• University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Manchester Featured Masters Courses
University College London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Bath Featured Masters Courses
"assistive" AND "technolo…×
0 miles

Masters Degrees (Assistive Technology)

We have 32 Masters Degrees (Assistive Technology)

  • "assistive" AND "technology" ×
  • clear all
Showing 1 to 15 of 32
Order by 
This exciting programme focuses on the design, development and clinical application of novel rehabilitative and assistive technologies. Read more

This exciting programme focuses on the design, development and clinical application of novel rehabilitative and assistive technologies. The programme is delivered by the Aspire Create team, which is engineering the next generation of these technologies, in partnership with clinicians at the Royal National Orthopaedic Hospital.

About this degree

You will engage in research-based learning and work on real-world medical engineering projects which are driven by a clinical need. Throughout the MSc, you will receive core training in “anatomy for engineers", biomechanics and research methodologies, before choosing modules that explore cutting-edge topics ranging from robotics and electronic implants to social cognitive rehabilitation and “disability and development”.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), a group research module (30 credits) and an individual project (60 credits).

Core modules

  • Anatomy and Physiology for Engineers
  • Assistive Technology Devices and Rehabilitation Robotics
  • Biomechanics for Assistive Technologies
  • Research Methods and Experiment Design
  • Group research projects
  • Individual research project

Optional modules

All students participate in two group research projects which put the theory from the core modules into practice. Each project results in a group report and an individual mini-viva.

  • Disability and Development
  • Electronic Devices and Implant Technologies
  • Inclusive Design and Human-Machine Interfaces
  • Social Cognitive Rehabilitation

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning

The programme is delivered through a combination of interactive lectures, seminars and hands-on laboratory sessions, supported by exercise/problem sheets and opportunities for reflection and discussion. Assessment is through coursework, research project reports, mini-vivas, MCQs and written exams.

The programme will be taught mostly at the Royal National Orthopaedic Hospital in Stanmore, London. Some teaching will also take place in Bloomsbury.

Further information on modules and degree structure is available on the department website: Rehabilitation Engineering and Assistive Technologies MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Typical career destinations for our graduates range from, but are not limited to: academic researchers, biomedical R&D engineers, clinical scientists, and entrepreneurs who spin out their project work into start-up companies.

Employability

This programme will give you the opportunity to enhance your employability by gaining and refining both technical and transferable skills. Not only will you gain specialist theoretical knowledge, you will also learn how to put this into practice through our research-based learning activities. The highly interdisciplinary research focus will give you experience of the academic, clinical and third sectors. Importantly, you will refine your communication skills by interacting with different audiences (technical, clinical and lay) and learn how to pitch your arguments at the right level – this is a highly valued skill in any sector.

Why study this degree at UCL?

Rehabilitation engineering promises to revolutionise the way patients regain their independence. Complementary to drugs and surgery, this unique MSc focuses on how state-of-the-art technologies can be developed and translated into clinical practice.

You will tackle real problems, faced by people with complex and challenging medical conditions, such as spinal cord injuries and stroke.

There are plenty of networking opportunities throughout the programme, which is run by internationally renowned UCL academics, in conjunction with clinicians at the Royal National Orthopaedic Hospital; assistive technology specialists from the Aspire charity; and our industrial research partners.



Read less
Strongly interdisciplinary in nature, the Institute for Language, Cognition and Communication (ILCC) is dedicated to both basic and applied research in the computational study of language, communication, and cognition, in both humans and machines. Read more

Strongly interdisciplinary in nature, the Institute for Language, Cognition and Communication (ILCC) is dedicated to both basic and applied research in the computational study of language, communication, and cognition, in both humans and machines.

As technology focuses increasingly on language-based communication tools, research into the automation of language processing has become vital. ILCC offers you the broadest research scope in the UK, and a strong computational focus.

Our primary areas of research are:

  • natural language processing and computational linguistics
  • spoken language processing
  • dialogue and multimodal interaction
  • information extraction, retrieval, and presentation
  • computational theories of human cognition
  • educational and assistive technology
  • visualisation

Much of our research is applied to software development, in areas as diverse as social media, assisted living, gaming and education.

You may find yourself working closely with other departments of the University, particularly the School of Philosophy, Psychology & Language Sciences.

Many of our researchers are involved in cross-disciplinary research centres; for instance:

Centre for Speech Technology Research (CSTR)

The Centre for Speech Technology Research (CSTR) is an interdisciplinary research centre linking Informatics and Linguistics. Founded in 1984, it is now one of the world's largest concentrations of researchers working in the field of language and speech processing.

CSTR is concerned with research in all areas of speech technology including speech recognition, synthesis, signal processing, acoustic phonetics, information access, multi-modal interaction and dialogue systems.

The Centre is home to state-of-the-art research facilities including specialised speech and language-orientated computer labs, a digital recording studio, perception labs and a meeting room instrumented with multiple synchronised video cameras and microphones. There is also access to high-performance computer clusters, the University storage area network, a specialist library, and many speech and language databases

Centre for Design Informatics

Data driven innovation is transforming society and the economy. In the Centre for Design Informatics, we design systems for better human data interaction, in diverse settings such as health, culture, mobility and finance. We explore design from, with, and by data: the central concern is the design of flows of data which sustain and enhance human values. Relevant technologies range from the internet of things, through blockchains, to robotics, speech recognition, data visualisation, interaction design, and social computing.

