• University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
University of Dundee Featured Masters Courses
"cancer" AND "therapeutic…×
0 miles

Masters Degrees (Cancer Therapeutics)

We have 52 Masters Degrees (Cancer Therapeutics)

  • "cancer" AND "therapeutics" ×
  • clear all
Showing 1 to 15 of 52
Order by 
This is an exciting time to be involved in cancer therapeutics. Based upon a greater understanding of the molecular aspects of cancer, new opportunities for therapeutic intervention have emerged that are effectively 'target orientated'. Read more

This is an exciting time to be involved in cancer therapeutics. Based upon a greater understanding of the molecular aspects of cancer, new opportunities for therapeutic intervention have emerged that are effectively 'target orientated'. These new therapeutics are quite distinct from the classical chemotherapeutic agents and they offer the prospect of truly selective cancer therapies that are tailored towards the individual patient's tumour. Cancer pharmacology plays a key role in drug development. In both the laboratory and the clinic, cancer pharmacology has had to adapt to the changing face of drug development by establishing experimental models and target orientated approaches.

The programme is designed to provide you with a 'state-of-the-art' course in modern cancer pharmacology that meets the demand of employers and provides an expert view of the available cancer medicines and the development of new cancer therapies.

It promotes advanced scholarship within specialised areas at the same time as the development of key transferable skills (in IT, communication, and time management) and research techniques. The taught component of the course provides the in depth knowledge and skills necessary to work in cancer research, and is delivered across 2 semesters through lectures, workshops, practicals and 1-to-1 tutorials with ICT staff. You will then join one of our research teams to complete the MSc research project.

Rankings

Top 200 - 2018 QS World University Rankings by subject

"I've had a really good time at Bradford. It has taught me a lot and provided me with a lot of good skills so that I am best prepared for the future. I have already got a job as a Physician Associate and I believe doing my Master's here helped me get this job."

Harpreet Singh Bains, MSc Cancer Pharmacology, 2015

What you will study

The Cancer Pharmacology programme is designed to provide you with ‘state of the art’ learning opportunities in modern cancer pharmacology, focussed on the cancer biology of target and biomarker identification and validation, development of preclinical screening programmes in silico, in vitro and in vivo, mechanisms of anticancer drug action, pharmacodynamics and pharmacokinetics.

It meets the demands of employers and students at taught postgraduate level, and has a strong track record in graduates progressing to employment in the field or PhD study.

Core Modules

Option Modules

Learning and assessment

A wide variety of teaching methods appropriate to the learning outcomes of the individual modules are employed throughout the programme; formal lectures from ICT research/teaching staff and visiting clinicians and industrial researchers, small group workshops and discussions with peers, laboratory practicals, journal clubs, group and one-to-one tutorials, and a large component of individual research. These are supported by material provided on Blackboard, the virtual learning environment, provided by the University. Students will also attend the Institute of Cancer Therapeutics Research Seminar programme. Self-directed independent learning forms a significant component at MSc level; students will be supported to develop the attributes and skills needed for life-long learning and continued professional development. Directed private study will involve you in a variety of activities, which include directed reading of selected textbooks and specified source literature, Blackboard (directed Web-based materials), report writing, preparing presentations to deliver to your peers, and other assignments.

Career prospects

Many students go on to study for PhDs either at Bradford or elsewhere.

Recent graduates are studying at Dundee, Newcastle and Glasgow universities, and at medical schools in the UK and abroad.

Those in employment are in research and development, clinical research and teaching roles.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.



Read less
Graduates from this course will have a breadth and depth of cancer-focused training that will make them credible candidates to start or further a career within the health sector or research establishments. Read more

Graduates from this course will have a breadth and depth of cancer-focused training that will make them credible candidates to start or further a career within the health sector or research establishments.

Overview

This one year, full-time MSc course is designed to provide you with advanced knowledge, understanding and skills in the rapidly advancing field of Cancer Biology and Therapeutics.

Our aim is to provide you with a breadth and depth of cancer-focused training that will make you a highly attractive candidate to start or continue a career within the healthcare sector and public/private sector research establishments.

