• St Mary’s University, Twickenham Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Bath Spa University Featured Masters Courses
"biomedical" AND "communi…×
0 miles

Masters Degrees (Biomedical Communication)

  • "biomedical" AND "communication" ×
  • clear all
Showing 1 to 15 of 163
Order by 
The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. Read more

About the programme

The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. As a result of recent evolutions towards internationalization, we also offer a complete English master program in biomedical engineering. Both the Dutch and English masters are two-year programs and lead to a joint degree from UGent and VUB. Students study either in Ghent or in Brussels upon their own choice.

Tackle complex problems in biology, medicine and health sciences

Biomedical Engineering is a branch of Engineering where students acquire knowledge and skills which can be applied to tackle complex problems in biology, medicine and health sciences. The biomedical engineer herein strives towards a solution in balance with technological, economical and ethical constraints.

Learning outcomes

Graduated students master the fundamentals of current biomedical engineering and have a thorough knowledge of the basic concepts and an overview of the main applications in various fields of biomedical engineering (medical imaging, medical signal processing, medical physics, medical device technology, tissue engineering, biomaterials...). The graduated student has acquired the necessary research skills which allow him or her to independently analyze and solve a problem, and recognizes the importance of permanent learning in a continuously evolving domain.

Work in multidsciplinary teams:
The biomedical engineer is trained to work in multidisciplinary teams (influx of students with different bachelor backgrounds, lecturers from various faculties and scientific domains, multi-disciplinary projects) and has the required communication skills.

Awareness of ethical and socio-medical aspects:
The biomedical engineer is aware of the ethical and socio-economic aspects of biomedical engineering and healthcare, and of the social responsibility of a master in engineering.

Career possibilities:
In this master's course, knowledge and skills in all fields in biomedical engineering will be given, so when you finished the Master's programme, you can be employed as generalist, and you will also be specialised in one particular field of biomedical engineering.

As a student, you are able to select any field within biomedical engineering. You will be trained to work in interdisciplinary project teams, composed of engineers and medical specialists. To prepare further for interdisciplinary teams, students and scholars are treated as equals. To train for working in a European setting, you will get knowledge in the health care situation in several countries in Europe, and you will be trained in cultural differences between European countries.

In summary, the goal of this course is to acquire the ability to:
- work in interdisciplinary (engineering – medical) teams
- work in international and thus intercultural (European) teams
- communicate effectively with experts in (bio)medicine and technology
- perform fundamental research in Biomedical Engineering.
- design innovative devices to improve diagnostics and treatment of patients
- follow a post-Master’s training in Biomedical Engineering
- perform a PhD study
- train continuously (life-long-learning)

Curriculum

Available on http://www.vub.ac.be/en/study/biomedical-engineering/programme

The programme consists of 120 credits, evenly distributed over 4 semesters of each 12 weeks. The specific part of the master involves six basic courses for a total of 30 credits (Quantitative cell biology, Modelling of Physiological Systems, From Genome to Organism, Biomechanics, Bio-electronics and Biomaterials) and 42 credits dedicated to specialist courses in biomedical engineering (Biomedical Imaging, Neuromodulation and Imaging, Medical Physics, Medical Equipment, Biomedical Product Development, Artificial Organs: Technology and Design, Health Care Organization and Informatics, Human and Environment, Safety and Regulations* and Seminars: Innovations in Biomedical Engineering). The programme is further complemented with a master thesis (24 credits) and elective courses for a total of 24 credits.

Internships and Project Work

Students are encouraged to do an internship with a company or hospital in Belgium or abroad during the summer holiday period. Internships can be valorised in the curriculum, with an internship of 4 weeks accounting for an elective course of 3 credits, and an internship of minimally 6 weeks accounting for 6 credits. A maximum of 6 credits is allowed. In addition, students can opt for the elective 3 credit course “Multidisciplinary Biomedical Project” during which they can work on an assignment or a project.

Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. Read more

Overview

The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. It is a one-year full-time programme designed for both home and international students, with a background in life sciences, who wish to study at postgraduate level for the MSc in Biomedical Blood Science. The programme is open to science graduates who do not meet the academic criteria for a direct entry into the MSc. The MSc in Biomedical Blood Science is accredited by the Institute of Biomedical Science (IBMS). The IBMS is the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver the best possible service for patient care and safety.

See the website https://www.keele.ac.uk/pgtcourses/biomedicalsciencegraduatediploma/

Course Aims

The overall aim is to provide the students with the academic background necessary for the masters programme and to enable them to develop and practise the subject specific academic skills required for the intensive pace of study at masters level. The course also aims to allow international students to benefit from English language support that will help them to develop their academic English language skills.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request; but, to summarise, the overarching course aims are as follows:

- To provide students with core knowledge, understanding and skills relevant to Biomedical Science

- To produce skilled and motivated graduates who are suitably prepared for the MSc in Biomedical Science and for further study.

- To cultivate interest in the biosciences, particularly at the cellular and molecular level, within a caring and intellectually stimulating environment.

- To get an accurate insight into the role of Biomedical Scientists in the diagnosis, treatment and monitoring of disease.