Data Science EPSRC Centre for Doctoral Training

The EPSRC Centre for Doctoral Training (CDT) in Data Science, based at the University of Edinburgh, is training a new generation of data scientists, comprising 50 PhDs over five intake years, with the technical skills and interdisciplinary awareness necessary to become R&D leaders in this emerging area.

Training and support

You carry out your research within a research group under the guidance of a supervisor. You will be expected to attend seminars and meetings of relevant research groups and may also attend lectures that are relevant to your research topic. Periodic reviews of your progress will be conducted to assist with research planning.

A programme of transferable skills courses facilitates broader professional development in a wide range of topics, from writing and presentation skills to entrepreneurship and career strategies.

The School of Informatics holds a Silver Athena SWAN award, in recognition of our commitment to advance the representation of women in science, mathematics, engineering and technology. The School is deploying a range of strategies to help female staff and students of all stages in their careers and we seek regular feedback from our research community on our performance.

Facilities

The award-winning Informatics Forum is an international research facility for computing and related areas. It houses more than 400 research staff and students, providing office, meeting and social spaces.

It also contains two robotics labs, an instrumented multimedia room, eye-tracking and motion capture systems, and a full recording studio amongst other research facilities. Its spectacular atrium plays host to many events, from industry showcases and student hackathons to major research conferences.

Nearby teaching facilities include computer and teaching labs with more than 250 machines, 24-hour access to IT facilities for students, and comprehensive support provided by dedicated computing staff.

Among our entrepreneurial initiatives is Informatics Ventures, set up to support globally ambitious software companies in Scotland and nurture a technology cluster to rival Boston, Pittsburgh, Kyoto and Silicon Valley.

Career opportunities

While many of our graduates pursue an academic career, others find their skills are highly sought after in the technology industry. A number of our students serve internships with large UK and international software developers, while others take up positions with major social media companies.



Read less
Our MPhil/PhD research degree programme offers you. Wide variety of research interests. The Institute of Health and Society has a strong mix of academics with a high degree of professional and personal experience, enabling you to get the most out of your programme. Read more
Our MPhil/PhD research degree programme offers you:

Wide variety of research interests
The Institute of Health and Society has a strong mix of academics with a high degree of professional and personal experience, enabling you to get the most out of your programme. Our staff have expertise in Occupational Therapy Professional Practice, Mental Health, Assistive Technology, Practice Education.

Excellent supervision
Benefit from a professional and challenging relationship with your supervisory team, drawn from experienced academics working at the forefront of their disciplines.

Resources
Access to the University of Worcester’s virtual resources and its state of the art library facilities. The Occupational Therapy team at Worcester have an excellent range of resources available to support your learning and your research project, including; Ability House which includes a state of the art assistive technology equipment, McClelland Wellbeing Centre, Simulation Suites and excellent partnerships with local Trusts, Health Services and Social Care Services.

Read less
For most companies, understanding the complex web of relationships between people, technology and design the 'user experience' is vital in acquiring the competitive edge. Read more
For most companies, understanding the complex web of relationships between people, technology and design the 'user experience' is vital in acquiring the competitive edge. Especially when considering the development and production of technology based devices and services. MSc User Experience Engineering brings together knowledge and skill sets into a single programme focused on the user experience where computing technology is the heart of the devices and services.

Why study MSc User Experience Engineering at Dundee?

The importance of human computer interaction and good interface design is increasingly recognised as the key to the future of successful software development.

At the University of Dundee we provide students with the knowledge skills and support necessary to become move into a career in user experience engineering. The University of Dundee is at the forefront of computing and as such you will have the opportunity to learn from leading researchers.

What's great about User Experience Engineering at Dundee?

This course is designed to:
Give you a Masters-level postgraduate education in the knowledge, skills and understanding of user experience research and implementation in the domain of computing and technology.

Enable you to acquire advanced knowledge and skills in the professional procedures necessary to ensure that user experience research and requirements-gathering is both valid and actionable in technology implementation contexts.

Enable you to understand and engage with contemporary debate about the role, ethics and utility of user experience research in commercial and other settings.

An additional aim for overseas students is to provide you with educational and cultural experiences which are unique to the UK.

Our facilities:
You will have 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

The start date is September each year. The MSc course lasts for 12 months and the PGDip lasts for 9 months.

How you will be taught

The programme will be delivered principally by a mix of traditional lectures, study of academic background texts, lab and studio based practice sessions, and field and project based learning. These will be supplemented by seminars and workshops on key areas of practice

What you will study

The course will be taught in 20 credit modules plus a 60 credit dissertation. Students will be required to complete 180 credits for the award of the MSc (including 60 credits for the dissertation). Students completing 120 credits (without the dissertation) will be eligible for a Postgraduate Diploma.

Semester 1 (Sept-Dec)
Computing the User Experience (20 Credits)
Elective Module- one from:
Internet and Computer Systems
Software Development
Software Engineering
Agile Engineering
Technology Innovation Management
Secure e-Commerce
Computer Graphics
Computer Vision
Multimedia Audio
International Marketing
Eye Movements & Cognition (10 Credits)
Quantitative Methods (10 Credits)

Semester 2 (Jan-Mar)
Research Methods (20 Credits)- experimental design requires researchers to understand the context of the research being undertaken and being able to apply appropriate methods to measure and compare data. This module aims to provide students with an understanding and knowledge of research methods relevant in the context of computing.
Research Frontiers(20 Credits) - Students select a total of four units from available units which currently include:
Accessibility & Computing (AC)
Applied Computational Intelligence (ACI)
Constraint Programming (CP)
Games (G)
Intelligent Agents (IA)
Aspects of Assistive Technology (AT) and Augmentative and Alternate Communication (AAC)
Interactive Systems Design (ISD)
Space Systems (SS)
What Computer Eyes Can Do (CE)
Eye Gaze Tracking
Human-Computer Interaction (HCI) (20 Credits) - the aim of this module is to provide you with a broad introduction to human-computer interaction through study of the components, both human and machine, which make up interfaces and the ways in which they interact, illustrating this with examples of good and bad practice.

