme environmental conditions on whole body physiology. Programme topics are studied from both systemic and cellular/molecular perspectives in order that students have a good understanding of the breadth of investigative approaches employed in human physiology research.

- Course purpose -

This programme equips students in biomedical/life science and sport science with value added knowledge and skills to enhance understanding and expertise in human physiology in its broadest sense. Graduates from the programme pursue careers in academic research/teaching, medicine, physiotherapy, health services, physical education, research posts in industry and in Ministry of Defence Research establishments.

- Programme format and assessment -

Taught modules comprise lectures, tutorials and seminars with a significant practical component. You will also undertake a significant research project.

Required modules:

- Cardiovascular & Respiratory Physiology from Rest to Exhaustive Exercise
- Human & Applied Physiology Library Project
- Human & Applied Physiology Research Project
- Human Physiology in Extreme Environments
- Key Topics in Human Health and Performance
- Skeletal Muscle Function, Fatigue and Plasticity - from Movement to Molecules

Career prospects

Our graduates go on to careers in academic teaching and research, medicine, clinical physiology, health services, sports science support, and research posts in industry or in Ministry of Defence Research Establishments.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This course will suit you if you are a sport and exercise graduate, a graduate from a related science or a medical student looking to specialise in the field of exercise physiology. Read more

Course in brief

This course will suit you if you are a sport and exercise graduate, a graduate from a related science or a medical student looking to specialise in the field of exercise physiology.

It is designed to focus on professional skills that improve your employability, as you learn with state-of-the-art equipment including environmental chambers, breath-by-breath analysers, blood sampling analysers and transcranial magnetic stimulation devices.

You also again gain real-world experience in areas relevant to your interests by working alongside experienced practitioners. Past projects have included working with participants in our cardiac rehabilitation programme.

Our teaching laboratories are accredited by the British Association of Sport and Exercise Sciences (BASES), as are most of our course staff. You can register on the BASES Supervised Experience Scheme yourself to achieve personal accreditation.

Course structure

The course is flexible in that it allows you to exit with a postgraduate certificate at the end of one semester (three 20-credit modules) or a postgraduate diploma at the end of two semesters (six 20-credit modules). You must complete the 60-credit research project to qualify for the MSc.

You spend around 100 hours of the course with an organisation related to the practice of physiology, which will allow you to apply your academic knowledge in a vocational setting. Previous students have worked in organisations including a cardiac rehabilitation programme and fall prevention classes with Albion in the Community.Many students have started their professional careers with the organisation that provided them with work experience.

Areas of study

In taught physiology modules, you'll experience and discuss the responses of the human body to various stimuli, including effect of environmental changes (heat and hypoxic chambers) and of ergogenic aids which can be used to simulate peculiar clinical conditions and help students understand better exercise tolerance. This novel approach to teaching integrative physiology will help you to develop a host of laboratory skills. You will be introduced to the latest in the research field of exercise physiology and will have an opportunity to write your own paper from your research project.

With modules such as Professional Enquiry, you'll also gain vocational skills to give you a competitive edge in the job market; through placement opportunities and chances to network in the world of exercise physiology, you'll graduate with a foot firmly in the industry.

Modules

Critical Insights into the Study of Physiology
Professional Enquiry
Exercise Tolerance (integrative physiology)
Expertise in Laboratory Skills for Exercise Physiologists
Options:

Applied Environmental Physiology
Innovation, Entrepreneurship and Small Business Management
Ethical and Social Responsibility: Theory and Application
Bodies of Sport
Consultancy
Issues and Innovations in Physiology

Teaching environment

Laboratory work
- We accept a maximum of 15 students on this course
- All classes take place in our Exercise Physiology Laboratories with a ratio of 2:3 (staff:students)
- Students work in groups of four to five on problem-based situations.

Tutorials
- Students can book individual tutorials with every lecturer offering around three hours of tutorials per week.
- Group tutorials are also scheduled in our teaching programmes.