- To develop an understanding of the analytical, clinical and diagnostic aspects of Cellular Pathology, Clinical Biochemistry, Medical Microbiology, Blood Transfusion, Clinical Immunology and Haematology pathology laboratories.

- To promote the development of a range of key skills, for use in all areas where numeracy and an objective, scientific approach to problem-solving are valued.

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment.

- To promote the development of critical thinking, autonomous learning, independent research and communication skills to help prepare the students for the MSc in Biomedical Blood Science and for a lifetime of continued professional development.

Course Content

All the modules in this one year programme are compulsory. The programme consists of a total of 90 credits made up of one 30 credit module and four 15 credit modules. An additional English module (English for Academic Purposes) will be offered for non-native English speakers if required. This module will not form part of the overall award, but successful completion is required for progression to the Masters programme.

Modules:
- Biomedical Science and Pathology (30 credits):
The module provides the student with the knowledge and understanding of the pathobiology of human disease associated with Cellular Pathology, Clinical Immunology, Haematology, Clinical Biochemistry, Medical Microbiology and Clinical Virology. It also examines the analytical and clinical functions of three more of the major departments of a modern hospital pathology laboratory, including Haematology, Clinical Pathology, Clinical Immunology, Blood Transfusion, Clinical Biochemistry and Medical Microbiology. In addition, the module will give an accurate insight into the role of Biomedical Scientists and how they assist clinicians in the diagnosis, treatment and monitoring of disease.

- Biochemistry Research Project (non-experimental) (15 credits):
This module aims to introduce students to some of the key non-experimental research skills that are routinely used by biochemists and biomedical scientists, such as in depth literature searching, analysis of experimental data and the use of a computer as tool for both research (bioinformatics) and dissemination of information (web page construction). The student will research the literature on a specific topic, using library and web based resources and will produce a written review. In addition, the student will either process and interpret some raw experimental data provided to them.

- Advances in Medicine (15 credits):
This module will describe and promote the understanding of advances in medicine that have impacted on diagnosis, treatment, prevention of a range of diseases. It will highlight fast emerging areas of research which are striving to improve diagnosis including nanotechnology and new biochemical tests in the fields of heart disease, cancer and fertility investigations which will potentially improve patient care.

- Clinical Pathology (15 credits):
The majority of staff that contribute to the module are employees of the University Hospital of North Staffordshire (UHNS). Students will benefit from lectures and expertise in Clinical Diagnostic Pathology, Pharmacology, Biochemistry, Genetics and Inflammatory Diseases. Students will gain an insight into how patients are managed, from their very first presentation at the UHNS, from the perspective of diagnosis and treatment. The course will cover both standardised testing options and the development of new diagnostic procedures with a particular emphasis on genetic and epigenetic aspects of disease. Students will also gain an appreciation of the cost benefit of particular routes for diagnosis and treatment and the importance of identifying false positive and false negative results. Finally, the students will have the opportunity to perform their own extensive literature review of a disease-related topic that is not covered by the lectures on the course.

- Case Studies in Biomedical Science (15 credits):
This module aims to give you an understanding of the UK health trends and the factors that affect these trends. Through clinical case studies and small group tutorials, you will explore why the UK has some of the highest incidences of certain diseases and conditions in Europe and consider what factors contribute to making them some of the most common and/or rising health problems faced by this country. This will include understanding the relevant socioeconomic factors as well as understanding the bioscience of the disease process and its diagnosis and management. You will also focus on what is being done by Government and the NHS to tackle these major health problems.

- English for Academic Purposes (EAP ):
For non-native English speakers if required

Teaching & Assessment

In addition to the lecture courses and tutorials, problem based learning (PBL) using clinical scenarios is used for at least one module. Students will also be given the opportunity to undertake an independent non-experimental research project, supervised and supported by a member of staff. Web-based learning using the University’s virtual learning environment (KLE) is also used to give students easy access to a wide range of resources and research tools, and as a platform for online discussions and quizzes. Students will be given many opportunities to become familiar with word processing, spreadsheets and graphics software as well as computer-based routes to access scientific literature.

All modules are assessed within the semester in which they are taught. Most contain elements of both ‘in-course’ assessment (in the form of laboratory reports, essays, posters) and formal examination, although some are examined by ‘in-course’ assessment alone.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
What causes specific illnesses? Of what influence are certain risk factors in cardiovascualar disease? What does the body do to fight viral infections?… Read more
What causes specific illnesses? Of what influence are certain risk factors in cardiovascualar disease? What does the body do to fight viral infections? What molecular or physiological mechanisms are involved in the development or retreat of cancer? What are the methods for diagnosing and analysing genetic defects, and how can these methods be improved? Is stem cell therapy our future? How is biomedical knowledge best translated to actual treatment of patients?

These are just some questions pertinent to Biomedical Sciences. In order to answer them, the Biomedical Sciences programme will help you gain a thorough understanding of human health and disease.