Throughout the course, you’ll gain from advanced teaching in the cellular aspects of cancer biology together with the molecular mechanisms underlying cancer development and progression. Through this programme you’ll also receive in-depth training in cancer therapeutics, encompassing biomarkers and diagnosis, therapeutic targets, drug discovery and clinical trials and chemo/radio therapy. 

The course offers research skills training and a laboratory-based research project that helps you to develop research hypotheses and critically evaluate translational approaches with respect to the development of contemporary cancer therapeutics.

So, whether you’re looking to better prepare yourself for doctoral research or to achieve a self-contained advanced qualification in its own right, this postgraduate programme will give you a balanced combination of theory and practice to suit your needs and set you in excellent stead for your future career.

Distinctive features

Distinctive features of the course include: 

  • A course developed in collaboration with researchers, academics and clinicians and delivered by leading academic cancer researchers at Cardiff University.
  • A broad ranging course that covers basic molecular cancer cell biology through to translational research and therapeutics.
  • Key lectures and case study workshops delivered by oncologists and cancer clinicians.
  • Opportunity to undertake a research project in one of the internationally cancer research groups at Cardiff.
  • Close academic support from an experienced personal tutor.
  • Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.
  • Opportunity to join a vibrant postgraduate community studying at Cardiff.

Learning and assessment

How will I be taught?

The programme will provide advanced teaching in the cellular aspects of cancer biology together with the molecular mechanisms underlying cancer development and progression. In-depth training will be provided in the area of cancer therapeutics, encompassing biomarkers and diagnosis, therapeutic targets, drug discovery and clinical trials and chemo/radio therapy, in addition to developing the student’s theoretical and practical research skills.

How will I be assessed?

Assessment for the course will comprise a combination of exams, written essays, posters, laboratory coursework and case studies.

Career prospects

Once you graduate from this course, you’ll gain a breadth and depth of cancer-focused training that could make you a highly attractive candidate to start or continue a career within the healthcare sector and research establishments.

Potential employment opportunities include studying for a PhD, becoming a medical laboratory science officer or research technician, clinical trials co-ordinator, medical writer or scientific liaison officer.



Read less
Exciting new opportunities for chemical intervention in disease have emerged based on a greater understanding of the molecular aspects of disease progression. Read more

Exciting new opportunities for chemical intervention in disease have emerged based on a greater understanding of the molecular aspects of disease progression. Drug discovery combines the expertise of medicinal chemists required in translating the understanding of the molecular aspects of disease progression to the identification of suitable chemical entities, and the process of optimisation that ultimately leads to the discovery of new medicines.

This exciting course run by the Institute of Cancer Therapeutics is designed to provide students with a 'state-of-the-art' education in modern drug discovery, which meets the demand of employers in the pharmaceutical industry.

Opportunities to learn the latest innovations in drug discovery are provided, including computer-aided drug design and techniques in parallel synthesis, as well as electronic data management.

What you will study

Core Modules

Option Modules

Learning and assessment

This programme is designed to provide you with a ‘state of the art’ education in modern cancer drug discovery, which meets the demand of employers in pharmaceutical industry and has a strong track record in graduates progressing to employment in the field or PhD study.

There are opportunities to learn the latest innovations in drug discovery, including computer-aided drug design and techniques, drug synthesis as well as electronic data management. In addition, an extended project in drug discovery will not only provide you with first-hand experience of the challenges in original research, but also gives you an opportunity to put in practice the knowledge you have gained.

Career prospects

Many students go on to study for PhDs either at Bradford or elsewhere.

Recent graduates are studying at Dundee, Newcastle and Glasgow universities.

Those in employment are in research and development and clinical research roles.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Study support

Our comprehensive support services will help you to achieve your full potential – both academically and personally.

We provide all you need to make the very best of your time with us, and successfully progress through your studies and on into the world of graduate employment.

Our support services include:

  • personal tutors
  • Disability Service
  • Counselling Service
  • MyBradford student support centres
  • Students’ Union
  • Chaplaincy and faith advisers
  • on-campus nursery
  • Halls wardens

We have well-stocked libraries and excellent IT facilities across campus. These facilities are open 24 hours a day during term time, meaning you’ll always find a place to get things done on campus.