Careers and employability

Career opportunities for sport and exercise scientists are growing. Sports science is recognised as a vital ingredient in the success and development of most sports and for the individuals that take part it is an everyday aspect of their training. Many hospitals and Primary Care Trusts are also appointing specialists with exercise backgrounds to work in areas such as cardiac rehabilitation and health promotion.

An MSc in Applied Exercise Physiology from the University of Brighton will help you to stand out in today's competitive job market. It will equip you with both the theoretical knowledge and practical skills necessary for a successful career and is also ideal preparation for continuing your study at MPhil or PhD level.

Our graduates have started their careers with organisations including:

The East Sussex Healthcare NHS trust (cardiovascular and physiological clinical trials officer; cardiac technician/physiologist)
BUPA (clinical physiologist)

Facilities

Our facilities include an x-m square Gym over two floors with state-of-the-art fitness equipment including a three-camera system to analyse weight-lifting actions and an isokinetic dynamometer to allow measurement of muscle strength. Our sport and exercise laboratories which are all accredited by the British Association of Sport and Exercise Sciences (BASES) and include:
- A Molecular genetics laboratory with biobanking
- A biomechanics laboratory with motion analysis equipment, various EMG systems, an immersive screen
- Two exercise physiology laboratories where aerobic / anaerobic endurance, power and strength assessments as well as body composition, cardiac and pulmonary screening can be carried out
- An Environmental Laboratory with purpose-built environment chamber where we can simulate different climates by controlling the temperature (-20 to +50°C) and relative humidity (20 to 95 per cent), and a 1.13m x 1.13m x 1.5 m water immersion tank
- A research-based laboratory with an oxygen-controlled chamber to simulate altitude (hypoxia)
- A biochemistry laboratory where we can analyse blood and tissue samples.

Visit: https://www.brighton.ac.uk/sesame/facilities/index.aspx

Course blog

Find out news about the course at http://blogs.brighton.ac.uk/sesmsc/

Read less
Taught at our Parkgate Road Campus in Chester, this Master’s course is specifically designed to provide advanced education and learning opportunities for graduates and healthcare professionals within this field. Read more
Taught at our Parkgate Road Campus in Chester, this Master’s course is specifically designed to provide advanced education and learning opportunities for graduates and healthcare professionals within this field.

Why Study Cardiovascular Health and Rehabilitation with us?

The prevention and rehabilitation of cardiovascular disease (CVD) is a cost-effective means of managing the leading cause of death in the UK and in many parts of the developed world.

The MSc is delivered by a team of experienced academics and leading specialist front-line lead practitioners, enabling graduates to leave with the most up-to-date level of knowledge. The aims of our course are for you to develop:
- a critical understanding of cardiovascular health and rehabilitation concepts
- a scientific and enquiring approach to the study of physiological, psychological, social and healthcare management components for managing people with and/or those at higher risk of CVD.

Our course is designed to provide a thorough understanding of cardiovascular health and the process of rehabilitation. Cardiovascular anatomy and physiology is covered in detail, with application to exercise and the practicalities of working with a patient with CVD.

You will also learn about the complexities of exercise prescription, the role of nutrition in CVD and the psychological influences that can drive behaviour change. There is also specialist input from the British Association for Cardiovascular Prevention and Rehabilitation.

Modules are delivered over a three-day period, which helps fit in with those who work in clinical practice.

What will I learn?

Our course is designed to provide a thorough understanding of cardiovascular health and the process of rehabilitation. Cardiovascular anatomy and physiology is covered in detail, with application to exercise and the practicalities of working with a patient with CVD.

You will also learn about the complexities of exercise prescription, the role of nutrition in CVD and the psychological influences that can drive behaviour change. There is also specialist input from the British Association for Cardiovascular Prevention and Rehabilitation.

How will I be taught?

Modules are delivered in exercise physiology laboratories, lecture theatres and seminar rooms. There is also the option to undertake a clinical placement at the local cardiac rehabilitation department that allows you to apply the elements learned on the taught course.
Typical contact time during a module is 25 hours, with additional face-to-face and online tutorials optional. There are approximately 170 hours of self-directed study per module.

How will I be assessed?

Assessment is in the form of essays or equivalent – e.g. poster presentations. There are no exams – coursework accounts for 100% of the assessment.