Key benefits

- Research conducted at LUMC scores very high in European and world rankings;

- Choice of specialisations in Research, Management, Science Communication and Education. Students who wish to look beyond hard core research are thus taught to bridge science to business, or to society in general;

- The flexibility of our two-year programme allows you to follow your individual interests in the order that suits you most;

Visit the website: http://en.mastersinleiden.nl/programmes/biomedical-sciences/en/introduction

Course detail

The programme is offered by Leiden University Medical Center (LUMC); a modern institution which combines research, education and patient care with a high quality profile and a strong scientific orientation.

Format

Besides the common programme, which teaches you the basic knowledge you need about research in Biomedical Sciences, your programme is further defined by one of the specialisations:

- Biomedical Sciences Communication
- Biomedical Sciences Education
- Biomedical Sciences Management
- Biomedical Sciences Research

Reasons to choose Biomedical Sciences in Leiden:

- You will enjoy small-group teaching, and high-quality courses dealing with the frontiers of modern science;

- Collaboration with the Karolinska Institutet in Stockholm (Sweden) and with Ruprecht Karls Universität in Heidelberg (Germany) enables you to include courses and research placements taken at these institutions;

- In addition, participation in the Joint Programme in Translational and Experimental Medicine of the EUROLIFE consortium (a collaboration in the life sciences between six distinguished universities, i.e. Leiden, Stockholm, Dublin, Edinburgh, Göttingen, and Barcelona) gives you the same advantages of being trained in an international setting;

- Leiden University and the LUMC provide good financial support for the international exchange of students;

- The modern facilities of the LUMC are located in three buildings that are connected and form a unilocation. This brings our core activities – research, education and patient care – even more closely together.

Careers

The MSc in Biomedical Sciences aims to provide you with a theoretical background and with general academic competences in multidisciplinary research in Biomedical Sciences. You will be trained to become an independent researcher, with a further career in science. Either with a view to obtaining a PhD degree, or to fill a position in an industrial or institutional research environment.

All students with a Master of Science degree in Biomedical Sciences are admissible to a PhD programme.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less
Biomedical scientists want to minimise the impact of diseases for humans and humankind. Smart, global visionaries are needed who want to solve health care issues in the lab and in the field. Read more
Biomedical scientists want to minimise the impact of diseases for humans and humankind. Smart, global visionaries are needed who want to solve health care issues in the lab and in the field.

Radboud University aims to educate the best biomedical scientists with not just a thorough understanding of the molecular, individual and population aspects of human health and disease, but also with unique areas of expertise. To do this we have constructed a Master’s programme in Biomedical Sciences that gives students the opportunity to construct their own programme based on personal academic and professional interests. Students choose one of three specialisations belonging to one of the research institutes and combine that with one of three career profiles. The research institute will be your learning environment, and a mentor of the institute will help you design your programme.

Biomedical Sciences specialisations and research institutes

For Molecular and cellular research, chose Radboud Institute for Molecular Life Sciences (RIMLS)
For Intervention, clinical and population research, chose Radboud Institute for Health Sciences (RIHS)
For Medical neuroscience, chose Donders Centre for Neuroscience
The programme provides students with a solid base in research methodology, statistics and biostatistics, laboratory research and communication skills. Leading scientists in fields ranging from metabolism, membrane transport, neuromuscular disease and inflammation to screening efficacy, clinical interventions and evidence-based medicine are involved in the teaching programme as lecturers and tutors.

A majority of our graduates become researchers in government departments, research organisations, universities and medical or pharmaceutical companies. Graduates also opt for careers as communication advisors or scientific consultant/advisor with a background in biomedical science, an expertise that is much in demand.

Why study Biomedical Sciences at Radboud University?

Possibility of specialising in any aspect of biomedical sciences from molecule (2 specialisations) to man (1 specialisation) to population (3 specialisations).
You can design your own programme so you can make it truly fit your academic and professional interests. A tutor will help you set up the best possible programme.
The programme has a strong career-driven focus with embedding in a research institute as a starting professional, room for long internships and the possibility to choose between a career profile in research, communication or consultancy.
Health care issues and biomedical research are placed in context. In the programme links are made between research and patient care (from bench to bedside), and vice versa.
Biomedical Sciences at Radboud University has a great reputation and graduates are highly valued by research institutes and health-care organisations all over the world.
Each of the three research institutes has its own mentors that are responsible for maintaining the quality of the programme as well as for coaching students in their specialist area. This system provides intensive career consultancy – an extremely valuable feature which is often lacking in other educational programmes in this field.

Change perspective

Thanks to the flexibility of designing a personal programme, graduates of the Radboud University’s Master’s programme in Biomedical Sciences will have developed a truly unique expertise in the field of biomedical science. You can broaden your view from molecule to man to population, or go in-depth into just one of these areas. Either way, you will have gained a new and refreshing perspective. And the intensive internships will guarantee you are prepared to enter the work force so that you can quickly start to play a vital role in improving human health.

Read less
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Read more
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. The Postgraduate Certificate in Practical Science Communication, linked to the world-class MSc Science Communication course, and also designed by the Science Communication Unit, is aimed at students seeking an additional qualification. It is an opportunity to benefit from the Unit's expertise, resources and contacts.