Semester 3 (Apr-Sept)
Research Project or Field Project (60 Credits) - this module will provide you with a professional level experience of specifying, conducting and presenting a substantial piece of user experience research.
Please note that some of the modules in the programme are shared with other masters programmes and some of the teaching and resources may be shared with our BSc programme.

How you will be assessed

Assessment will be a mix of continuous or coursework assessments and exams, with group and individual projects assessed by set deliverables and final presentation.

Careers

This programme is intended to enhance the employability of graduates in the following ways:

For technologists and computing professionals, this programme should build their skills in implementing technology that are appropriate to the needs and wishes of users in the relevant usage context

For human factors specialists, this programme should build their understanding of the fit between users and technology and should enhance their methodology skill set when exploring beyind the understanding of the human factors towards the deployment of appropriate or enhanced user experiences.

For design specialists, this programme should build their skills in marrying technologies and materials to the requirements of users and in blending this within appropriate aesthetics.

For UX team managers this programme should enhance their insights and give them practical experience of the skill sets of all members of their teams in order to direct their work so as to optimize the user experience within real business and technical constraints.

For all professionals, this programme should enhance their ability to communicate the impact of the user experience investigations on their work and the impact of their work on the user experience, not only within the UX team but also to other business functions such as senior management and marketing.

Read less
The Biomedical Engineering MSc enables you to widen your biomedical engineering knowledge and skills. You develop these to a postgraduate level with the opportunity to undertake in-depth studies through your research projects. Read more

The Biomedical Engineering MSc enables you to widen your biomedical engineering knowledge and skills. You develop these to a postgraduate level with the opportunity to undertake in-depth studies through your research projects.

The Biomedical Engineering MSc has two specialist streams to suit your individual needs, background and career aspirations:

  • Bioelectrical
  • Biomechanical.

It is intended for students with an honours degree (or international equivalent) in:

  • mechanical or mechanical-related engineering, eg biomedical, materials or design
  • electrical or electronic-related engineering
  • other engineering disciplines
  • maths
  • physics
  • or a related scientific discipline.

What you'll learn

The taught part of the course covers major biomedical engineering themes, including:

  • bioengineering
  • bioelectronics
  • medical technology innovation 
  • biomaterials and tissue engineering
  • orthopaedic engineering
  • design for human-systems integration.

Project work

Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic biomedical engineering science to practical design, make and test investigations.

Recent projects include:

  • investigations of bone cutting
  • assessment of finger splints
  • design of assistive technology
  • testing of artificial shoulder joints
  • design of a rig to flex spinal segments
  • investigation of nanoparticles
  • testing of spinal implants.

Some research may be undertaken in collaboration with industry.

Course delivery

The course is delivered by the School of Engineering. The taught component of the course combines delivery methods:

  • lectures
  • tutorials
  • laboratory work
  • seminars.

Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Facilities

The School of Engineering has both general and specialist laboratories and workshop facilities. These are used for training, course delivery and the manufacture of materials/components needed to support project work.

We have multiple networked computer clusters on campus (120+ PCs), which supports all of the specialist software introduced and used within the course.

There are dedicated biomaterial and biotribology labs in the School where appropriate projects may be undertaken.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Long Term and Chronic Conditions Management at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Long Term and Chronic Conditions Management at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Master's degree in Long Term and Chronic Conditions Management aims to equip health and social care professionals and others, including new and recent graduates who contribute or plan to contribute to the strategically important area of long term and chronic conditions management.

Key Features of Long Term and Chronic Conditions Management

Performance:

- Since its inception in 2007, the programme has consistently produced successful, high achieving postgraduates

Teaching and Employability:

- Taught by experienced academics many of whom are also qualified teachers, research active and have a wealth of professional experience in chronic conditions

- Students have the opportunity to develop a bespoke programme relevant to their particular interest and/or speciality

- Students have a choice for their dissertation option, including the novel opportunity to draft a paper to be submitted for publication

- Students can take advantage of inter-professional learning in small groups and the opportunity to study with international students and those enrolled on other Masters programmes

The increasing burden of chronic illness is one of the greatest challenges facing health systems globally. In the UK, approximately 18 million people live with a long term or chronic condition and this number is expected to double by 2030. Approximately 80% of GP consultations, 60% of days spent in hospital and two thirds of all emergency hospital admissions are associated with chronic conditions (Department of Health 2004).

Managing long term and chronic conditions currently accounts for almost 70% of the NHS budget and these costs are projected to increase significantly given the ageing population and escalating risk factors such as obesity and inactivity.

Long term and chronic conditions can have profound and far reaching implications on all aspects of peoples’ lives and can present patients (and families) with a spectrum of needs.

People living with a long term or chronic condition require support, care and rehabilitation from a wide range of professionals in health, social and voluntary care sectors. In addition, effective health promotion, prevention, self-care and self-management will help ensure that chronic illnesses are avoided wherever possible and that people are more informed to safely and effectively manage their health and wellbeing.