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php

Read less
Taught in the School of Life Sciences’ state-of-the-art research laboratories and teaching facilities, the MSc in Integrated Physiology in Health and Disease, is the only one of its kind in the UK. Read more
Taught in the School of Life Sciences’ state-of-the-art research laboratories and teaching facilities, the MSc in Integrated Physiology in Health and Disease, is the only one of its kind in the UK.

The course promotes the importance of an integrated and multidisciplinary approach to studying fundamental physiological aspects of human health and disease, including diabetes, obesity and cardiovascular disease, by combining cutting-edge physiological and metabolic methodologies with relevant molecular biology approaches.

Course overview

The course is ideal for:

 students with a background in physiology, biochemistry, biomedical sciences, biology, nutrition, exercise science and other related disciplines
 those with work experience in health-related research
 health and exercise professionals.

It investigates the physiology underlying health and disease – a growing area of interest to academic, private and public sectors – and aims to:

 develop an understanding of the fundamental physiology underpinning the maintenance of health, and the development of disease
 equip students with both generic and specialist skills, including a wide range of laboratory techniques necessary to develop an integrated and translational approach to the study of human metabolism and physiology
 promote the importance of adopting a critical approach to questions of clinical relevance
 provide the necessary foundation for those who wish to pursue advanced research in this area, leading to the degree of PhD.

Course structure

The programme comprises eight modules: six compulsory, one optional, and a laboratory-based research project.

The six compulsory modules are:

 Nutrition in Health and Exercise
 Muscle Physiology and Metabolism
 Metabolism and Nutrition in Disease
 Cardiorenorespiratory Physiology
 Laboratory Techniques
 Statistics and Research Methods

Students choose one of the following two optional modules:

 Medical Pharmacology
 Clinical Neuroscience.

About the School and its staff

The School of Life Sciences, with its unique, high-quality expertise and excellent facilities, is one of the UK’s leaders in research into integrated physiology.

The programme is delivered by staff from the Metabolic Physiology Group. The group has an international research standing in the area of human nutrition, the control and integration of fuel utilisation in health and disease, such as in obesity and diabetes, and the regulation of muscle mass during exercise, inactivity and disease. The group is funded by industry, research charities and research councils.

In recent years, the School has undergone an impressive development and refurbishment programme. Research is conducted in a suite of human physiology laboratories; ex vivo pharmacology laboratories; neuroscience laboratories and a human primary tissue culture laboratory.

These facilities allow integrated metabolic investigations in both patients and healthy individuals to dovetail with relevant modern molecular biology technologies.

Students also benefit from our interactive, multidisciplinary approach to teaching and research alongside colleagues in other schools and clinics based in four regional hospitals: the Queen’s Medical Centre, Nottingham City Hospital, Derbyshire Royal Infirmary and Derby City General Hospital.

Career development

A range of rewarding employment opportunities is open to graduates in this field.

 Experience in the area of integrated and translational physiology is required by an increasing number of research groups in both academia and the private sector.
 The health and exercise sector offers a variety of employment opportunities in rehabilitation, and health and fitness centres.
 The School attracts a number of capacity-building Medical Research Council (MRC) and Biotechnology and Biological Sciences Research Council (BBSRC) PhD studentships each year. On successful completion of the programme, students are considered as serious candidates for these research opportunities.


Assessment

The course requires students to accumulate 180 credits as follows:

 Autumn – three core taught modules (50 credits)
 Spring – five taught modules (80 credits)
 Summer – research project (50 credits).

Assessments are held either at the end of a module or the end of a semester and take the form of an exam, laboratory report or essay.

The research project is assessed through a 15,000-word dissertation and a viva voce.

Funding opportunities

The School offers competitive scholarships specific to the course each year and supports applications for funding to external organisations, including the research councils. For further details, please visit our website.

Related studies

To view related research opportunities with The School of Life Sciences, please visit our website.

Read less
Delivered by experts from the School of Sport and Exercise Sciences, this programme focuses on the practical application of research, including intermediate life support and phlebotomy. Read more
Delivered by experts from the School of Sport and Exercise Sciences, this programme focuses on the practical application of research, including intermediate life support and phlebotomy.

