• Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
Durham University Featured Masters Courses
University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
University of London International Programmes Featured Masters Courses
"air" AND "traffic" AND "…×
0 miles

Masters Degrees (Air Traffic Control)

We have 17 Masters Degrees (Air Traffic Control)

  • "air" AND "traffic" AND "control" ×
  • clear all
Showing 1 to 15 of 17
Order by 
Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Instrumentation and Control Engineering - one-year full time
  • MSc Instrumentation and Control Engineering - two-years part time
  • MSc Instrumentation and Control Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Instrumentation and Control Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This programme helps you develop your knowledge and skills in instrumentation, electronics and control engineering. And you develop your ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Data Acquisition and Signal Processing Techniques
  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Robust Control Systems
  • Signal Conditioning and Data Processing

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. As a graduate you can expect to be employed in a range of sectors including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Robust Control Systems
  • Signal Conditioning and Data Processing

MSc only

  • Major Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. Graduates can expect to be employed in a wide range of sectors, including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
With the MSc Air Safety Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Air Safety Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aviation industry (for at least two years), and have a primary interest in its safety. Current students include pilots, air traffic controllers, maintenance staff, engineers and the majority have a license/professional education. We also welcome students with a military background. This Air Safety Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, airports and other aviation companies are mostly led by license holders, safety officers, pilots, aircraft engineers, air traffic controllers, dispatchers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date safety and risk managers ready to succeed into leadership positions.

The programme is designed to deliver individual success. First initiated by the Honourable Company of Airline Pilots (HCAP) to increase the career opportunities of aircrew, today the programme is recognised as a key resource within the aviation safety industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

This course gives you a recognised industry qualification, control of your own career and the ability to contribute to air safety management. The course is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, crisis, human motivation, and management of the air safety industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of accident and incident investigation, human factors, safety risk management.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Modules

We explore air safety management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. This means you learn from the former British Airways human resources director in one module, and the industry's crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

The course is based on completing the Induction Workshop plus eight modules over one to five years, which are taught over three-day periods. Teaching takes place across global locations including London, Dubai and Frankfurt. Students also take on a project/dissertation in an air transport related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules.

Core modules
-Active Safety Management (EPM836)
-Crisis Management (EPM828)
-Safety Risk Management (EPM973)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Airline Marketing (EPM821)
-Airline Operational Regulatory Compliance (EPM825)
-Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airworthiness (EPM897)
-Airline Maintenance (EPM906)
-Airline Revenue Management, Pricing and Distribution (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Aviation Law (EPM978)
-Future Aviation (EPM980)

Dissertation - a dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society.

Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including safety managers, training captains, quality managers, flight safety officers, safety inspectors, safety consultants and accident investigators in civil aviation authorities, airlines and with other aircraft operators and defence forces worldwide.

Graduates may change or transform their careers as a result of the MSc.

Read less
With the MSc Air Transport Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Air Transport Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aviation industry (for at least two years). Current students include pilots, air traffic controllers, maintenance staff, engineers and the majority have a license/professional education. We also welcome students with a military background. This Air Transport Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, airports and other aviation companies are mostly led by license holders, pilots, aircraft engineers, air traffic controllers, dispatchers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date managers ready to succeed into leadership positions. The programme is designed to deliver individual success. First initiated by the Honourable Company of Airline Pilots (HCAP) to increase the career opportunities of aircrew, today the programme is recognised as a key resource within the aviation industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by industry professionals and leaders in their field of expertise including the former British Airways human resources director in one module, and the industry’s crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

Teaching takes place across global locations including London, Dubai and Frankfurt. Each module, including the Induction Workshop, is taught over a three day period.

This programme gives you a recognised industry qualification, control of your own career and the ability to contribute to air transport management. The programme is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, finance, human motivation, and management of the air transport industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of fleet planning, route management, engineering and air traffic management issues.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Assessment

Each elective is assessed by two pieces of coursework, the core modules are assessed by one piece of coursework and an examination. Each module comprises:
-Part I: Prior reading before the module where appropriate.
-Part II: Attendance at City (or other locations) for the module over three days.
-Part III: Examinations are held on the third day of the core modules.
-Part IV: Coursework is due within six weeks from the last day of the module.

Modules

We explore air transport management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Students also take on a project/dissertation in an air transport related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career. Students who choose note to do the project, or are unable to complete the programme with the five years can receive a Postgraduate Certificate pending Programme Director approval.