This requires complex responses over extended periods of time, coordinated, proactive and collaborative input from the health, social care and voluntary sectors, patients, carers and lay personnel (as in the Expert Patient Programme). These need to be optimally embedded with systems which actively promote and support sustainable stakeholder collaboration and patient empowerment.

Modules

Modules on the Long Term and Chronic Conditions Management programme typically include:

• Theory and Practice of Long Term and Chronic Conditions Management

• Foundations in Health Promotion

• Foundations in Research

• Health Psychology of Long Term and Chronic Illness

• Social Aspects of Long Term and Chronic Illness

• The Management of Parkinson's Disease-Related Conditions

• Foundations in Public Health and Primary Health Care

• Partnerships, Public Health and Epidemiology

• Public Health Practice

• Chronic Condition Management: Diabetes

• Advancing Practice in End of Life Care

• Assistive Technology in Health and Social Care

• Politics and Policies

• Theory and Practice of Leadership and Management in Health and Social Care

• Applied Anatomy and Pathophysiology for Long Term Chronic Conditions Management

• Chronic Pain Management

Long Term and Chronic Conditions Management Course Structure

The MSc Long Term and Chronic Conditions is designed to be both multi-disciplinary and inter-professional and thereby mirror long term and chronic condition management within the National Health Service (NHS) and government initiatives.

This course is structured as either a one year full-time or three year part-time modular taught Master's degree. The core structure is based around a holistic approach to long term and chronic conditions management, coupled with research.

The Long Term and Chronic Conditions Management programme offer students the flexibility to choose a “bespoke” path that enables them to develop personally and professionally relevant qualifications with a range of optional modules on offer.

Long Term and Chronic Conditions Management students can ‘drill down’ within their specialist area, for example, health promotion, leadership or cancer rehabilitation.

Career Prospects

Current and previous Long Term and Chronic Conditions Management students have roles as nurses, physiotherapists, podiatrists, Occupational Therapists, chiropractors, physicians and health science graduates.

Many have secured new roles in healthcare whilst studying or on completion of the programme, and others have or are considering progressing to doctoral level studies or further professional qualifications.

Long Term and Chronic Conditions Management students have presented work at national conferences and have published work or are in the process of doing so.

Staff Expertise

Programme Director, Dr Tessa Watts, has expertise in supporting self-management and has completed the Health Foundation’s Advanced Development Programme for Practitioners. Tessa is also co-chair of the Chronic Conditions Research group in the College of Human and Health Sciences at Swansea University, and publishes primarily in the areas of cancer, palliative care and healthcare education.

Dr Sherrill Snelgrove has expertise in chronic pain management. Sherrill is co-chair of the Chronic Conditions Research group, alongside Tessa, and publishes in the area of chronic pain management.

Dr Jaynie Rance is a chartered Health Psychologist with particular expertise in lifestyle behaviour change.

Postgraduate Community

The College of Human and Health Sciences has a vibrant postgraduate community with students drawn from a variety of backgrounds and nationalities. The College is known for its friendly, welcoming and supportive environment, which combined with its extensive facilities, state-of-the-art technology and superb beachside location, helps to ensure that students benefit from an exceptional student experience.

In addition, students have access to a wide range of excellent facilities and equipment for realistic workplace experiences.



Read less
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans. Read more

Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.

The human brain is a hugely complex machine that is able to perform tasks that are vastly beyond current capabilities of artificial systems. Understanding the brain has always been a source of inspiration for developing artificially intelligent agents and has led to some of the defining moments in the history of AI. At the same time, theoretical insights from artificial intelligence provide new ways to understand and probe neural information processing in biological systems.

On the one hand, the Master’s in Neural Computing addresses how models based on neural information processing can be used to develop artificial systems, such as neuromorphic hardware and deep neural networks, as well as the development of new machine learning and classification techniques to better understand human brain function and to interface brain and computer.

On the other hand it addresses various ways of modelling and understanding (the limitations of) cognitive processing in humans. These range from abstract mathematical models of learning that are derived from Bayesian statistics to resource-bounded computations in the brain, explainable AI, and neural information processing systems such as neural networks that simulate particular cognitive functions in a biologically inspired manner.

See the website http://www.ru.nl/english/education/masters/neural-computing/

Why study Neural Computing at Radboud University?

- Our cognitive focus leads to a highly interdisciplinary AI programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

- Together with the world-renowned Donders Institute, the Behavioural Science Institute and various other leading research centres in Nijmegen, we train our students to become excellent researchers in AI.

- Master’s students are free to use the state-of-the-art facilities available on campus, like equipment for brain imaging as EEG, fMRI and MEG.

- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Artificial Intelligence together with the specialisation in Brain Network and Neuronal Communication. This will take three instead of two years.

- To help you decide on a research topic there is a semi-annual Thesis Fair where academics and companies present possible project ideas. Often there are more project proposals than students to accept them, giving you ample choice. We are also open to any of you own ideas for research.

- Our AI students are a close-knit group; they have their own room in which they often get together to interact, debate and develop their ideas. Every student also receives personal guidance and supervision from a member of our expert staff.

Our research in this field

The programme is closely related to the research carried out in the internationally renowned Donders Institute for Brain, Cognition and Behaviour. This institute has several unique facilities for brain imaging using EEG, fMRI and MEG. You will be able to use these facilities for developing new experimental research techniques, as well as for developing new machine learning algorithms to analyse the brain data and integrate them with brain-computer interfacing systems.