•Available to study full time (1 year) and part time (2 years)
•Course developed by world-leading academics in our pioneering School of Sport and Exercise Science
•Student numbers are capped at 20 for this highly competitive course to give you dedicated access to staff and facilities
•Access state-of-the-art laboratories in our award-winning Tom Reilly Building
•Enjoy a combination of invaluable practical experience (including a substantial clinical placement) and theoretical learning
•The School houses 12-lead ECG and cardiopulmonary stress exercise testing equipment
•We also house ultrasound machines – echocardiography and vascular physiology, and we are world leaders in utilising this equipment in a practice-based setting
•Look forward to enhanced job opportunities

There has never been a more exciting time to undertake an MSc in Clinical Exercise Physiology. Exercise now represents one of the world’s major businesses and scientists have an increasingly prominent role in working with healthy and clinical populations to maintain healthy lifestyles and reduce disease.

This Masters programme is ideal if you want to go on to specialise in exercise physiology in a clinical setting or work at doctoral level in academia.

The programme provides a detailed knowledge of physiology applied to clinical contexts, but is also designed to extend your knowledge beyond ‘classical’ exercise physiology studies and into novel techniques and theories underpinning exercise physiology and health.

The MSc programme provides extensive practical experience in key physiology laboratory tests such as ECG and cardiopulmonary testing. It also gives a good understanding into modern and novel ultrasound assessments of cardiovascular function. Academic development is provided in fundamental scientific techniques including research methods, statistical analysis and scientific communication.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Pathophysiology of cardiovascular disease
Technical training for exercise physiology
Advanced exercise physiology and exercise prescription
Promotion, adherence and compliance
Clinical placement and thesis
Research methods

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
The Global Burden of Disease Study predicts that by 2020 the top ten leading causes of disability-adjusted life years has ischaemic heart disease at number 1, chronic obstructive pulmonary disease (COPD) at number 5, and lower respiratory tract infections at number 6. Read more
The Global Burden of Disease Study predicts that by 2020 the top ten leading causes of disability-adjusted life years has ischaemic heart disease at number 1, chronic obstructive pulmonary disease (COPD) at number 5, and lower respiratory tract infections at number 6. COPD is predicted to quickly rise ‘up the charts’ after 2020 because it is unique in being currently untreatable, with four people a minute worldwide dying of this condition.

Consequently, study of respiratory and cardiovascular science is essential to improving our future health prospects. To that end, the Respiratory and Cardiovascular Science (RCVS) stream combines lectures and journal clubs covering the physiology and pathophysiology of the heart and lungs to provide a solid grounding on how dysfunction in physiology can lead to pathophysiology and clinical manifestations of severe heart or lung disease. The RCVS stream covers the main areas of respiratory physiology and cellular and molecular biology, and introduces the major disease-causing conditions, giving you a broad base of understanding of the heart and lungs.

Laboratory-based research projects will be directly related to advancing our understanding of heart and lung function and/or dysfunction. Dedicated RCVS sessions on data interpretation are designed to facilitate and complement the project experience.

Most of the tutors on the RCVS stream work at the National Heart & Lung Institute, and represent the largest ‘critical mass’ of research-active, respiratory or cardiovascular science academics in Europe. For example, Professor Peter Barnes (FRS) is the most cited published author for COPD in the world. Consequently, students will be in a premier, cutting-edge environment of respiratory and cardiovascular teaching and research.

After completion of the RCVS stream the student will be able to:

-Describe the basic physiology of cardiac function
-Describe the pathophysiology of the major cardiovascular diseases (for example, cardiac ischaemia)
-Describe the pathophysiology of the major respiratory diseases, including asthma, COPD and cystic fibrosis
-Understand the advantages and limitations of animal models of respiratory and cardiovascular disease
-Understand the rationale behind the design of novel treatments for respiratory and cardiovascular disease
-Use library and other research sources effectively
-Design laboratory-based experiments to effectively test a specified hypothesis, incorporating use of appropriate controls
-Interpret data sets, depict data in an appropriate graphic format and apply appropriate statistical analysis
-Understand and be able to use bioinformatic approaches
-Be able to write a grant proposal for a research project
-Be able to present research project data in various formats, including as a poster, an oral presentation, a PhD-style write-up and a journal-based research paper write-up
-Be able to read, understand and critically evaluate research papers in peer-review journals

Please note that Postgraduate Diplomas and Certificates for part-completion are not available for this course.