As well as drawing on the academic and practical experience of staff within the Science Communication Unit, the course gives you an opportunity to meet a range of visiting lecturers and benefit from their practical experience. This also provides an excellent networking opportunity for students interested in developing contacts among science communication practitioners.

Course detail

The course focuses on practical skills development, and has excellent links with the sectors and industries it informs, with visiting specialists helping you to understand what they seek in future employees.

Depending on the options you take, you will develop skills in science writing, cutting-edge science communication techniques, and the abilities you'll need to develop and run science communication projects. This includes devising and managing projects, evaluations and funding.

Modules

You will choose two from these three modules (30 credits each):

• Science on Air and on Screen - Build your radio, TV and digital skills by critically exploring the role of broadcast media in the communication of science. You'll also make an 'as live' radio magazine programme about science, and a short film.

• Science in Public Spaces - Develop your own science communication initiative in this hands-on module from developing a creative concept, to seeking funding, and managing and evaluating a project. You'll explore a range of innovative approaches from sci-art, to museums, festivals to theatre.

• Writing Science - Develop journalistic and other writing styles, including writing for news media, public relations and educational purposes, with a view to developing a portfolio, as well as working on a magazine project.

Format

The course comprises short, intensive teaching blocks of three days (Thursday to Saturday) and you'll most likely need to attend three teaching sessions for each 30-credit module. Group sessions are supplemented by directed and independent study, email discussions, and tutorials.

Assessment

We assess modules in a variety of ways, to reflect the practical skills you'll develop. For example, through portfolios, reports and oral presentations - all of which you can use to attract prospective employers.

Careers / Further study

Practical science communication skills are in high demand in a wide range of sectors and industries, such as journalism, public relations, science centres and museums, science education, professional consultancy and Research Council/learned institutions.

Throughout the course, you are encouraged to develop the professional skills that will help you secure employment or research positions in science communication, or to combine it with your existing career.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
This general route focuses on the biological aspects of disease processes. Graduates will gain up-to-date, relevant and applied experience of biomedical science, develop broad knowledge of the subject base and acquire skills for practice at Higher Specialist Level. Read more
This general route focuses on the biological aspects of disease processes. Graduates will gain up-to-date, relevant and applied experience of biomedical science, develop broad knowledge of the subject base and acquire skills for practice at Higher Specialist Level. We collaborate extensively with hospitals in the Greater Manchester area and can offer opportunities for research projects in clinically relevant areas. The completion of a research project enables the graduate to understand the process and communication of scientific enquiry.

We collaborate extensively with hospitals in the Greater Manchester area and can offer opportunities for research projects in clinically relevant areas.

This degree is accrredited by the Institute of Biomedical Science.

Non means-tested loans of up to a maximum of £10,000 will be available to postgraduate master’s students.

Features and benefits of the course

-Our postgraduate Biomedical Science, Medical Microbiology, Cellular Pathology, Clinical Biochemistry and Haematology & Transfusion degree programmes are accredited by the Institute of Biomedical Science.
-Our biomedical research group is amongst the top 12 in the UK. In the 2014 national Research Excellence Framework, biomedical science research was rated highly with some of our research rated as world leading.
-Our Centre for Biomedicine represents one of the highest concentrations of health research excellence in the UK. We have an international reputation for research into the characteristics, limitations and adaptability of the human motor system in health and disease through an integrative approach that ranges from molecular biology to whole body studies of human movement.
-The School offers excellent facilities including specialist laboratories for blood biochemistry, biomechanics, motor control, exercise performance, cell & molecular biology and tissue culture.
-We collaborate extensively with hospitals in Greater Manchester and can offer opportunities for research projects in clinically relevant areas.
-The programme includes opportunities for flexible learning supported by tutorials.
-You will acquire an in-depth knowledge of a biomedical science specialism together with a broad knowledge of the subject base.
-We have strong links with the Institute of Biomedical Science, the Health and Care Professions Council, the NHS trusts and hospitals in Manchester and the North West region, which keep our biomedical science curriculum up-to-date.

About the Course

All of our postgraduate degree programmes in Healthcare Science are built on the core values of the NHS to develop professional, dedicated and compassionate healthcare science professionals and they are underpinned by the latest research within the Faculty of Science and Engineering.

We collaborate extensively with hospitals in the Greater Manchester area and can offer opportunities for research projects in clinically relevant areas. All of our postgraduate degree programmes are accredited by the Institute of Biomedical Science.

You will be assessed by critical reviews, presentations, self-managed study, extended essays and examinations. Evidence based practice and a major research project complete the MSc.

Assessment details

You will be assessed by critical reviews, presentations, self-managed study, extended essays and examinations. Evidence based practice and a major research project complete the MSc.

Read less
Biomedical science is integral to human and veterinary practice. It looks at how the body works and investigates ways to treat diseases through advanced tools and strategies. Read more

What is biomedical science?

Biomedical science is integral to human and veterinary practice. It looks at how the body works and investigates ways to treat diseases through advanced tools and strategies.