We cover the full spectrum of a Master of Science education, adding Management modules for the future career in aviation. The dissertation at the end of the MSc programme gives each student the opportunity to demonstrate the new research and project management qualifications achieved through the programme.

The programme is based on the successful completion of the Induction Workshop which acts as an entry pathway to the MSc. The MSc consists of three core modules and 5 electives plus the project/dissertation. Each module is taught over a three day period across global locations including London, Dubai and Frankfurt.

The dissertation at the end of the MSc programme gives each student the opportunity to demonstrate the new research and project management qualifications achieved through the programme.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules. Core modules for the Air Transport MSc are airline business, airline operations and air transport economics.

Core modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules - you will choose five elective modules. Each elective module is worth 15 credits.
-Active Safety Management (EPM836)
-Crisis Management (EPM828)
-Safety Risk Management (EPM973)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Marketing (EPM821)
-Airline Operational Regulatory Compliance (EPM825)
-Airline Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airworthiness (EPM897)
-Airline Maintenance (EPM906)
-Airline Revenue Management and Finance (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Aviation Law (EPM978)
-Future Aviation Challenges - from Unmanned to Spaceflight Vehicles (EPM980)
-Reviews of Quality, Safety and Aviation Business Functions (EPM976)

Dissertation - A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society. Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including the chief operating officer of Oman Air, the chief executive officer of Jet Time, the Safety Manager of Lufthansa, the Air Safety Director of ICAO and the vice president of Emirates Airbus Fleet.

Graduates may change or transform their careers as a result of the MSc. An RAF air traffic controller immediately moved into a senior training position at Eurocontrol in Brussels after completing the programme.

Read less
With the MSc Aircraft Maintenance Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme. Read more
With the MSc Aircraft Maintenance Management you can align, develop or transform your career. Study across several locations on this industry-accredited global programme.

Who is it for?

This programme is for those who have been working within the aircraft maintenance industry (for at least two years). Current students include engineers, maintenance staff, the majority have a license/professional education. We also welcome students with a military background. This Aircraft Maintenance Management MSc programme is tailored towards those working who cannot attend regular university schedules.

This course is compatible with The MoD's Enhanced Learning Credits Administration Service (ELCAS) - an initiative to promote lifelong learning amongst members of the UK Armed Forces. If you are/have been a member of the UK Armed Forces, you could be entitled to financial support to take this course.

Objectives

Airlines, MRO and other aviation companies are mostly led by license holders, aircraft engineers and many more. This means the demand for management knowledge is growing. Our programme gives students the opportunity to freshen their knowledge, learn the latest management techniques and build a lifelong network of peers.

With unexpected events affecting the aviation industry as well as increased competition and technological and regulatory changes, every organisation needs a core of up-to-date managers ready to succeed into leadership positions.

The programme is designed to deliver individual success. First initiated by the AJ Walters (AJW) to increase the career opportunities of aircraft engineers, today the programme is recognised as a key resource within the aircraft maintenance industry and as a benchmark for innovation.

Academic facilities

As a student you will benefit from learning within modern lecture theatres (equipped with the latest interactive AV systems) and modern IT laboratories.

A dynamic virtual learning environment (Moodle) gives you access to online assessment and communication tools as you study and you can work with specialist School facilities including:
-A flight deck and flight test course
-A320 procedure training
-Wind tunnels and micro turbines
-Optical compressors and fuel injection systems.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

A dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

This course gives you a recognised industry qualification, control of your own career and the ability to contribute to aircraft maintenance management. The course is very flexible and you can study while you work.

At the end of the programme you will have improved your:
-Presentation/speaking skills - through regular opportunities within each module and the project.
-Report writing and analytical skills - through coursework and the project.
-Personal management skills - through the careful use of resources to complete assignments on time.

The successful MSc graduate will have:
-A good understanding of business analysis, crisis, human motivation, and management of the aircraft maintenance industry.
-A sound understanding for the national and international regulatory and commercial business environment and the ability to prepare a sound business case.
-Knowledge of aspects of accident and incident investigation, human factors, safety risk management.
-A proven ability to research and write a substantial analytical report.

These include:
-Being able to assimilate core themes from the talks given by a number of industry speakers, some of whom may have different positions.
-Being able to write succinct and clear English.
-Preparing a valid business case for a company and, at least as important, to know when a potential case is not viable.
-Having a wider knowledge of the interfaces of any single organisation with others in the industry.
-Being able to make a short verbal presentation and to defend a project under examination.