Our Academic Skills Advice Service will work with you to develop your academic, interpersonal and transferable skills, and our Career and Employability Services can help you develop your employability skills and help you find local part-time work during your studies.

Our support doesn’t end once you graduate – we maintain contact with tens of thousands of graduates, organising reunions, networking opportunities and developing overseas branches. You’ll be a lifelong member of the University of Bradford community – Team Bradford.

Research

The course provides an expert view of the use of recent knowledge and up-to-the minute specialised approaches to discover novel drugs to help fight disease and increase the quality of life for patients.

It benefits from the multidisciplinary team of researchers in the field of drug design, synthesis, screening, pharmacology and toxicology both at the University and through our extensive links with experts at other universities and industry.

Students on the course will also benefit from working in excellent research laboratories in a research focused environment.



Read less
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. Read more

The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. The programme, taught by research scientists and academic clinicians, provides students with an in-depth look at the biology behind the disease processes which lead to cancer.

About this degree

This programme offers a foundation in understanding cancer as a disease process and its associated therapies. Students learn about the approaches taken to predict, detect, monitor and treat cancer, alongside the cutting-edge research methods and techniques used to advance our understanding of this disease and design better treatment strategies.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (60 credits), four specialist modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months) is offered.

A Postgraduate Certificate (60 credits, full-time 12 weeks) is offered.

Core modules

  • Basic Biology and Cancer Genetics
  • Cancer Therapeutics

Specialist modules

  • Behavioural Science and Cancer
  • Biomarkers in Cancer
  • Cancer Clinical Trials
  • Haematological Malignancies and Gene Therapy

Dissertation/report

All MSc students undertake a laboratory project, clinical trials project or systems biology/informatics project, which culminates in a 10,000–12,000 word dissertation and an oral research presentation.

Teaching and learning

Students develop their knowledge and understanding of cancer through lectures, self-study, database mining, wet-lab based practicals, clinical trial evaluations, laboratory training, assigned reading and self-learning. Each taught module is assessed by an unseen written examination and/or coursework. The research project is assessed by the dissertation (75%) and oral presentation (25%).

Further information on modules and degree structure is available on the department website: Cancer MSc

Careers

The knowledge and skills developed will be suitable for those in an industrial or healthcare setting, as well as those individuals contemplating a PhD or medical studies in cancer.

Employability

Skills include critical evaluation of scientific literature, experimental planning and design interpretation of data and results, presentation/public speaking skills, time management, working with a team, working independently and writing for various audiences.

Why study this degree at UCL?

UCL is one of Europe's largest and most productive centres of biomedical science, with an international reputation for leading basic, translational and clinical cancer research.

The UCL Cancer Institute brings together scientists from various disciplines to synergise multidisciplinary research into cancer, whose particular areas of expertise include: the biology of leukaemia, the infectious causes of cancer, the design of drugs that interact with DNA, antibody-directed therapies, the molecular pathology of cancer, signalling pathways in cancer, epigenetic changes in cancer, gene therapy, cancer stem cell biology, early phase clinical trials, and national and international clinical trials in solid tumours and blood cancers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Cancer Institute

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This full-time Master's programme provides a comprehensive overview of drug safety practices within the drug development process. Read more

This full-time Master's programme provides a comprehensive overview of drug safety practices within the drug development process.

It addresses key aspects of preclinical drug evaluation through the study of:

  • Drug discovery and development
  • Safety pharmacology
  • Mechanisms of drug-induced toxicities
  • Regulatory affairs
  • Bioanalytical sciences

It will give you state-of-the-art training in preclinical toxicology, with an emphasis on the molecular in vitro and in vivo aspects of toxicology and safety pharmacology assessments.

As part of the programme you will undertake an original research project that will be the basis of your dissertation.

Delivered at the Institute of Cancer Therapeutics, an internationally renowned research institution, the programme gives you the skills you need for a career in the pharmaceutical industry or regulatory bodies, along with the foundations for PhD study.