Who is this course for?

This course is for graduates of science, biomedical science, veterinary science or related disciplines who want to specialise in microbiology and immunology. This is a flexible course allowing you to tailor your studies to suit your professional needs and interests.

Course learning outcomes

Biomedical science examines how the body works and investigates ways to treat diseases using advanced tools and strategies. It covers the fields of biochemistry, microbiology, physiology and anatomy with the aim of improving health outcomes for humans and animals tropical, rural and remote and indigenous communities.
Graduates of the Graduate Diploma of Biomedical Sciences will be able to:
*Apply and adapt advanced and integrated knowledge, including an understanding of recent developments, in the area of biomedicine and related professional competencies, behaviours and ethical frameworks
*Apply an integrated understanding of biomedical science and its application to improve human and animal health in rural, remote and indigenous community settings
*Analyse and synthesise complex information, problems, concepts and theories in new situations or contexts with creativity and independence
*Demonstrate a high level of personal autonomy and accountability for their own future professional development through reflection on current skills, knowledge and attitudes in the biomedical science arena
*Interpret and justify scientific propositions, methodologies and conclusions to specialist and non-specialist audiences through high level written and oral communication and numeracy skills.

Award title

GRADUATE DIPLOMA OF BIOMEDICAL SCIENCES (GDipBiomedSc)

Course articulation

Students who complete this course are eligible for entry to the Master of Biomedical Sciences, and may be granted advanced standing for relevant subjects completed under this course

Post admission requirements

Hepatitis B immunisation:
Students must provide evidence of being immune to hepatitis B within the first teaching period of their studies. A blood-borne viral disease may result in a student’s inability to obtain a placement in a Queensland Health facility and consequently may result in their inability to complete the requirements of the course as accredited by the relevant professional accrediting body. If a student has not complied with the above requirement by the last day of the first teaching period of their studies, their enrolment will be terminated immediately.

Entry requirements (Additional)

English band level 2 - the minimum English Language test scores you need are:
*Academic IELTS – 6.5 (no component lower than 6.0), OR
*TOEFL – 570 (plus minimum Test of Written English score of 4.5), OR
*TOEFL (internet based) – 90 (minimum writing score of 21), OR
*Pearson (PTE Academic) - 64

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English Language Proficiency Requirements

Applicants of non-english speaking backgrounds must meet the English language proficiency requirements of Band 2 – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University has:
*Purpose-built emergency veterinary clinic including operating theatres and radiology facilities
*anatomy and biomedical science teaching and research laboratories, including housing for small, large and aquatic animals
*veterinary teaching facilities in Atherton, Malanda, Townsville and Charters Towers.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
This course aims to provide a balance between theoretical, practical and biomedical skills, and develop your levels of critical enquiry so you can pursue the research projects and communication of ideas and concepts. Read more
This course aims to provide a balance between theoretical, practical and biomedical skills, and develop your levels of critical enquiry so you can pursue the research projects and communication of ideas and concepts. It encourages creative approaches to contemporary research in biomedical science and communication through creative thinking, research methods, computer systems, case studies and practical sessions. You will evaluate how these various approaches can assist you in finding future employment and formulating your own experiments designs and research project. You will develop an enhanced understanding and sophisticated appreciation of biomedical science.

Key benefits:

• Research-led teaching that develops high priority technical and employability skills, through a series of lectures, tutorials and journal clubs
• Projects (dissertations) in active research groups
• Opportunities for development through a seminar series and guest lectures presented by clinicians and international speakers

Visit the website: http://www.salford.ac.uk/pgt-courses/biomedical-science

Suitable for

This course is for UK and international graduates from a wide range of relevant disciplines who wish to gain knowledge in the field of biomedicine and acquire the career-enhancing skills in the rapidly expanding fields of biomedical research, teaching, and laboratory management.

Programme details

This course has both full-time and part-time routes, comprising of three 14-week semesters or five 14-week semesters, which you can take within one or two years respectively.

Format

Teaching sessions include lectures, laboratory practicals, tutorials, guest lectures and guided reading. Lectures provide a thorough theoretical basis for the course subjects and are delivered by internationally recognised, research active staff. A variety of other teaching approaches including tutorials, case studies, and workshops reinforce theoretical knowledge and facilitate the development of individual and group based research and transferable skills.

Practical sessions demonstrate techniques and methods used in biomedicine, and provide an opportunity for you to learn complex experimental approaches and operate laboratory equipment. Guided reading will recommend key articles and other materials to help you learn. Guest expert seminars from clinicians and academics will provide insight into modern biomedical research.

The research project will enable you to start your own research and be part of active, internationally recognised research teams, where you will practice the application of relevant biomedical techniques and skills valuable for your future employment in biomedical sector.

Module titles

• Cellular Basis of Disease
• Infection and Immunity
• Disorders of the Blood and Circulatory System
• Research and Analytical Skills
• Research Project

Assessment

Assessment is by a combination of written examinations, oral presentations, coursework, laboratory reports and submission of the dissertation.