A wide range of research projects is made available to students twice a year. The range of projects available to each student is determined by their stream. Students may have access to projects from other streams, but have priority only on projects offered by their own stream.

Read less
This Sport Masters programme is delivered by world-leading experts at Liverpool John Moores University. You will have access to excellent facilities, geared towards both classical physiology and research at the forefront of molecular exercise physiology. Read more
This Sport Masters programme is delivered by world-leading experts at Liverpool John Moores University. You will have access to excellent facilities, geared towards both classical physiology and research at the forefront of molecular exercise physiology.

• Course available to study full time (1 year) and part time (2 years)
•Developed by world-leading researchers in our pioneering School of Sport and Exercise Science
•Access to state-of-the-art physiology and biochemistry laboratories in our award-winning Tom Reilly Building
•Strong emphasis on active learning and practical training
•Career opportunities in teaching and lecturing, as applied practitioners in sport science support programmes of further study at Doctoral level

There has never been a more exciting time to undertake an MSc in Sport and Exercise Physiology. Sport represents one of the world’s major businesses and scientists have an increasingly prominent role in working with athletes, coaches, governing bodies and industry to help optimise elite performance.

Sport and Exercise Science is also playing an increasingly important role in society by promoting exercise for healthy ageing and the prevention of premature death from cardiovascular disease, cancer and obesity.
Our teaching is delivered primarily through laboratory practicals and student-centred learning techniques, such as problem-based learning. During this programme you will complete a record of competency in physiological assessment, deliver a conference presentation, provide strength and conditioning training in the University’s high-performance gym and gain first-hand experience of ‘wet lab’ techniques including western blotting and proteomics.

From this foundation, many of our graduates go on to conduct doctoral research within academic/clinical institutions, sport clubs and allied organisations.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Mechanisms of Muscle Adaptation: provides a mixture of theory and practical work in molecular exercise physiology
Technical Training: provides extensive practical training in exercise physiology laboratory tests, and data collected during these sessions is used to teach statistical analysis techniques in the Research Methods topic
Contemporary Research: develops adaptations to training and fundamental academic skills through the critical appraisal of leading research
Applied Practice: is ideal if you aspire to a career in high-level professional sport and performance-orientated amateur training. This module teaches practical skills associated with safe and effective training prescription, and you may have the opportunity to gain experience by assisting the delivery of strength and conditioning training within the University’s Sport Scholarship scheme
Masters Dissertation: you will undertake a significant body of research in sport and exercise physiology. Dissertation projects are undertaken within research themes led by staff and associated PhD students. The majority of work is typically conducted across Semesters 2 and 3 and then presented as a journal manuscript, which may later be submitted for publication in peer-reviewed scientific journals

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
The aim of this programme is to give you a broad-based training in biomedical research, with a focus on cardiovascular science. Read more

Research profile

The aim of this programme is to give you a broad-based training in biomedical research, with a focus on cardiovascular science. This includes an introduction to cardiovascular development, the development of cardiovascular disease, organ function and dysfunction, and the cardiovascular system in reproduction and inflammation.

You will gain an integrated view of the physiology and pathology of cardiovascular system from both basic and clinical scientists.

Programme structure

You will attend research seminars and tutorials by senior clinicians and basic scientists, and conduct research projects in our internationally renowned laboratories in the Centre for Cardiovascular Science.

You will also deliver research-orientated presentations and gain skills in critical reading of scientific literature and in the writing of scientific reports.

Career opportunities

This is the ideal programme for high-calibre students who wish to progress to a PhD in cardiovascular science.