Drug toxicology and safety pharmacology lies at the heart of the chemical and pharmaceutical industries, and demand for highly skilled practitioners in this field is extremely high.

Rankings

Top 200 - 2018 QS World University Rankings by subject.

"The course contains the perfect balance between theoretical learning in lectures and hands-on experience by putting our theoretical learning into practice. It has helped spark a greater in-depth interest and knowledge into science and science-related research."

Manisha Prabhakar, MSc Drug Toxicology and Safety Pharmacology

What you will study

The programme delivers a combination of theoretical learning and hands-on laboratory experience in a number of key aspects of biomedical, pharmacological and toxicological laboratory techniques.

Key elements of scientific analysis, such as critical appraisal and analysis and presentation of data, are also included.

Core Modules

Option Modules

Learning and assessment

You'll learn through lectures, tutorials, student-led seminars and laboratory investigation, plus self-directed learning.

Assessment consists of exams and coursework. An important component is the final dissertation derived from the research project.

Career prospects

The programme gives you the skills you need for a career in the pharmaceutical industry, clinical trials, or regulatory bodies, along with the foundations for PhD study.

Drug toxicology and safety pharmacology lies at the heart of the chemical and pharmaceutical industries, and demand for highly skilled practitioners in this field is extremely high.

The majority of our students find employment in the pharmaceutical industry (e.g. Covance, Envigo, Cyprotex) as well as the clinical setting ( e.g clinical trials at St James Hospital, Leeds). A number of overseas students have returned to their country of origin and have taken high profile positions in the regulatory environment. In addition, many of our students have continued their education and progressed to PhD study (e.g. Universities of Oxford, Leeds, Liverpool, and Bradford).

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.



Read less
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer. Read more
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer.

This will be underpinned by a thorough knowledge of cancer biology and pathology and research methodologies.

This knowledge will provide an excellent grounding in the development, use and evaluation of cancer therapies, which will enhance career prospects in many areas of early phase clinical trials and clinical drug development in the cancer setting.

Compulsory Modules

• Ablative Therapies
• Cancer Biology
• Cancer Pharmacology
• Cancer Prevention & Screening
• Drug Development
• Molecular Diagnostic & Therapeutics
• Molecular Targeted Therapies and Immunotherapy for Blood Cancer
• Research Methods
• Site Specific Tumour Treatment

Elective Modules

• Genomic Approaches to Human Diseases
• Paediatric & Adolescent Oncology
• Pathology of Cancer

Core Module for MSc

• Dissertation.

Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

Find out more about the BCI at http://www.bci.qmul.ac.uk/study-with-us

Read less
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population. Read more

The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, students will apply this training towards the development of new therapies.

The programme culminates with a research project that investigates the molecular and cellular basis of cancer biology or the development of new therapies under the supervision of active cancer research scientists.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/226/cancer-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Each one-hour lecture is supplemented by two hours of small-group seminars and workshops in which individual themes are explored in-depth. There are practical classes and mini-projects in which you design, produce and characterise a therapeutic protein with applications in therapy.

In additional to traditional scientific laboratory reports, experience will be gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)

BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)

BI837 - The Molecular and Cellular Basis of Cancer (15 credits)

BI838 - Genomic Stability and Cancer (15 credits)

BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)

BI857 - Cancer Research in Focus (15 credits)

BI845 - MSc Project (60 credits)

Assessment

The programme features a combination of examinations and practically focused continuous assessment, which gives you experience within a range of professional activities, eg, report writing, patent applications and public health information. The assessments have been designed to promote employability in a range of professional settings.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate-level education in the field of cancer, its biology and its treatment

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of a disease that affects a high proportion of the population

- promote engagement with biological research into cancer and inspire you to pursue a scientific career inside or outside of the laboratory

- develop subject specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School houses a dynamic research community with five major research themes:

  • industrial biotechnology
  • infection and drug resistance
  • cancer and age-related diseases
  • cellular architecture and dynamics
  • reproduction, evolution and genomics

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/how-to-apply/



Read less
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research. Read more
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research.

