• University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
King’s College London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Leeds Featured Masters Courses
"artificial" AND "intelli…×
0 miles

Masters Degrees (Artificial Intelligence And Robotics)

We have 82 Masters Degrees (Artificial Intelligence And Robotics)

  • "artificial" AND "intelligence" AND "robotics" ×
  • clear all
Showing 1 to 15 of 82
Order by 
Artificial intelligence deals with the theory, design, application, and development of biologically, socially and linguistically motivated computational paradigms. Read more
Artificial intelligence deals with the theory, design, application, and development of biologically, socially and linguistically motivated computational paradigms.

You focus on linking artificial intelligence techniques to real-world applications and projects, including artificial intelligence in business and financial applications, artificial intelligence in games, artificial intelligence in biological sciences and medicine, and artificial intelligence in industrial control.

Our unique course covers the theoretical, applied and practical aspects of artificial intelligence, with an emphasis on:
-Genetic algorithms
-Evolutionary programming
-Fuzzy systems
-Neural networks
-Connectionist systems
-Hybrid intelligent systems

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our course opens up employment opportunities designing intelligent software – in banks and businesses designing prediction systems, in computer games companies designing adaptive games, in pharmaceutical companies designing intelligent systems that model a given drug and its various interactions, and in heavy industries designing control systems.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Artificial Intelligence - MSc
-MSc Project and Dissertation
-Machine Learning and Data Mining
-Professional Practice and Research Methodology
-Group Project
-Intelligent Systems and Robotics
-Computer Vision (optional)
-Game Artificial Intelligence (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Natural Language Engineering (optional)
-Artificial Neural Networks (optional)
-Virtual Worlds (optional)
-Creating and Growing a New Business Venture (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)

Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Intelligent Mobile Robots
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
Investigating the true nature of intelligence is one of today’s most fascinating research avenues. Advances in the study of cognitive processes and models, natural language and perception, human knowledge, representation, and reasoning attest to this. Read more

Investigating the true nature of intelligence is one of today’s most fascinating research avenues. Advances in the study of cognitive processes and models, natural language and perception, human knowledge, representation, and reasoning attest to this. One of the scientific community’s key research objectives is the development of an intelligent robot. The Master of Artificial Intelligence explores and builds on this challenge, will you?

What's the Master of Artificial Intelligence about? 

The Master of Artificial Intelligence programme at KU Leuven explores and builds on these fascinating challenges. For many years, it has provided an internationally acclaimed advanced study programme in artificial intelligence. The multidisciplinary programme trains students from a variety of backgrounds - including engineering, sciences, economics, management, psychology, and linguistics - in all areas of knowledge-based technology, cognitive science, and their applications. The one-year programme, taught entirely in English, is the result of a collaboration between many internationally prominent research units from seven different faculties of the university. It allows you to focus on engineering and computer science, cognitive science, or speech and language technology.

Objectives

The AI program aims at instructing and training students on state of the art knowledge and techniques in Artificial Intelligence, with specific focus either on Engineering and Computer Science (ECS), on Speech and Language Technology (SLT) or on Big Data Analytics (BDA), depending on the selected option within the program. It aims at introducing the students to the concepts, methods and tools in the field.

It aims at instructing students on the achievements in a number of advanced application areas and make them familiar with their current research directions. It aims to bring students to a level of knowledge, understanding, skills and experience that are needed to actively conduct basic or applied research on an international level. In particular, it aims to provide students with a critical scientific attitude towards the central themes of A.I.

As a master-after-master program, it is assumed that the students entering this program have already achieved the general skills and attitudes defined for any master program. Nevertheless, it is also within the aims of the program to further strengthen the skills and attitudes, within the specific scientific context that AI offers.

ECS-option: In the ECS option, in addition to the above, the program aims at instilling a problem-solving attitude towards the practice of AI. Upon completion of the program, students should be familiar with the fundamentals of AI, be aware of its reasonable expectations, have practical experience in solving AI-problems and be acquainted with a number of advanced areas within the field.