- Deep learning

Recent breakthroughs in AI have led to the development of artificial neural networks that achieve human level performance in object recognition. This has led companies like Google and Facebook to invest a lot of research in this technology. Within the AI department you can do research on this topic. This can range from developing deep neural networks to map and decode thoughts from human brain activity to the development of speech recognition systems or neural networks that can play arcade games.

-Computational framework for counterfactual predictive processing

In a recent paper we introduced a computational framework, based on causal Bayesian networks, to computationally flesh out the predictive processing processing framework in neuroscience. In this project we want to extend this to so-called counterfactually rich generative models in predictive processing. Such models encode sensorimotor contingencies, that is, they represent 'what-if' relations between actions and sensory inputs. We aim to further operationalize this account using Pearl's intervention and counterfactual semantics. In this project you will combine formal computational modelling with conceptual analysis. 

- Brain Computer Interfacing

Brain computer interfaces are systems which decode a users mental state online in real-time for the purpose of communication or control. An effective BCI requires both neuro-scientific insight and technical expertise . A project could be to develop new mental tasks that induce stronger/easier to decode signals, such as using broadband stimuli. Another project could be to develop new decoding methods better able to tease a weak signal from the background noise, such as adaptive-beam forming. Results for both would assessed by performing empirical studies with target users in one of the EEG/MEG/fMRI labs available in the institute.

Career prospects

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or university with an AI department. Other graduates work for companies interested in cognitive design and research. Examples of companies looking for AI experts with this specialisation: Google, Facebook, IBM, Philips and the Brain Foundation. Some students have even gone on to start their own companies or joined recent startups.

Job positions

Examples of jobs that a graduate of the specialisation in Computation in Neural and Artificial Systems could get:

- PhD researcher on bio-inspired computing

- PhD researcher on neural decoding

- PhD researcher on neural information processing

- Machine learning expert in a software company

- Company founder for brain-based computer games

- Hospital-based designer of assistive technology for patients

- Policy advisor on new developments in neurotechnology

- Software developer for analysis and online visual displays of brain activity

Internship

Instead of an extended research project (45 ec) you can also choose to do a smaller (30 ec) research project plus a 15 ec internship, giving you plenty of hands-on experience with AI. We encourage students to do this internship abroad.



Read less
Health and social care national and international sectors have become increasing complex and the need for dynamic and effective leaders and managers who can design, lead and implement agreed outcomes is a growing priority. Read more
Health and social care national and international sectors have become increasing complex and the need for dynamic and effective leaders and managers who can design, lead and implement agreed outcomes is a growing priority. The course explores both models and theory, providing you with the confidence and critical thinking to use leadership and management ideas to shape future care services, lead service redesign, evidence based practice and the development of new service delivery models that ensure safe, efficient and effective services.

WHY CHOOSE THIS COURSE?

Our course will also equip you with the expertise you need to lead and work within leadership and management positions in the expanding health and social care sectors and to take advantage of the wealth of exciting opportunities for postgraduate careers. If you choose this course you will benefit from:
-Developing your skills to lead service redesign, guide evidence based practice and develop new service delivery models that ensure safe efficient and effective services
-Learning in an inter-disciplinary environment, using technology, international perspectives and meeting continuing professional development (CPD) requirements
-Developing and consolidating your professional development at all organisational levels in the growing national and international social and health care sector
-Engaging with research active staff involved in local, national and international applied research which informs their teaching and mentoring
-Combining online and on campus study to achieve maximum study flexibility which complements your working and domestic life
-Participating in international events

WHAT WILL I LEARN?

The postgraduate certificate is made up of three modules:
-Professional leadership
-Managing the performance of individuals and teams
-Managing change in dynamic environments

At the diploma stage you can select 2 modules from:
-Governance: citizens, communities and consumers
-Managing practice: complexity and risk
-Epidemiology, interventions and improvements
AND EITHER
-Assistive technology and the wider perspective
OR
-Advancing practice: professional perspectives

Additionally you will complete a project related to a work issue.

At the final stage of the masters award you will undertake a module studying research methods and complete a research project.

The course provides excellent opportunities to combine theory, practice and international insights to broader social care, housing and social enterprise.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

As a graduate from the course you will know how to:
-Support, manage and evaluate service redesign
-Manage change, achieve results and engage with stakeholders
-Develop the future workforce, succession plan, safeguard the public and develop an organisational culture

OPPORTUNITIES FOR AN INTERNATIONAL EXPERIENCE

You will have the opportunity to gain international experience both through the content of your course and the potential to spend time abroad. We offer many opportunities through our Erasmus programme and via our numerous links with overseas institutions. If you don’t speak a foreign language we can arrange study at an institution where teaching and workshops are in English.

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Prepare yourself for the National Board for Certification in Occupational Therapy Examination and for a successful, gratifying career as a health care practitioner. Read more

Prepare yourself for the National Board for Certification in Occupational Therapy Examination and for a successful, gratifying career as a health care practitioner. Accredited by the Accreditation Council for Occupational Therapy Education of the American Occupational Therapy Association, our M.S. and combined B.S./M.S. Occupational Therapy programs teach you how to help patients recover from injuries, overcome disabilities, and live independently.

You’ll participate in interprofessional medical simulations with nursing, physical therapy, physician assistant, and NYIT College of Osteopathic Medicine students. You’ll also have the opportunity to conduct research with expert faculty members, present findings at major conferences, and demonstrate your knowledge at campus health fairs. In your third year, you’ll acquire professional experience through eight months of fieldwork rotations in public and private health care settings. OT is a profession in high demand not only locally but globally. You can explore the option of working abroad after graduation in countries such as Canada, Australia, and the Middle East, to name a few.