You will learn how research in this area has advanced the treatment and diagnoses of cancer, and gain knowledge of how new therapies are developed, evaluated and implemented.

You will gain a thorough knowledge of research methodologies and laboratory techniques, which you will fully utilise in the laboratory research project stage. The valuable research experience you will gain from working with leading cancer experts, will give you a solid foundation upon which a future career in scientific research can be built.

Compulsory Modules

• Biological Therapies
• Cancer Biology
• Cancer Pharmacology
• Drug Development
• Genomic Approaches to Human Diseases
• Molecular Diagnostic & Therapeutics
• Pathology of Cancer
• Research Lab Skills
• Research Methods

Elective Modules

• Cancer Prevention & Screening
• Paediatric & Adolescent Oncology

Core Module for MSc

• Lab project


Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

To find out more about BCI visit http://www.bci.qmul.ac.uk/study-with-us

Read less
Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies. Read more

Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies.

You will learn how to master experimental cancer through a combination of traditional teaching and hands-on learning, spending a year as a member of the Experimental Cancer Medicine Team at The Christie while also taking four structured taught units.

The taught units will see you learn the details of designing and delivering Phase 1 clinical studies, understanding the pre-clinical data required before a clinical programme can commence, and how to optimise early clinical studies to provide evidence for progressing a promising drug into Phase II/III clinical testing.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

Nursing and physician students will be expected to participate in patient care, including new and follow-on patient clinics, treatment and care-giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

You will be able to choose two aspects of your direct clinical trial research experience to write up for your two research projects in a dissertation format. This will give you the skills and knowledge required to critically report medical, scientific and clinically related sciences for peer review.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Special features

Extensive practical experience

You will spend most of your time gaining hands-on experience within The Christie's Experimental Cancer Medicine Team.

Additional course information

Meet the course team

Dr Natalie Cook is a Senior Clinical Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie. She completed a PhD at Cambridge, investigating translational therapeutics and biomarker assay design in pancreatic cancer.

Professor Hughes is Chair of Experimental Cancer Medicine at the University and Strategic Director of the Experimental Cancer Medicine team at The Christie. He is a member of the research strategy group for Manchester Cancer Research Centre. He serves on the Biomarker evaluation review panel for CRUK grant applications.

Professor Hughes was previously Global Vice-President for early clinical development at AstraZeneca, overseeing around 100 Phase 0/1/2 clinical studies. He was previously Global Vice-President for early phase clinical oncology, having been involved in over 200 early phase clinical studies.

Dr Matthew Krebs is a Clinical Senior Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie.

He has a PhD in circulating biomarkers and postdoctoral experience in single cell and ctDNA molecular profiling. He is Principal Investigator on a portfolio of phase 1 clinical trials and has research interests in clinical development of novel drugs for lung cancer and integration of biomarkers with experimental drug development.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be assessed through oral presentations, single best answer exams, written reports and dissertation.

For each research project, you will write a dissertation of 10,000 to 15,000 words. Examples of suitable practical projects include the following.

Research proposal

  • Compilation of a research proposal to research council/charity
  • Writing a protocol and trial costings for sponsor
  • Research and write a successful expression of interest selected by grant funder for full development

Publication-based/dissertation by publication

  • Writing a clinical study report
  • Authoring a peer-review journal review/original article

Service development/professional report/ report based dissertation

  • Public health report/outbreak report/health needs assessment/health impact assessment
  • Proposal for service development/organisational change
  • Audit/evaluate service delivery/policy
  • Implement recommended change from audit report

Adapted systematic review (qualitative data)

  • Compiling the platform of scientific evidence for a new drug indication from literature
  • Review of alternative research methodologies from literature

Full systematic review that includes data collection (quantitative data)

  • Referral patterns for Phase 1 patients

Qualitative or quantitative empirical research

  • Design, conduct, analyse and report an experiment

Qualitative secondary data analysis/analysis of existing quantitative data

  • Compilation, mining and analysis of existing clinical data sets

Quantitative secondary data analysis/analysis of existing qualitative data/theoretical study/narrative review

  • Policy analysis or discourse analysis/content analysis
  • A critical review of policy using framework analysis

Facilities

Teaching will take place within The Christie NHS Foundation Trust , Withington.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high-calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.



Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. Read more
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. The course will take the mechanistic understanding of cancer biology and apply it to the analysis of risk, prevention, diagnosis, prognosis and therapy. Building on a foundation of the understanding of basic cancer cell biology, translational coverage will consider design of treatment modalities, mechanisms of action of anti-cancer drugs, therapy resistance and biomarker discovery. The course will allow the students to gain expertise and knowledge in therapy, cancer chemoprevention, anti-cancer target discovery, clinical trials, imaging, cancer risk and epidemiology and biostatistics. A key component of the course is a five/six-month research project, which will give students an opportunity to study one of these areas in depth.

Read less
This programme aims to respond to a national and international need for clinicians, scientists and allied health professions who can apply a molecular approach to the investigation, diagnosis and management of clinical disease. Read more
This programme aims to respond to a national and international need for clinicians, scientists and allied health professions who can apply a molecular approach to the investigation, diagnosis and management of clinical disease.

We will provide you with theoretical and practical knowledge of modern molecular technologies as applied to human disease, with an emphasis on cancer, and train you in the application and interpretation of advanced molecular technologies.

Compulsory Modules

• Basic Pathology
• Cancer Biology
• Cancer Prevention & Screening
• Genomic Approaches to Human Diseases
• Molecular Diagnostic & Therapeutics
• Molecular Pathology of Solid Tumours
• Research Lab Skills
• Research Methods

Elective Modules

• Introduction to Bioinformatics
• Biological Therapies
• Molecular Targeted Therapies and Immunotherapy for Blood Cancers

Core Modules for MSc

• Lab project



Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

Find out more about the BCI at http://www.bci.qmul.ac.uk/study-with-us

Read less
The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas. Read more

The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas.

The Programme draws on the world-class research and teaching in experimental therapeutics at Oxford University and offers a unique opportunity to gain an understanding of the principles that underpin clinical research and to translate this into good clinical and research practice.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-experimental-therapeutics

The deadline for applications is Friday 15 June 2018

If your application is completed by this January deadline and you fulfil the eligibility criteria, you will be automatically considered for a graduate scholarship. For details see: http://www.ox.ac.uk/admissions/graduate/fees-and-funding/graduate-scholarships.

Programme details

The MSc in Experimental and Translational Therapeutics is a part-time course consisting of six modules and a research project and dissertation. The programme is normally completed in two to three years. Students are full members of the University of Oxford and are matriculated as members of an Oxford college.

The modules in this programme can also be taken as individual short courses. It is possible to transfer credit from up to three previously completed modules into the MSc programme, if the time elapsed between commencement of the accredited module(s) and registration for the MSc is not more than two years.

Programme modules:

- The Structure of Clinical Trials and Experimental Therapeutics

- Drug Development, Pharmacokinetics and Imaging

- Pharmacodynamics, Biomarkers and Personalised Therapy

- Adverse Drug Reactions, Drug Interactions, and Pharmacovigilance

- How to do Research on Therapeutic Interventions: Protocol Preparation

- Biological Therapeutics

Course aims

The aim of the MSc programme is to provide students with the necessary training and practical experience to enable them to understand the principles that underpin clinical research, and to enable them to translate that understanding into good clinical and research practice.

By the end of the MSc programme, students should understand the following core principles:

- Development, marketing and regulations of drugs

- Pharmaceutical factors that affect drug therapy

- Pharmacokinetics, pharmacogenetics and pharmacodynamics

- Adverse drug reactions, drug interactions, and pharmacovigilance

- Designing phase I, II and III clinical trials for a range of novel therapeutic interventions (and imaging agents).