Career potential

Biomedical Science graduates are actively employed in various sectors as research assistants or research laboratory technicians in clinical and research laboratories, pharmaceuticals, drug design as well as lecturers in the field of education in schools and universities or continued their education by pursuing PhD studies.

We aim to produce graduates who meet the needs of their future employers: highly skilled practitioners and excellent communicators who are seeking to push the boundaries in the rapidly growing Biomedicine sector.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Read more
The Science Communication Unit at UWE Bristol is renowned for its innovative and diverse range of national and international activities designed to engage the public with science. Our MSc Science Communication course is an excellent opportunity to benefit from the Unit's expertise, resources and contacts.

As well as drawing on the academic and practical experience of staff within the Science Communication Unit, our MSc programme gives you an opportunity to meet a range of visiting lecturers and benefit from their practical experience. This also provides an excellent networking opportunity for students interested in developing contacts among science communication practitioners.

Course detail

The course combines a solid theoretical background with practical skill development, and has excellent links with the sectors and industries it informs. Visiting specialists also help you understand what they are looking for in future employees.

Introductory modules provide a broad theoretical foundation in issues such as the rationale for public engagement with science, understanding the audience, the role of the media in society, communication theory and models of informal learning. You'll then have the opportunity to specialise by choosing from modules that cover practical skills related to taking science directly to the public, as well as new approaches to science communication such as digital media. This allows you to hone your practical skills and develop a portfolio that shows your expertise as a science communicator. In the final year, you may choose to further develop your portfolio, for example by mounting a practical science communication project, or take on a more theoretical or research-based project, perhaps with an external science communication organisation.

Modules

You will take the following three modules:
• Science and Society
• Science, the Public and Media

You then choose two from these three modules:
• Science on Air and on Screen
• Science in Public Spaces
• Writing Science

Format

Unlike most Master's courses in this area, the MSc Science Communication addresses the needs of working students. There are short, intensive teaching blocks of three to five days, and you can expect to attend three teaching sessions for each 30 credit module.

If you study this programme part-time, you'll take two 30 credit modules each for two academic years. It's possible to complete the part-time course in two years by finishing your project during the summer of the second year, or you may prefer to take a third year. Full-time students take four taught modules and complete the project in 14 months.

Group sessions are supplemented by directed and independent study, email discussions, tutorials and mentoring.

Assessment

The modules are assessed in a variety of ways, to reflect the theoretical concepts, knowledge and practical skills you'll develop. For example, through portfolios, reports and oral presentations all of which you can use to attract prospective employers. The ability to evaluate your own work and others' is critical to success in the workplace, and several assessments are designed to help you acquire these skills.

Careers / Further study

Science communication skills are in high demand in a wide range of sectors and industries, such as journalism, public relations, science centres and museums, science education, professional consultancy and Research Council/learned institutions.

Throughout the course, we'll encourage you to develop the professional skills to help you secure employment or research positions.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science.

You gain advanced knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop practical skills in our well-equipped teaching laboratories.

As well as studying the fundamentals of pathology, you can choose one specialist subject from:
Cellular pathology
-Microbiology and immunology
-Blood sciences.

Your work focuses on the in vitro diagnosis of disease. You develop the professional skills needed to further your career. These skills include: research methods and statistics; problem solving; the role of professional bodies and accreditation; regulation and communication.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects and our tutors are experts in these techniques.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where full-time students are assigned to a tutor who is an active research in the biomedical research centre. Part-time students carry out their research project within the workplace under the guidance of a workplace and university supervisor.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into: cancer; musculoskeletal diseases; human reproduction; neurological disease; hospital acquired infection; immunological basis of disease.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biomedical-sciences

Professional recognition

This course is accredited by the Institute of Biomedical Science (IBMS) who commended us on:
-The excellent scientific content of our courses
-The supportive nature of the staff which provides a positive student experience
-The laboratory and teaching facilities, which provide an excellent learning environment

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The certificate and diploma are shorter January and September intakes.

Course structure
The masters (MSc) award is achieved by successfully completing 180 credits.

Core modules
-Biomedical laboratory techniques (15 credits)
-Evidence based laboratory medicine (15 credits)
-Cell biology (15 credits)
-Molecular diagnostics (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Optional modules
45 credits from
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Human genomics (subject to approval) (15 credits)
-Blood sciences (30 credits)
-Cellular pathology (30 credits)
-Microbiology and immunology (subject to approval) (30 credits)

The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Assessment
Assessment methods include written examinations and coursework such as: problem solving exercises; case studies; reports from practical work; presentations. Research project assessment includes a written report, presentation and portfolio.

Read less
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. Read more
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. This MSc, taught by leading scientists and clinicians, will equip imaging students from all science backgrounds with detailed knowledge of the advanced imaging techniques which provide new insights into cellular, molecular and functional processes, preparing them for a PhD or a career in industry.

Degree information

Imaging is essential for diagnosis of disease and development of novel treatments. This programme focuses on translational medical imaging, and the development and use of preclinical imaging technologies to detect, monitor and prevent illnesses such as cancer, heart diseases and neurodegeneration. Students will undertake an independent research-based project in UCL’s world-class laboratories and develop their communication skills in biomedical science.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits), and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time) is offered. A Postgraduate Certificate (60 credits, full-time) is offered. There are no optional modules for this programme.