The Master of Science in Occupational Therapy will give you the tools to:

  • Increase a patient’s independence in daily living activities and apply adaptive equipment, functional splints, and assistive technology tools
  • Creatively use crafts to enhance function and improve physical and emotional well-being
  • Adapt the physical environments to facilitate participation and functioning of persons with disabilities
  • Enhance cultural awareness and competency to provide the best treatments for your patients while respecting their cultures and beliefs


Read less
Overview. Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems. Read more

Overview

Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems.

As humans, we may be intrigued by the complexity of any daily activity. How do we perceive, act, decide, and remember? On the one hand, if we understand how our own intelligence works, we can use this knowledge to make computers smarter. On the other hand, by making computers behave more like humans, we learn more about how our own cognition works.

The AI Master’s programme at Radboud University has a distinctly cognitive focus. This cognitive focus leads to a highly interdisciplinary programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

See the website http://www.ru.nl/masters/ai

Scientific and practical applications

Slowly the human brain has been revealing its mystery to the scientific community. Now that we are actually able to model and stimulate aspects of cognition, AI researchers have gained a deeper understanding of cognition. At the world-renowned Donders Institute, the Max Planck Institute and various other leading research centres, we train our students to become excellent researchers in this area.

At Radboud University we also teach students how to develop practical applications that will become the next generation of products, apps, therapies and services. Our department has been awarded several prizes for its pioneering role in bringing innovations from science to society, e.g. in Assistive Technology for people with disabilities. You’ll be taught the skills needed to conduct and steer such innovation processes. Many Master’s research projects have both a scientific and a practical component.

Specialisations

Computational modelling is the central methodology taught and used in this programme. Depending on the area of study, the computational models can range from behavioural models of millions of individuals interacting on the web, to functional models of human or robot decision-making, to models of individual or networks of artificial neurons. At Radboud University we offer the following three specialisations (on campus simply known as Computation, Robot and Web):

- Neural Computing

Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.

- Interactive Agents

Developing intelligent machines and new ways for humans and machines to interact, as well as understanding cognition through human behavior.

Research project and Internship

To finalise your AI master's programme, you have the choice of either an Internship (18EC) and Research Project (30EC) or a single larger Extended Research Project (48EC). During the internship you have the chance to acquire additional AI relevant skills either at a research lab or at a company. During the Research Projects phase, you get to put what you have learned during your master's programme into practice. You can perform your research work in the AI department, at other research departments at the University (e.g. the Behaviour Science Institute or Donders Institute) or at an external company (such as Philips or TNO). You are also encouraged to go abroad for your internship and/or research project (previously students have gone to Stanford University in California and Aldebaran Robotics in Paris). To help you decide on a thesis topic, there is an annual Thesis Fair where academics and companies present possible project ideas.

Job opportunities

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or a university with an AI department. Other graduates have started their own companies or work for companies interested in cognitive design and research.

Find out how to apply here http://www.ru.nl/masters/ai

Meet Radboud University

- Information for international students

Radboud University would like to meet you in your country (http://www.ru.nl/meetus) in order to give all the information you need and to answer any questions you might have about studying in the Netherlands. In the next few months, an advisor of Radboud University will be attending fairs in various countries, always accompanied by a current or former student.

Furthermore, we understand if you would like to see the Radboud Campus and the city of Nijmegen, which is why we organise an Master's Open Day for international students, which you are welcome to attend (http://www.ru.nl/openday).

- Information for Dutch students

Radboud University offers students in the Netherlands plenty of opportunities to get more information on your programme of choice, or get answers to any questions you might have and more. Apart from a Master's Evening and a Master's Day, we also organise Orientation Days and a Master’s Afternoon for HBO students.



Read less
Your programme of study. Read more

Your programme of study

If you have an interest in the earth in relation to minerals extraction Geophysics has plenty of scope to get involved in the profession itself and expertise required to explore different types of terrain but in a newly evolving landscape of assistive technology companies offering the latest methods of discovering production and risk issues beneath the earths surface. You learn these latest methods of finding out data to understand risk and potential engineering issues in difficult to reach places. Signal processing uses the latest advances in sensor development to set up an alert system to monitor specific areas which are normally difficult to reach. Seismic processing looks at how the earth moves not only in times of earthquakes but natural movement from chemical reactions beneath the surface of the earth.

Borehole extraction is used in mineral extraction but also to determine if reserves are live or loading is safe and much and more. The skills you learn apply equally to current and future mineral extraction as they do to land and sea where extraction has historically taken place and where there is application for a different use from a remediated coal mine for example where loading can be critical to risk for future use. The programme equips you with skills in hydrocarbon, minerals and associated industries or research. You understand structure from near surface to deep interior learning from geophysical data analysis and interpretation.

Courses listed for the programme

Semester 1

  • Earth Physics, Structure and Processes
  • Seismic Reflection Processing, Imaging and Quantitative Interpretation
  • Time Series Analysis and Signal Processing
  • Geophysical Inverse Theory and Statistics

Semester 2

  • Seismology and Earth Imaging
  • Field Geophysical Data Acquisition
  • Borehole Geophysics', Including Petrophysics and Well- Log Analysis
  • Topics in Advanced Applied Geophysics

Semester 3

  • Project in Geophysics

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You will gain hands on experience within our facilities with a large range of relevant equipment
  • Join the Aberdeen Geological Society for guest lectures and learning and networking opportunities
  • Study in a department ranked no 1 in Scotland for Earth Sciences
  • We research Earth Science over time, with strengths in Geology, Sedimentology, Geochemistry and more.