Read less
The course is designed for students who wish to pursue a career in biomedical research, whether it be in academia, industry or goverment. Read more
The course is designed for students who wish to pursue a career in biomedical research, whether it be in academia, industry or goverment. To date, of the students who wanted to, the overwhelming majority have gone on to study for a PhD . We will equip you with the key skills needed to plan, conduct, publish and obtain funding for successful research.

The course comprises two 5-month research projects and a core programme including grant writing, technical workshops, journal clubs and transferrable skills. Please note that Postgraduate Diplomas and Certificates for part-completion are not available for this course.

The

Respiratory and Cardiovascular Science Stream

covers the main areas of respiratory physiology and cellular and molecular biology, and introduces the major disease-causing conditions, giving you a broad base of understanding of the heart and lungs.

The Global Burden of Disease Study predicts that by 2020 the top ten leading causes of disability-adjusted life years has ischaemic heart disease at number 1, chronic obstructive pulmonary disease (COPD) at number 5, and lower respiratory tract infections at number 6. COPD is predicted to quickly rise ‘up the charts’ after 2020 because it is unique in being currently untreatable, with four people a minute worldwide dying of this condition.

Consequently, study of respiratory and cardiovascular science is essential to improving our future health prospects. To that end, the Respiratory and Cardiovascular Science (RCVS) stream combines lectures and journal clubs covering the physiology and pathophysiology of the heart and lungs to provide a solid grounding on how dysfunction in physiology can lead to pathophysiology and clinical manifestations of severe heart or lung disease.

Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting.

The programme aligns with a nationally agreed pharmacy practitioner development strategy and is the result of a unique collaboration of higher education institutions across London and the south and east of England.

The programme develops your knowledge and skills in clinical pharmacy practice and medicines management. It works on a philosophy of student-centred workplace learning, supported by workbooks and contact days facilitated by experienced pharmacy practitioners. You are expected to take responsibility for managing your learning and achieving the programme objectives. The ethos and culture of the programme is to enhance and develop self-reliance and an adult approach to learning in support of continuing professional development.

Visit the website https://www.kent.ac.uk/courses/postgraduate/737/general-pharmacy-practice

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Modules

For more about the structure of this course please visit the Medway School of Pharmacy website (http://www.msp.ac.uk/studying/postgraduate/cert-gen-pharm-pract/index.html).

Assessment

Assessment is by Objective Structure Clinical Examination (OSCE), multiple-choice questions, assignments, literature review, prescribing audit, change management project, and a competency-based portfolio review.

Programme aims

The PCert and PDip aim to:

- enable you to apply appropriate knowledge, skills and attitudes in order to carry out effectively the role of the general pharmacist practitioner within your pharmacy practice base and wider healthcare teams

- enable you to carry out effective consultations with patients respecting their diverse needs and with regard to confidentiality and consent

- enable you to identify, prioritise and resolve complex pharmaceutical care issues

- enable you to apply knowledge of pathophysiology, pharmacology and the clinical use of drugs and therapeutic guidelines to the treatment of common disease states

- enable you to access, gather, interpret, critically evaluate and summarise medicines information

- enable you to monitor the quality of services provided, identify, prioritise and resolve significant medicines management issues and monitor and evaluate outcomes

- enable you to establish population health needs and apply specialist pharmaceutical knowledge to public health issues.

The MSc aims are to:

- investigate a topic in depth

- evaluate current practice or a new service

- publish research and advance knowledge in pharmacy practice

- develop skills you require for the RPS Advanced Pharmacy Framework

- inspire you and others in your workplace to carry out much needed practice research

- support your future career and perhaps to help you explore new career paths.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

This programme provides progression for pharmacists towards advanced practitioner status.

Completion of the practice elements of the course leads to the award of the Certificate of Completion of General Pharmacist Training from an accredited training centre.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber.

Eight contact days cover communication and diagnostic skills. Other topics on the syllabus include the legal, policy, professional and ethical aspects of prescribing, plus pharmacology and patient assessment and monitoring.

Visit the website https://www.kent.ac.uk/courses/postgraduate/740/independent-supplementary-prescribing

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can take the Master’s programme as a stand-alone PCert in Independent/Supplementary Prescribing, or as one pathway into the Medicines Management programme, by studying prescribing as either the first or second year of the Medicines Management PDip.