Core modules
-Advanced Biomedical Imaging Techniques I & II
-Practical Preclinical Research (including Home Office Personal Licence)
-Translational Biomedical Imaging of Disease and Therapy I & II
-Science Communication for Biomedicine
-Statistical Methods in Research
-Ethics and Regulation of Research

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of 7,000 words or a manuscript suitable for submission to a peer-reviewed journal.

Teaching and learning
The programme is delivered through a combination of seminars, lectures, laboratory work, site visits and practicals. Assessment is through examination, presentations, essays, practical reports and the dissertation.

Careers

UCL is involved in the dynamic and successful London-based entrepreneurial activity in biomedical imaging. It has a strong track record in placing postgraduates in key positions within industry (e.g. Siemens, Philips, GE Healthcare, GSK, SMEs and start-ups) and at other leading academic institutions with preclinical imaging facilities, including the Universities of Oxford and Cambridge in the UK, and MIT and NIH in the US. This MSc will provide ideal training for students who wish to apply to UCL’s EPSRC Centre for Doctoral Training in Medical Imaging.

Employability
This programme belongs to the School of Life and Medical Sciences; one of the largest and most prestigious aggregations of academics in its field, with a global reputation for teaching informed by cutting-edge research. Our close links with major hospitals and industry allow students to perform significant research projects.

Students will foster an awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications using imaging. Our learning methods will prepare students for careers in academic or industrial science, as well as providing transferable skills in presentation, writing, organisation and team work.

The first cohort of students on the Advanced Biomedical Imaging MSc are due to graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

UCL offers a world-class environment in medical imaging and hosts several medical and biomedical imaging centres of excellence.

The UCL Centre for Advanced Biomedical Imaging is one of the world’s most advanced imaging centres, with 11 state-of-the-art imaging technologies, and is dedicated to developing imaging techniques of the future. Biomedical imaging is an interdisciplinary field drawing together biology, medicine, physics, engineering, and art.

The MSc is linked to University College London Hospitals (UCLH), including Great Ormond Street Hospital, the UCH Macmillan Cancer Centre and National Hospital for Neurology and Neurosurgery. This will provide an ideal training for further research and applications for a PhD at UCL Centre for Doctoral Training in Medical Imaging.

Read less
This internationally recognised course will prepare you for a fulfilling career as a biomedical scientist in the rapidly developing bioscience and healthcare sectors. Read more
This internationally recognised course will prepare you for a fulfilling career as a biomedical scientist in the rapidly developing bioscience and healthcare sectors.

This course is designed to enable you pursue a career as a professional biomedical scientist in a variety of research, development and leadership roles.

You'll be supported by an internationally recognised and highly active biomedicine science group with varied research interests and links with healthcare industries, research institutes and the NHS.

See the website http://www.napier.ac.uk/en/Courses/MSc-Biomedical-Science-Postgraduate-FullTime

What you'll learn

This course provides detailed knowledge of key concepts in immunology, toxicology, pharmacology and disease biology and how these disciplines are applied in biomedical science.

You’ll gain critical understanding of specialist research areas and unique insights into the challenges currently facing biomedical science. You’ll also acquire an in-depth appreciation of research and development practices in the healthcare industries through guest lectures and site visits to specialised laboratories. These experiences will allow you to explore and critique issues of relevance to professional working practice, enhancing your skills in evidence based decision making.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices. In your final trimester you’ll undertake an independent project within a vibrant biomedical research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time course over one year and is split up into three trimesters. You can choose to start in either January or September There may also be some opportunities to study abroad.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Advanced immunology
• Biology of disease and therapeutics
• Molecular pharmacology and toxicology
• Research skills
• Molecular pathogenesis of microbial Infection
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

You’ll be prepared for employment in the rapidly developing bioscience and healthcare sectors. This may be in hospitals, NHS, local government or health and safety divisions in various roles including research, R&D support management and consultancy.

Opportunities also exist for qualified biomedical scientists in a range of industrial settings from smaller medical biotechnology enterprises to global pharmaceutical companies.

If you currently work in the biomedical sector, this programme will enhance your prospects for career progression. Graduates will also be qualified to continue their studies at PhD level and follow an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Biomedical science is integral to human and veterinary practice. It looks at how the body works and investigates ways to treat diseases through advanced tools and strategies. Read more

What is biomedical science?

Biomedical science is integral to human and veterinary practice. It looks at how the body works and investigates ways to treat diseases through advanced tools and strategies.
Students can do a general course or choose from three majors:
*Aquatic Microbiology
*Clinical Microbiology
*Physiology and Pharmacology.
These majors offer advanced level training in aquatic pathobiology, and clinical microbiology, and physiology and pharmacology, relevant to the domains of human and veterinary endeavour.