- Application of statistics to medicine

- Laboratory assays used to support trial end-points

- Use of non-invasive imaging in drug development

- Application of analytical techniques

By the end of the programme, students should be equipped to:

- demonstrate a knowledge of the principles, methods and techniques for solving clinical research problems and translate this into good clinical and research practice

- apply skills gained in techniques and practical experience from across the medical and biological sciences

- develop skills in managing research-based work in experimental therapeutics

- carry out an extended research project involving a literature review, problem specification and analysis in experimental therapeutics and write a short dissertation

Guidance from the UK Royal College of Physician's Faculty of Pharmaceutical Medicine

The Faculty have confirmed that if enrolled for Pharmaceutical Medicine Specialty Training (PMST), trainees may be able to use knowledge provided by Experimental Therapeutics modules to cover aspects of a module of the PMST curriculum. Trainees are advised to discuss this with their Educational Supervisor.

Experimental Therapeutics modules may also be used to provide those pursuing the Faculty's Diploma in Pharmaceutical Medicine (DPM) with the necessary knowledge required to cover the Diploma syllabus. Applicants for the DPM exam are advised to read the DPM syllabus and rules and regulations.

Members of the Faculty of Pharmaceutical Medicine who are registered in the Faculty's CPD scheme can count participation in Experimental Therapeutics modules towards their CPD record. Non-members may wish to obtain further advice about CPD credit from their Royal College or Faculty.

Assessment methods

To complete the MSc, students need to:

Attend the six modules and complete an assessed written assignment for each module.

Complete a dissertation on a topic chosen in consultation with a supervisor and the Course Director.

Dissertation:

The dissertation is founded on a research project that builds on material studied in the taught modules. The dissertation should normally not exceed 15,000 words.

The project will normally be supervised by an academic supervisor from the University of Oxford, and an employer-based mentor.

The following are topics of dissertations completed by previous students on the course:

- The outcomes of non-surgical management of tubal pregnancy; a 6 month study of the South East London population

- Analysis of the predictive and prognostic factors of outcome in a cohort of patients prospectively treated with perioperative chemotherapy for adenocarcinoma of the stomach or of the gastroesophageal junction

- Evolution of mineral and bone disorder in early Chronic Kidney Disease (CKD): the role of FGF23 and vitamin D

- Survey of patients' knowledge and perception of the adverse drug reporting scheme (yellow cards) in primary care

- The predictive role of ERCC1 status in oxaliplatin based Neoadjuvant for metastatic colorectal cancer (CRC) to the liver

- Endothelial Pathophysiology in Dengue - Dextran studies during acute infection

- Literature review of the use of thalidomide in cancer

- An investigation into the phenotypical and functional characteristics of mesenchymal stem cells for clinical application

- Identification of genetic variants that cause capecitabine and bevacizumab toxicity

- Bridging the evidence gap in geriatric medicines via modelling and simulations

Teaching methods

The class-based modules will include a period of preparatory study, a week of intensive face-to-face lectures and tutorials, followed by a period for assignment work. Attendance at modules will be a requirement for study. Some non-classroom activities will be provided at laboratory facilities elsewhere in the University. The course will include taught material on research skills. A virtual learning environment (VLE) will provide between-module support.

The taught modules will include group work, discussions, guest lectures, and interaction and feedback with tutors and lecturers. Practical work aims to develop the students' knowledge and understanding of the subject.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/applying-to-oxford



Read less
Biomedical Sciences involves a multidisciplinary approach to the study of human health and disease. This range of biological and molecular sciences underpins the scientific basis of investigating the human body in health and disease, enabling diagnosis and therapeutic intervention. Read more

Biomedical Sciences involves a multidisciplinary approach to the study of human health and disease.

This range of biological and molecular sciences underpins the scientific basis of investigating the human body in health and disease, enabling diagnosis and therapeutic intervention.

There is a demand for graduates with advanced biomedical training able to apply their skills to research, education, regulatory approval, diagnostic services and the commercialisation of biomedical information.

This Medical Bioscience course is designed to allow students to specialise in one key area of human disease from: Cancer Biology, Medical Biochemistry, Medical Cell Biology or Medical Microbiology.

Overall, the course will equip graduating students for careers in the private (e.g. pharmaceutical, biotechnology or food industry, forensic/veterinary laboratories) or public (e.g. academia, National Health Service (NHS)) sectors.