SLT-option: In the SLT-option, in addition to the general aims, the program aims to provide all necessary background and skills which are required to fully understand and to actively participate in the fast developing multi-disciplinary field of Language and Speech. This includes a thorough understanding of the theories and models that shape the field, as well as practical experience with a variety of technologies that are used and currently developed.

BDA-option: In the BDA-option, in addition to the general aims, the program aims for the same additional goals as the ECS-option, but specialized to Big Data Analytics. In particular, it aims at instilling a problem-solving attitude towards the practice of Big Data Analytics. Upon completion of the program, students should be familiar with the fundamentals of Big Data Analytics, be aware of its reasonable expectations, have practical experience in solving BDA-problems and be acquainted with a number of advanced areas within the AI-subfield of BDA.

Career perspectives

With a Master's degree in artificial intelligence you will be welcomed by companies working in:

Information technology

  • Information technology
  • Data mining and Big Data
  • Speech and language technology
  • Intelligent systems
  • Diagnosis and quality control
  • Fraud detection
  • Biometric systems

You will also be qualified to work in banking or provide support for the process industry, biomedicine and bioinformatics, robotics and traffic systems. Some graduates go on to begin a PhD programme.



Read less
What is intelligent behaviour? How can robots communicate with each other? In this programme you will learn how to design and implement intelligent systems. Read more
What is intelligent behaviour? How can robots communicate with each other? In this programme you will learn how to design and implement intelligent systems.

The core topics in The Master's programme Artificial Intelligence are: autonomous perceptive systems, cognitive robotics and multi-agent systems.

- Autonomous Systems
A robot taking samples and collecting information on the moon is an example of an autonomous system. It operates and carries out missions independently. Regardless of their surroundings, it responds with a certain intelligence. While traditional AI focuses on cognition and reasoning as isolated abilities, we strongly believe in perception as an active behavior, which is integrated into general cognition.

- Cognitive Robotics
The courses taught in the area of cognitive robotics are related to research in social robotics, to the origin of robotic communication and to the way in which robots recognize movement. Research is conducted at the Artificial Intelligence and Cognitive Engineeringinstitute.

- Multi-agent Systems
When a team of robots play footbal they have to communicate and cooperate with each other. This is an example of a multi-agent system. When designing these systems, techniques from computing science and logic are combined with knowledge about the interaction amongst humans and animals.

Why in Groningen?

- Be part of a Programme with excellent reviews
- Challenging graduation projects

Job perspectives

Once you have obtained your Master's degree in Artificial Intelligence, you can apply your skills in research & development, for instance air traffic and space labs, where you make sure that intelligent and innovative technologies are used during the design process. You could also choose to get a job at a research institute where you work as a researcher. This can be done at a university (PhD) or at a research institute like TNO. About 50% of our students chooses a career as a scientist.

Where do graduated master AI students work at the moment? Maarten van Grachten and Mathijs Homminga did the AI master in the old doctoral program and they specialized in very different directions. Mathijs works as a software engineer at the IT-company Evermind. He programs and implements innovative IT-projects for shops. Maarten is doing a PhD in Barcelona where he investigates how a computer can compose jazz music.

Job examples

- Industrial Research & Development
- PhD research position
- Software engineer

Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Data Mining
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

Academic expertise

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you will gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Overview. Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems. Read more

Overview

Understanding naturally intelligent systems, building artificially intelligent systems, and improving the interactions between humans and artificial systems.

As humans, we may be intrigued by the complexity of any daily activity. How do we perceive, act, decide, and remember? On the one hand, if we understand how our own intelligence works, we can use this knowledge to make computers smarter. On the other hand, by making computers behave more like humans, we learn more about how our own cognition works.