On successful completion, the School will notify the appropriate professional/regulatory body that you have qualified as an independent/supplementary prescriber.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by Objective Structured Clinical Examination (OSCE), assignments, case-study analysis, multiple-choice questions, short answer paper, narrative based on portfolio entries and attendance at a period of learning in practice.

Programme aims

This programme aims to:

- prepare pharmacists to practice as supplementary prescribers

- prepare nurses and midwives to practice as supplementary/independent prescribers

- develop the knowledge and skills required by an allied health professional to practice as a supplementary prescriber

- meet the standards set by the respective professional or regulatory body as required within the legislative framework.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions.

The programme emphasises clinical and costeffective prescribing in the context of holistic consideration of patient needs, and one of its pathways offers you the chance to qualify as an independent/supplementary prescriber.

Visit the website https://www.kent.ac.uk/courses/postgraduate/738/medicines-management

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can register for the full MSc programme or undertake stand-alone modules. Modules can be put together to form a short course programme. Module length varies from five to 15 credits.

For the PCert, you must complete 60 credits, of which at least 20 must be from core modules. Diploma students must complete 120 credits, of which at least 40 credits must be from core modules. To gain the MSc, you must complete a 60-credit research project, write a dissertation and present the results as a poster.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment includes case study analysis, critical appraisal of literature, assignments including short essays, a research project and dissertation.

Programme aims

This programme aims to:

- equip healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions in primary and secondary care.

- enable you to incorporate your learning directly into your workplace and to rise to the challenges presented by the new, patient-centred NHS.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
If you are passionate about a career in embryology, this course is for you. Read more
If you are passionate about a career in embryology, this course is for you. The Intensive Master of Clinical Embryology course (MCE) has gained global recognition as a training program for all assisted reproductive technologies (ART), producing high calibre embryologists, with the excellent knowledge and practical skills to eventually work in, and manage, human ART clinics. MCE is offered both on-campus (one year full time) and off-campus (restricted entry, full or part-time) to domestic and international students

Your studies will include the foundations of mammalian embryology, detailed assessment of all infertility treatment strategies, the theoretical basis behind embryo production, embryo selection and cryopreservation, focussing on all current and future technologies associated with ART. There are 3 units dedicated to Total Quality Management, Preimplantation Diagnosis and Ethics. Most importantly, we are equipped to teach all the practical skills required of andrologists and embryologists, beginning with sperm and embryo handling and assessment, and slowly building skills though learning in vitro fertilisation techniques, the latest cryopreservation techniques, such as vitrification of gametes and embryos finally finishing the year with ICSI and biopsy. While learning the practical skills, students are also given opportunities to visit ART clinics within Australasia and worldwide and all encouraged to attend ART industry conferences. Students engage in research projects that are designed to enhance practical and research skills, while assessments throughout the year are designed to measure the competency of students in theoretical, practical and research disciplines.

Visit the website http://www.study.monash/courses/find-a-course/2016/clinical-embryology-2309?domestic=true

Overview

This 12-month, intensive course provides students with the essential postgraduate knowledge and practical skills necessary to contribute competently to human infertility clinical services. Theoretical and practical skills are presented in the broad context of the regulations and the ethical considerations that apply to human IVF, both nationally and internationally, along with the quality control procedures required to ensure maximum success for IVF patients. The guidelines, protocols and regulations that steer and control human infertility services are also presented. In addition to attending lectures and self-directed study, students are required to undertake continual practical skills training and also students will undertake a minor research project. Students will not only be equipped with practical skills required for work in an IVF laboratory but also gain a greater understanding of research applications within the field of reproductive or developmental biology. Research-related tasks contribute to the overall assessment for specific coursework units.