What you will study

This programme will provide opportunities for students to experience modern biomedical techniques and to study alongside established research teams in their state-of-the-art research laboratories. Students will be expected to develop key skills that are required by scientists to investigate the pathophysiology of human disease and there is considerable student choice in which biomedical science disciplines are studied during the programme. Through these choices it will allow students to map a path through the programme that allows them either to cover a greater number of biomedical subject areas or to develop greater specialism within either cancer biology, medical biochemistry, medical microbiology or medical cell biology. A substantial research project will be undertaken in a contemporary area of the student’s chosen biomedical discipline.

Core Modules

Learning and assessment

A wide variety of teaching methods, appropriate to the learning outcomes of the individual modules, are employed throughout the programme, and are supported by formative assessment. The teaching methods progressively focus on studentcentred approaches to learning, thus you will be expected to take increasing responsibility for your own learning as you progress through the programme. In this way you are expected to develop the attributes needed for life-long learning and continued professional development.

Facilities

You will work in a research-focused environment in laboratories that have recently undergone extensive refurbishment and provide modern, state-of-the-art facilities.

Career prospects

Many students go on to study for PhDs either at Bradford or elsewhere.

Some graduates take up positions as teaching assistants in Biomedical Sciences in their home countries.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Study support

Our comprehensive support services will help you to achieve your full potential – both academically and personally. 

We provide all you need to make the very best of your time with us, and successfully progress through your studies and on into the world of graduate employment. 

Our support services include: 

  • Personal tutors 
  • Disability services 
  • Counselling services 
  • MyBradford student support centres 
  • The Students’ Union 
  • Chaplaincy and faith advisers 
  • An on-campus nursery 
  • Halls wardens 

We have well-stocked libraries and excellent IT facilities across campus. These facilities are open 24 hours a day during term time, meaning you’ll always find a place to get things done on campus. 

Our Academic Skills Advice Service will work with you to develop your academic, interpersonal and transferable skills. 

Research

Our research expertise covers a range of areas including microbiology, cancer research, skin sciences and cardiovascular disease research. You can find out more about two of our research areas below:



Read less
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare. Read more

This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare.

This is coupled with rigorous practical training in the design, production and characterisation of biomolecules using state-of-theart biotechnological and bioengineering analytical and molecular technologies.

You acquire practical, academic and applied skills in data analysis, systems and modelling approaches, and bioinformatics, together with transferable skills in scientific writing, presentation and public affairs. On successful completion of the programme, you will be able to integrate these skills to develop novel solutions to modern biotechnological issues from both academic and industrial perspectives.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/213/biotechnology-and-bioengineering

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Biotechnology and Bioengineering involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The programme is taught by staff from the Industrial Biotechnology Centre, an interdisciplinary research centre whose aim is to solve complex biological problems using an integrated approach to biotechnology and bioengineering. It is administered by the School of Biosciences who also contribute to the programme.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)

BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)

BI851 Advanced Molecular Processing for Biotechnologists and Bioengineers  (30 credits)

BI852 - Advanced Analytical and Emerging Technologies for Biotechnology and Bio (30 credits)

BI857 - Cancer Research in Focus (15 credits)

CB612 - New Enterprise Startup (15 credits)

CB613 - Enterprise (15 credits)

BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)

BI845 - Research project (60 credits)

Assessment

Assessment is by coursework and the research project.

Programme aims

You will gain the following transferable skills:

- the ability to plan and manage workloads

- self-discipline and initiative

- the development of reflective learning practices to make constructive use of your own assessment of performance and use that of colleagues, staff and others to enhance performance and progress

- communication: the ability to organise information clearly, create and respond to textual and visual sources (eg images, graphs, tables), present information orally, adapt your style for different audiences.

- enhanced understanding of group work dynamics and how to work as part of a group or independently.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School houses a dynamic research community with five major research themes:

  • industrial biotechnology
  • infection and drug resistance
  • cancer and age-related diseases
  • cellular architecture and dynamics
  • reproduction, evolution and genomics

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/how-to-apply/



Read less

Show 10 15 30 per page



Cookie Policy    X