The AI Master’s programme at Radboud University has a distinctly cognitive focus. This cognitive focus leads to a highly interdisciplinary programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

See the website http://www.ru.nl/masters/ai

Scientific and practical applications

Slowly the human brain has been revealing its mystery to the scientific community. Now that we are actually able to model and stimulate aspects of cognition, AI researchers have gained a deeper understanding of cognition. At the world-renowned Donders Institute, the Max Planck Institute and various other leading research centres, we train our students to become excellent researchers in this area.

At Radboud University we also teach students how to develop practical applications that will become the next generation of products, apps, therapies and services. Our department has been awarded several prizes for its pioneering role in bringing innovations from science to society, e.g. in Assistive Technology for people with disabilities. You’ll be taught the skills needed to conduct and steer such innovation processes. Many Master’s research projects have both a scientific and a practical component.

Specialisations

Computational modelling is the central methodology taught and used in this programme. Depending on the area of study, the computational models can range from behavioural models of millions of individuals interacting on the web, to functional models of human or robot decision-making, to models of individual or networks of artificial neurons. At Radboud University we offer the following three specialisations (on campus simply known as Computation, Robot and Web):

- Computation in Neural and Artificial Systems

Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.

- Robot Cognition

Understand all aspects of Human-Robot interaction: the programming that coordinates a robot’s actions with human action as well the human appreciation and trust in the robot.

- Web and Language Interaction

Learn how to build the intelligence used to power the future of the Web.

Research project and Internship

To finalise your AI master's programme, you have the choice of either an Internship (18EC) and Research Project (30EC) or a single larger Extended Research Project (48EC). During the internship you have the chance to acquire additional AI relevant skills either at a research lab or at a company. During the Research Projects phase, you get to put what you have learned during your master's programme into practice. You can perform your research work in the AI department, at other research departments at the University (e.g. the Behaviour Science Institute or Donders Institute) or at an external company (such as Philips or TNO). You are also encouraged to go abroad for your internship and/or research project (previously students have gone to Stanford University in California and Aldebaran Robotics in Paris). To help you decide on a thesis topic, there is an annual Thesis Fair where academics and companies present possible project ideas.

Job opportunities

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or a university with an AI department. Other graduates have started their own companies or work for companies interested in cognitive design and research.

Find out how to apply here http://www.ru.nl/masters/ai

Meet Radboud University

- Information for international students

Radboud University would like to meet you in your country (http://www.ru.nl/meetus) in order to give all the information you need and to answer any questions you might have about studying in the Netherlands. In the next few months, an advisor of Radboud University will be attending fairs in various countries, always accompanied by a current or former student.

Furthermore, we understand if you would like to see the Radboud Campus and the city of Nijmegen, which is why we organise an Master's Open Day for international students, which you are welcome to attend (http://www.ru.nl/openday).

- Information for Dutch students

Radboud University offers students in the Netherlands plenty of opportunities to get more information on your programme of choice, or get answers to any questions you might have and more. Apart from a Master's Evening and a Master's Day, we also organise Orientation Days and a Master’s Afternoon for HBO students.

Radboud University Master's Open Day 10 March 2018



Read less
Our research led MSc in Artificial Intelligence covers the fundamental aspects of traditional symbolic and sub-symbolic aspects. Read more

Our research led MSc in Artificial Intelligence covers the fundamental aspects of traditional symbolic and sub-symbolic aspects. This one year degree offers wide-ranging options including intelligent agents, complexity science, computer vision, robotics and machine learning techniques and helps develop a broad skill set suitable for further study or application development.

Introducing your degree

On this degree, you will learn from world-class researchers working in artifical intelligence fields such as computer vision, evolutionary computing, intelligent agents, game theory, deep learning and other machine learning methods. You will develop core data analysis skills and explore both traditional and state-of-the-art aspects of artificial intelligence and machine learning.

Overview

This research-led MSc takes a contemporary approach and covers the fundamental aspects of traditional symbolic and sub-symbolic aspects.

The programme will give you a solid awareness of the key concepts of artificial intelligence. You will also learn the techniques that form the current basis of machine learning and data mining. You will develop a wide-ranging skill set that supports further study or that you can use in application development.