Where you study

  • University of Aberdeen
  • Full time
  • 12 Months
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
The MA Special Needs and Inclusion is a distinct, multi-professional award designed for international and UK students. This course meets the growing need for professionals to have the skills and theoretical understanding necessary to work in different fields and across the life span. Read more

The MA Special Needs and Inclusion is a distinct, multi-professional award designed for international and UK students. This course meets the growing need for professionals to have the skills and theoretical understanding necessary to work in different fields and across the life span.

Underpinned by a strong values base, it emphasises social justice and inclusive principles, whilst acknowledging and critiquing the many different perspectives in policy and practice.

Visit the website: https://www.canterbury.ac.uk/study-here/courses/postgraduate/special-needs-and-inclusion.aspx

Course detail

Full time students will study three 20 credit modules each term, with sessions taught either during the day, twilight or occasionally at weekends.

Part-time students’ sessions will take place during the evening and on one Saturday each term.

All students are encouraged and supported to work collaboratively and to explore their individual interests. Blended learning materials are available to support all students.

Content

To achieve the MA Special Needs and Inclusion award you'll need to complete 3 core (compulsory) modules and 3 optional modules, plus a dissertation.

Some of the modules you could study:

• Critical Issues (Core)

• Research Methods (Core)

• Perspectives on Special Needs and Inclusion (Core)

• Contemporary Issues in Special Needs and Inclusion (Optional)

• International Perspectives in Special Needs and Inclusion (Optional)

• The Psychology of Special Needs (Optional)

• Multi-professional Working (Optional)

• Inclusive and Assistive Technology (Optional)

• Negotiated Project (Optional)

Following the successful completion of the 3 core modules and 3 other modules you'll carry on to complete a Dissertation. This is your own particular research into a topic of interest to you, identified in conjunction with your tutor.

Assessment

A variety of assessment methods, including essays, reports, case studies, presentations and professional discussions.

What can I do next?

Following the successful completion of your MA Special Needs and Inclusion there is the opportunity to study a Doctorate in Education (SEN) of PhD.

How to apply

For information on how to apply, please follow this link: https://www.canterbury.ac.uk/study-here/how-to-apply/how-to-apply.aspx

Fees and Funding

See our postgraduate fees and funding page to discover the loans, scholarships and bursaries available.

View https://www.canterbury.ac.uk/study-here/fees-and-funding/postgraduate-fees-funding/postgraduate-funding.aspx



Read less
The future of the music industry lies with computer technology – and what we can do with that technology. It affects how we create, perform and distribute music. Read more
The future of the music industry lies with computer technology – and what we can do with that technology. It affects how we create, perform and distribute music. Whether you’re a practising musician, a sound engineer or a professional looking to combine your background and passion for music, we’ll help you explore key concepts at the heart of music, science and technology. Immersed in a thriving research centre, our future-facing course will give you a wealth of new career opportunities.

This programme is also available as a Research Masters (ResM). Further details are available on these pages.

Key features

-Work as part of a global research centre – the Interdisciplinary Centre for Computer Music Research (ICCMR) – with staff, PhD students and post-doctoral researchers from all over the world. The latest Research Assessment Exercise (RAE) 2008 judged 100 per cent of our research to be internationally significant; 25 per cent of that was seen as world- leading, too.
-Projects can range from innovative approaches to composition and performance using computers, and the design of assistive music technology, to studying how music is processed in the brain.
-Take advantage of the ICCMR’s research collaborations with partners in Europe and USA, allowing you to visit renowned institutions such as IRCAM in Paris, NOTAM in Oslo and CalArts in the USA to develop your research project.
-Gain the skills necessary to progress to more advanced research at PhD level.
-Balance your work commitments and further education with the opportunity to study part-time for a masters-level qualification.
-Take part in the Peninsula Arts Contemporary Music Festival. Showcase your work in public, stay on top of new developments in the industry and get key insights into where music is headed in the future.
-Benefit from the multi-disciplinary nature of our programme. Whether you’re a practising musician, music graduate, musicologist, music educator, music technologist or just a graduate with proven knowledge of music or music technology, our programme provides many fascinating opportunities for collaboration.
-Focus on where you want to take your career, with the support you need to get there. An individual research project will enable you to explore what interests you most at the intersection of music, science and computing.

Course details

Over the course of our one-year programme, you’ll study three modules. In Advanced Topics in Computer Music Research you’ll be immersed in music programming techniques and software. Studying key contemporary composers working with technology in electronic and computer music, we’ll introduce you to current trends in computer music research, supplemented with course assignments and further reading. The Research in the Arts and Humanities module runs over five intensive days and focuses on interdisciplinary approaches to research into the arts, humanities and technology. You’ll also undertake a module that helps you manage your MRes project with your project supervisor. Your thesis can take the form of a written piece of theoretical work or a critical evaluation report, along with evidence of creative and/or professional practice.

Core modules
-MARE700 Research in the Arts and Humanities
-MARE701 Masters Thesis in the Humanities and/or Performing Arts
-MARE702 Advanced Topics in Computer Music

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This degree programme aims to give students a Masters-level postgraduate education in the knowledge, skills and understanding of research methods to enable them to operate effectively in the application of computing in industry, commerce or research. Read more
This degree programme aims to give students a Masters-level postgraduate education in the knowledge, skills and understanding of research methods to enable them to operate effectively in the application of computing in industry, commerce or research. Students with an interest in topics covered by our research teams will find this is an excellent opportunity to get involved in progressive research.