Course learning outcomes

Biomedical Science examines how the body works and investigates ways to treat diseases using advanced tools and strategies. It covers the fields of biochemistry, microbiology, physiology and anatomy with the aim of improving health outcomes for humans and animals in tropical, rural and remote and indigenous communities.
Graduates of the Masters of Biomedical Sciences will be able to:
*Apply and adapt advanced and integrated knowledge, including an understanding of recent developments, in the area of biomedicine and related professional competencies, behaviours and ethical frameworks
*Apply an integrated understanding of biomedical science and its application to improve human and animal health in rural, remote and indigenous community settings
*Analyse and synthesise complex information, problems, concepts and theories in new situations or contexts with creativity and independence
*Demonstrate a high level of personal autonomy and accountability for their own future professional development through reflection on current skills, knowledge and attitudes in the biomedical science arena
*Interpret and justify scientific propositions, methodologies and conclusions to specialist and non-specialist audiences through high level written and oral communication and numeracy skills
*Plan and execute or critically evaluate a substantial body of novel research with a large degree of independence.

Award title

MASTER OF BIOMEDICAL SCIENCES (MBiomedSc)

Post admission requirements

Hepatitis B immunisation:
Students must provide evidence of being immune to hepatitis B within the first teaching period of their studies. A blood-borne viral disease may result in a student’s inability to obtain a placement in a Queensland Health facility and consequently may result in their inability to complete the requirements of the course as accredited by the relevant professional accrediting body. If a student has not complied with the above requirement by the last day of the first teaching period of their studies, their enrolment will be terminated immediately.

Entry requirements (Additional)

English band level 2 - the minimum English Language test scores you need are:
*Academic IELTS – 6.5 (no component lower than 6.0), OR
*TOEFL – 570 (plus minimum Test of Written English score of 4.5), OR
*TOEFL (internet based) – 90 (minimum writing score of 21), OR
*Pearson (PTE Academic) - 64

If you meet the academic requirements for a course, but not the minimum English requirements, you will be given the opportunity to take an English program to improve your skills in addition to an offer to study a degree at JCU. The JCU degree offer will be conditional upon the student gaining a certain grade in their English program. This combination of courses is called a packaged offer.
JCU’s English language provider is Union Institute of Languages (UIL). UIL have teaching centres on both the Townsville and Cairns campuses.

Minimum English Language Proficiency Requirements

Applicants of non-English speaking backgrounds must meet the English language proficiency requirements of Band 2 – Schedule II of the JCU Admissions Policy.

Why JCU?

James Cook University is dedicated to quality education and research. We have:
*Purpose-built emergency veterinary clinic including operating theatres and radiology facilities
*anatomy and biomedical science teaching and research laboratories, including housing for small, large and aquatic animals
*veterinary teaching facilities in Atherton, Malanda, Townsville and Charters Towers.

Application deadlines

*1st February for commencement in semester one (February)
*1st July for commencement in semester two (mid-year/July)

Read less
This one-year, full time programme provides an excellent grounding for PhD or other academic study in the Biomedical Sciences. You will learn valuable research skills, biomedical laboratory techniques and a wide range of other transferable skills that will give you an advantage for the rest of your career. Read more

Research profile

This one-year, full time programme provides an excellent grounding for PhD or other academic study in the Biomedical Sciences. You will learn valuable research skills, biomedical laboratory techniques and a wide range of other transferable skills that will give you an advantage for the rest of your career. You can also choose two themes that best suit your interests and career goals.

The programme includes seminars, taught modules and two research projects in our world-recognised research laboratories. We will also cover a range of valuable transferable skills including critical analysis of research papers, learning how to write a project grant application and literature review, and data presentation and statistical analysis.

Programme structure

The programme includes core skills, seminars, taught modules and laboratory projects in our well-resourced laboratories which are at the cutting-edge of Biomedical research.

Students will carry out two 20-week long research projects selected from the themes available. An assessed research proposal is also required for the second project.

Project 1 (September to February)

Cardiovascular Biology
Cell Communication
Genomics & Biological Pathways
Mechanisms of Inflammatory Disease
Reproductive Science 1
Infectious Diseases
Stem Cells, Tissue Injury and Regenerative Medicine - new theme for September 2017

Project 2 (April to August)

Biomedical Imaging
Genes & Disease
Genomic Technologies
Molecular & Cellular Mechanism of Inflammation
Reproductive Science 2
Cancer Biology
Biological Architecture

Students may also be able to undertake projects in Integrative Neuroscience or in other areas of Biomedical Sciences, with the permission of the Programme Director. These students would be required to attend the taught element of one of the above Themes as appropriate.

Research proposal

In March, students submit a research proposal based on the work performed for Project 2. This takes the form of a grant application, as would be prepared for a research organisation, and is assessed.

Career opportunities and 'Follow-on PhDs'

This programme is an excellent stepping-stone to a PhD, or a career in Biomedical research or industry.

In addition, every year there are vacancies for PhD studentships in the School of Biomedical Sciences and staff are always on the lookout for the outstanding postgraduate students who are on this Programme to encourage them to apply.

Read less

Show 10 15 30 per page



Cookie Policy    X