As a result of the leading research being undertaken at Southampton, the course is able to offer a wide range of options that cover state-of-the-art modern techniques, which directly reflect research directions in ECS. These include:

  • intelligent agents
  • complexity science
  • computer vision
  • robotics
  • machine learning techniques, such as support vector machines and deep learning

View the programme specification document for this course

Career Opportunities

This programme provides an excellent platform for further research in either industry or academia.

Graduates from our MSc programme are employed worldwide in leading companies at the forefront of technology. ECS runs a dedicated careers hub which is affiliated with over 100 renowned companies like IBM, Arm, Microsoft Research, Imagination Technologies, Nvidia, Samsung and Google to name a few.

  • Academia
  • Bioinformatics
  • Chemoinformatics
  • Financial services
  • Web applications

Visit our careers hub for more information.



Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more

Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

About this degree

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two to four optional modules (30 to 60 credits), up to two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules

  • Robotic Control Theory and Systems (15 credits)
  • Robotic Sensing, Manipulation and Interaction (15 credits)
  • Robotic Systems Engineering (15 credits)
  • Robotic Vision and Navigation (15 credits)

Optional modules

Students will need to choose a minimum of 30 and a maximum of 60 credits from the optional modules.

  • Acquisition and Processing of 3D Geometry (15 credits)
  • Artificial Intelligence and Neural Computing (15 credits)
  • Image Processing (15 credits)
  • Inverse Problems in Imaging (15 credits)
  • Mathematical Methods, Algorithmics and Implementations (15 credits)
  • Numerical Optimisation (15 credits)
  • Research Methods and Reading (15 credits)
  • Terrestrial Data Acquisition (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

Students can also choose up to two elective MSc modules from across UCL Computer Science, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 12,000 words.

Teaching and learning

Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Further information on modules and degree structure is available on the department website: Robotics and Computation MSc

Funding

Four MSc Scholarships, worth £4000 each, are made available by the Department of Computer Science to UK/EU offer holders with a record of excellent academic achievement. The closing date will be in June 2018. For more information, please see the department pages.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability

This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.



Read less
This MSc is taught at the UK’s longest established centre for artificial intelligence, which remains one of the best in the world. Read more

This MSc is taught at the UK’s longest established centre for artificial intelligence, which remains one of the best in the world.

Our research draws on neuroscience, cognitive science, linguistics, computer science, mathematics, statistics and psychology to span knowledge representation and reasoning, the study of brain processes and artificial learning systems, computer vision, mobile and assembly robotics, music perception and visualisation. We aim to give you practical knowledge in the design and construction of intelligent systems so you can apply your skills in a variety of career settings.

Programme structure

You follow two taught semesters of lectures, tutorials, project work and written assignments, after which you will learn research methods before individual supervision for your project and dissertation.

Compulsory courses:

  • Informatics Research Review
  • Informatics Project Proposal
  • Introduction to Java Programming (for students who do not already meet the programming requirements for the taught masters)
  • Dissertation

You will choose a 'specialist area' within the programme, which will determine the choice of your optional courses:

  • Intelligent Robotics
  • Agents, Knowledge and Data
  • Machine Learning
  • Natural Language Processing

You can choose from a variety of optional courses including:

  • Advanced Vision
  • Algorithmic Game Theory and Its Applications
  • Machine Learning and Pattern Recognition
  • Natural Language Understanding
  • Robotics: Science and Systems
  • Human-Computer Interaction
  • Software Architecture, Process and Management
  • Text Technologies for Data Science
  • Computational Cognitive Neuroscience

Career opportunities

Our students are well prepared for both employment and academic research. The emphasis is on practical techniques for the design and construction of intelligent systems, preparing graduates to work in a variety of specialisms, from fraud detection software to spacecraft control.

Recent graduates are now working as software developers and engineers, programmers and data analysts for companies such as HarperCollins, J.P. Morgan, Nokia, IBM, Amazon, Soundcloud and the Bank of England.