Why study MSc Computing Research at Dundee?

The MSc Computing Research degree is designed for graduates with a good degree in Computing or a related subject who wish to gain deep knowledge of research methods and experience of working in an active research environment.

The School of Computing provides a distinctive, balanced and enjoyable learning environment, matched to the future needs of both society and the computing field. Its research has strong foundations in mathematical and logical techniques, and in probabilistic and machine learning algorithms that are applied in its work on computer vision and multi-agent systems. In its applied research, the multi-disciplinary School has an international reputation in computer support for older and disabled people, healthcare computing, space systems and interaction design. All these areas of research have been developed through strong, long-term relationships with other leading academic institutions worldwide, and in collaboration with professional and industrial partners. The School is also active in commercialising its research, with several recent spin out companies fostering an entrepreneurial atmosphere.

The School of Computing has four major research groups:
Assistive and Healthcare Systems
Computational Systems
Interactive Systems Design
Space Technology Centre

What's so good about MSc Computing Research at Dundee?

The University of Dundee is at the forefront of computing research. We currently have 23 academics and 35 researchers working alongside our 27 PhD students. Since January 2008 our school of computing has generated 313 publications and counting. In this time, we've produced 129 projects totalling more than £12.3 million in funding making Dundee a great place to come to engage in computing research.

We encourage a professional, inter-disciplinary and user-centred approach to computer systems design and production, and will enable you to develop the skills so that you can undertake independent research and participate in proposal development and innovation.

Our facilities

You will have 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

Postgraduate culture

The School of Computing maintains a friendly, intimate and supportive atmosphere, and we take pride in the fact that we know all of our students - you're far more than just a matriculation number to us. We have a thriving postgraduate department with regular seminars and guest speakers.

How you will be taught

We know how important it is to be at the leading edge of computing and so you will learn from research-active staff in the School of Computing. Leading researchers teach you and small class sizes mean that they really get to know you, making for an informal and supportive community.

What you will study

You study three taught modules, during the period January-March, making your module selections with your advisor, as follows:
Computing Research Frontiers
One of: Designing Innovative Research OR Research Methods
One of: Human Computer Interaction OR Multi-agent Systems and Grid Computing

Subject to examination performance, you then progress to the individual research project which runs from May to December. You will be based with one of the research groups within the School of Computing:

Assistive & healthcare technologies
Computational systems
Interactive systems design
Space technology centre

How you will be assessed

The taught modules are assessed by continuous assessment plus end of semester examinations in March/April. The project is assessed by dissertation.

Careers

Our students are highly employable:
They develop the expertise that employers want from computing graduates - our Industrial Advisory Board includes experts from a range of industries including Amazon, Scottish Enterprise Tayside, NCR, Chevron and Microsoft
They are prepared for a wide range of good career prospects in computing - the UK faces a massive shortage of graduates qualified to fill the 120,000 new jobs in computing and IT every year

Graduates may also choose to continue to a PhD in the School of Computing or elsewhere.

Computing at the University of Dundee is ranked 21st in the UK according to most recent Times Good University Guide and 12th in the UK according to the Guardian University League Table 2009. The University of Dundee has powered its way to a position as one of Scotland's leading universities with an international reputation for excellence across a range of activities. With over 18,000 students, it is growing fast in both size and reputation. It has performed extremely well in both teaching and research assessment exercises, has spawned a range of spin-out companies to exploit its research and has a model wider-access programme.

Dundee has been described as the largest village in Scotland which gives an indication of how friendly and compact it is. With a population of 150,000 it is not too large but has virtually all the cultural and leisure activities you would expect in a much larger city. It is situated beside a broad estuary of the river Tay, surrounded by hills and farmland, and for lovers of the great outdoors it is hard to imagine another UK location that offers so much all year round on land and water. The University is situated in the centre of Dundee, and everything needed is on the one-stop campus: study facilities, help, advice, leisure activities... yet the attractions of the city centre and the cultural quarter are just a stroll away.

Read less
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. Read more
The School conducts high-quality significant national and international research and offers excellent opportunities for graduate studies, successfully combining modern engineering and technology with the exciting field of digital media. The digital media group has interests in many areas of interactive multimedia and digital film and animation.

Visit the website https://www.kent.ac.uk/courses/postgraduate/264/digital-arts

About the School of Engineering and Digital Arts

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research (http://www.eda.kent.ac.uk/research/default.aspx) that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Course structure

The digital media group has interests in many areas of interactive multimedia and digital film and animation.

There is particular strength in web design and development, including e-commerce, e-learning, e-health; and the group has substantial experience in interaction design (eg, Usability and accessibility), social computing (eg, Social networking, computer mediated communication), mobile technology (eg, iPhone), virtual worlds (eg, Second Life) and video games. In the area of time-based media, the group has substantial interest in digital film capture and editing, and manipulation on to fully animated 3D modelling techniques as used in games and feature films.

Research Themes:
- E-Learning Technology (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=1)

- Medical Multimedia Applications and Telemedicine (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=2)

- Human Computer Interaction and Social Computing (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=3)

- Computer Animation and Digital Visual Effects (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=4)

- Mobile Application Design and Development (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=25)

- Digital Arts (http://www.eda.kent.ac.uk/research/theme_detail.aspx?gid=1&tid=26)

Research areas

- Intelligent Interactions

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less

Show 10 15 30 per page



Cookie Policy    X