Career opportunities

On completion of this course graduates may gain employment as clinical embryologists, or work in laboratories in embryology, health, in vitro fertilisation (IVF), or in related jobs within the reproductive biology field.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Faculty of Medicine, Nursing and Health Sciences

The Faculty is also home to a number of leading medical and biomedical research institutes and groups, and has contributed to advances in many crucial areas: in vitro fertilisation, obesity research, drug design, cardiovascular physiology, functional genomics, infectious diseases, inflammation, psychology, neurosciences and mental health.

Notwithstanding the relatively short history of our University, the Faculty is ranked in the top 50 in the world for its expertise in life sciences and biomedicine by the Times Higher Education and QS World University 2012 benchmarks.

Courses offered by the Faculty include medicine, nursing, radiography and medical imaging, nutrition and dietetics,emergency health studies, biomedical sciences, physiotherapy, occupational therapy, and social work. A range of research and coursework postgraduate programs is also offered.

The Faculty takes pride in delivering outstanding education in all courses, in opening students to the possibilities offered by newly discovered knowledge, and in providing a nurturing and caring environment.

Further details may be found at: http://www.med.monash.edu.au/about.html

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/clinical-embryology-2309?domestic=true#making-the-application

Read less
Undertaking the Master of Clinical Research Methods at Monash University, a Group of Eight University and one that is ranked in the Top 100 Universities worldwide, will give you the knowledge and skills necessary to work in the broad domain of clinical research and a postgraduate qualification that is recognised around the world. Read more
Undertaking the Master of Clinical Research Methods at Monash University, a Group of Eight University and one that is ranked in the Top 100 Universities worldwide, will give you the knowledge and skills necessary to work in the broad domain of clinical research and a postgraduate qualification that is recognised around the world.

This 12-unit course provides students with the full range of quantitative and analytical skills necessary to work in the broad domain of clinical health. It especially focuses on developing skills in the quantitative methods of clinical research and application to patient care.

Students must complete 9 core units, plus either 3 electives or 1 elective and a 12 credit point project.

Teaching is structured as a combination of on-line educational delivery, and face to face block days which suits busy professionals and those who balance other responsibilities in their lives.

Students may quality for entry into a PhD by the following pathways:

Successfully completing the Master of Clinical Research Methods including a Distinction average in: chronic diseases: epidemiology and prevention; regression methods for epidemiology; advanced statistical methods for clinical research; clinical measurement and systematic reviews and meta-analysis.

OR

Completing the Master of Clinical Research Methods including the 12 credit point project and achieve a Distinction average in epidemiology and prevention; regression methods for epidemiology; advanced statistical methods for clinical research; and clinical measurement.

Exit points: Students may be eligible to alternately exit from the Master's program with a Graduate Certificate in Clinical Research Methods or Graduate Diploma in Clinical Research Methods provided the requirements of the alternative exit have been met.

Visit the website http://www.study.monash/courses/find-a-course/2016/clinical-research-methods-2311?domestic=true

Career opportunities

Graduates may move into careers in a diverse range of areas within research and the wider health sector. These may include employment within clinical research units in medical, nursing or allied health science; work in industry sponsored trials; applying their skills in investigator initiated studies in public health, primary care, infection control, chronic disease and clinical medicine, or they may implement their skills in their usual employment.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Faculty of Medicine, Nursing and Health Sciences

The Faculty is also home to a number of leading medical and biomedical research institutes and groups, and has contributed to advances in many crucial areas: in vitro fertilisation, obesity research, drug design, cardiovascular physiology, functional genomics, infectious diseases, inflammation, psychology, neurosciences and mental health.

Notwithstanding the relatively short history of our University, the Faculty is ranked in the top 50 in the world for its expertise in life sciences and biomedicine by the Times Higher Education and QS World University 2012 benchmarks.

Courses offered by the Faculty include medicine, nursing, radiography and medical imaging, nutrition and dietetics,emergency health studies, biomedical sciences, physiotherapy, occupational therapy, and social work. A range of research and coursework postgraduate programs is also offered.

The Faculty takes pride in delivering outstanding education in all courses, in opening students to the possibilities offered by newly discovered knowledge, and in providing a nurturing and caring environment.

Further details may be found at: http://www.med.monash.edu.au/about.html

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/clinical-research-methods-2311?domestic=true#making-the-application

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X