Read less
The School has a strong international reputation for research in this area and this expertise influences this course which explores current research and practice in artificial intelligence and robotics. Read more
The School has a strong international reputation for research in this area and this expertise influences this course which explores current research and practice in artificial intelligence and robotics. This MSc can lead to a career such as a designer of intelligent systems or in research. The core modules are: artificial life with robotics, neural computation and machine learning, theory and practice of artificial intelligence.

Why choose this course?

-This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies
-One of a range of advanced courses within our postgraduate Master's programme in Computer Science, this particular course provides you with a specialism in Artificial Intelligence and Robotics
-Advanced topics studied include artificial life with robotics, neural computation and machine learning, theory and practice of artificial intelligence
-Taught by a highly-regarded and long-established computer science department
-Sixty percent of our research impact in Computer Science and Informatics at the University of Hertfordshire has been rated at world-leading or internationally excellent in the Research Excellence Framework (REF) 2014

Careers

Our master's programme is designed to give Computer Science graduates the specialist, up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research.

This particular course will prepare you to take up a challenging job or to pursue further research in specific AI fields. Typical career opportunities include researcher or designer for intelligent systems.

Teaching methods

Classes consist of lectures, small group seminars, and practical work in our well-equipped laboratories. We use modern, industry-standard software wherever possible. There are specialist facilities for networking and multimedia and a project laboratory especially for master's students.

In addition to scheduled classes, you will be expected a significant amount of time in self-study, taking advantage of the extensive and up-to-date facilities. These include the Learning Resource Centres, open 24x7, with 1,500 computer workstations and wifi access, Studynet our versatile online study environment usable on and off campus, and open access to our labs.

Work Placement

All our one year full time Computer Science Masters programmes are available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies.

They offer you the opportunity to work for one year in a highly professional and stimulating environment. You will be a full time employee in a company earning a salary and will learn new skills that can't be taught at University. During the placement, you will be able to gain further insight into industrial practice that you can take forward into your individual project.

We will provide excellent academic and personal support during both your academic and placement periods together with comprehensive careers guidance from our very experienced dedicated Careers and Placements Service.

Although the responsibility for finding a placement is with you, our Careers and Placements Service maintains a wide variety of employers who offer placement opportunities and organise special training sessions to help you secure a placement, from job application to the interview. Optional one-to-one consultations are also available.

In order to qualify for the placement period you must maintain an overall average pass mark of not less than 60% across all modules studied in semester ‘A’.

Structure

Year 1
Core Modules
-Professional Issues
-Investigative Methods for Computer Science
-Artificial Life with Robotics
-Neural Networks and Machine Learning
-Theory and Practice of Artificial Intelligence
-Preparation for Placement
-Professional Work Placement for MSc Computer Science

Optional
-Professional Issues
-Investigative Methods for Computer Science
-Data Mining
-Mobile Standards, Interfaces and Applications
-Human Computer Interaction: Principles and Practice
-Advanced Databases
-Programming Paradigms
-Measures and Models for Software Engineering
-Programming for Software Engineers
-Software Engineering Practice and Experience
-Distributed Systems Security
-Secure Systems Programming
-Network System Administration
-Multicast and Multimedia Networking
-Wireless, Mobile and Ad-hoc Networking
-Information Security, Management and Compliance
-Digital Forensics
-Penetration Testing

Year 2
Core Modules
-Artificial Intelligence with Robotics Masters Project

Read less
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Read more
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Gain advanced theoretical and practical knowledge from our world-leading experts in interactive and intelligent robotics, and graduate ready to pursue an exciting career in anything from home automation to deep sea or space exploration. You’ll also have the opportunity to gain invaluable industry experience and cultivate professional contacts on an integral work placement.

Key features

-Enhance your employability and grow your professional network with an optional integral work placement. You can choose to work in the UK, or overseas in countries including France, Germany or Japan.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Become a professional in your field – this programme is accredited by the Institution of Engineering and Technology (IET).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll investigate user interaction and intelligent decision-making and immerse yourself in an innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-ROCO503 Sensors and Actuators
-BPIE500 Masters Stage 1 Placement Preparation
-PROJ509 MSc Project
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Optional modules
-BPIE502 Electrical/Robotics Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Read more
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Gain current, advanced theoretical and practical knowledge from our world-leading experts in intelligent and interactive robotics. You’ll graduate ready for a future in the fast-moving world of personal and service robotics and with the skills to further your research to PhD level.

Key features

-Immerse yourself in an individual research project and learn how to communicate your motivation, methodology, and conclusions through a formal dissertation and summary paper.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.
-The taught elements of this programme are also delivered to students on Year 1 of the MSc Robotics Technology programme.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build advanced theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll learn how to search, critically appraise and identify relevant research literature. You’ll also gain expertise in project management and personal effectiveness whilst immersing yourself in a substantial and innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-PROJ510 MRes Project

Optional modules
-ROCO503 Sensors and Actuators
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society. Read more
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society.

Intended as both an academic and industry facing course, the subject is aimed at graduates from a computing, engineering or science discipline who want to develop their understanding of the practical and theoretical aspects of robotic systems. This is an area with a wide-range of applications in industry and research.

This MSc focuses on the computational side of Robotics with an emphasis on the software engineering aspects. In addition it provides the ability to investigate the field of Artificial Intelligence applicable to this sector and a substantial portion of the programme concentrates on the effect that robots have on society. It is the intention of this programme to produce specialists with up to date knowledge and skills that are capable of being used in an industrial, commercial and research environment.

Although the necessary background is introduced as appropriate, the course deals with problem-solving and the provisioning of real time aspects of computer based solutions and applications using current and emerging technologies. In addition to developing an understanding of underlying principles, students are engaged in the practical application of design, implementation, trouble-shooting and management for real-world problems.

Key Course Features

The programme aims to provide the students with the following:
-Hands-on experience of state of the art equipment.
-Specialist, advanced technical skills in the area of Robotics.
-An advanced understanding and competence in the hardware and software used for the development and use of Robotics.
-The ability to critically appraise and disseminate research results.
-A sound basis for further research and / or professional development.

What Will You Study?

The MSc Robotics is offered in full-time and part-time mode. As with most masters programmes the MSc Robotics has 2 parts, a taught part followed by a dissertation. Students study 6 core modules worth 20 credits each followed by a 60 credit dissertation making a total of 180 credits.

MODULES
-Research Methods
-Future & Emerging Technology
-Advanced Artificial Intelligence
-Computational Robotics
-Robotic Applications in Society
-Robotic Software Engineering
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Career Prospects

Modules studied on the programme have been designed to provide the skills to meet industrial and commercial needs as well as those of traditional academic standing. In addition to the academic and theoretical aspects the emphasis will be on the practical side of robotics to enable graduates to practise as a professional in industry or continue with further study towards a research degree.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
Data mining, pattern recognition and machine learning are just three of the many applications that we take for granted and that are based on artificial intelligence software. Read more
Data mining, pattern recognition and machine learning are just three of the many applications that we take for granted and that are based on artificial intelligence software. Both the MSc and PG Diploma aim to equip students with the knowledge and skills necessary to make a valuable contribution to this rapidly evolving and widespread field of software development.

Full-time students take 4 courses each semester and must normally take courses marked with **

Semester 1
3D Modelling and Animation
Artificial Intelligence and Intelligent Agents
Data Mining and Machine Learning **
Rigorous Methods for Software Engineering
Robotics and Automation
Software Engineering Foundations

Semester 2
Advanced Interactive Design
Biologically Inspired Computation**
Computer Games Programming **
Research Methods and Project Planning**
Virtual Environments

After semester 2, students continue full-time on the MSc project

Read less

Show 10 15 30 per page



Cookie Policy    X