Assessment

Each elective is assessed by two pieces of coursework, the core modules are assessed by one piece of coursework and an examination. Each module comprises:

Part I: Prior reading before the onsite module where appropriate.
Part II: Attendance at the institution (or other locations) for the module over three days.
Part III: Examinations are held at the end of the core modules.
Part IV: Coursework for assessment. Coursework is required within six weeks of the onsite module.

Modules

We explore aircraft maintenance management from a broad perspective so you will be exposed to areas as diverse as human resources, regulation, and crisis management. The academic framework has been created by the industry for the industry. This means you learn from the former British Airways human resources director in one module, and the industry’s crisis management expert in safety or the chief executive officer of a major maintenance facility in another.

The course is based on completing the Induction Workshop plus eight modules over one to five years, which are taught over three-day periods. Teaching takes place across global locations including London, Dubai and Frankfurt.

Students also take on a project/dissertation in an aircraft maintenance related subject, which is usually completed within six to twelve months. From developing new safety measures to social media marketing in the aviation world, students choose their own research focus and often use the project as a way into a new career.

Students who choose not to do the project, or are unable to complete the programme within the five years, receive a Postgraduate Certificate on successful completion of four modules, including two core modules, or a Postgraduate Diploma on successful completion of eight modules.

Core modules
-Airline Maintenance (EPM906)
-Airworthiness (EPM897)
-Airline Operational Regulatory Compliance (EPM825)

To begin your MSc, you will be required to attend the Induction Workshop (IW), which gives you a thorough introduction into Higher Education and introduces all the tools and facilities available for your MSc. You will have to write a short essay after the IW, which will be your final assessment to be accepted into City, University of London.

Elective modules
-Airline Operations (EPM825)
-Air Transport Economics (EPM823)
-Airline Business (EPM831)
-Human Resource Management (EPM822)
-Psychology in Aviation Management (EPM966)
-Active Safety Management (EPM836)
-Airline Marketing (EPM821)
-Fleet Planning (EPM829)
-Developing a Business Plan (EPM969)
-Crisis Management (EPM828)
-Financial Accounting (EPM824)
-Sustainable Aviation (EPM975)
-Airports and Ground Handling (EPM968)
-Airline Revenue Management, Pricing and Distribution (EPM972)
-Safety Management - Tools and Methods (EPM833)
-Air Accident Investigation (EPM970)
-Leadership in Organisations (EPM971)
-Safety Risk Management (EPM973)
-Aviation Law (EPM978)
-Future Aviation (EPM980)

Dissertation - a dissertation related to experience in the industry is required. There is a high degree of flexibility in terms of sequence and time frame to suit students working in airlines, air traffic control, air forces and other organisations.

Career prospects

This is a professional programme recognised by the aviation industry and accredited by the Royal Aeronautical Society.

Airlines are increasingly expecting their managers to study the MSc from City, University of London, and our alumni network includes high-ranking individuals including safety managers, training captains, quality managers, flight safety officers, safety inspectors, safety consultants and accident investigators in civil aviation authorities, airlines and with other aircraft operators and defence forces worldwide.

Graduates may change or transform their careers as a result of the MSc.

Read less
Why this course?. The MSc in Environmental Health Sciences has been designed to allow graduates from a range of science and engineering disciplines to develop and extend knowledge in risk-based assessment and management of environmental influences on human health. Read more

Why this course?

The MSc in Environmental Health Sciences has been designed to allow graduates from a range of science and engineering disciplines to develop and extend knowledge in risk-based assessment and management of environmental influences on human health.

Environmental health is the assessment and management of environmental influences on human health. This includes the study of:

- environmental protection including control of air, water and land pollution

- food safety and hygiene including production, distribution and fitness for human consumption

- occupational health and safety including investigation and control of work-related accidents and ill health

- the built environment including homes, workplaces and public spaces

Environmental health work is important and highly worthwhile and many of our students are motivated by a desire to directly improve living and working conditions for a wide range of people.

You'll develop expertise in current methods for examining factors that affect human health, assessing and managing the risks involved, and meeting the challenges resulting from changes in the interaction between people and the environment.

The wide scope of environmental health sciences and the corresponding breadth of the degree reflect rapid technological progress. Environmental impact assessment, sustainable development, air, water and noise pollution are increasingly important and there is a pressing need for graduates with skills in these disciplines.

This course also provides an emphasis on teaching subjects that are relevant to contemporary problems faced by communities, government, industry and commercial organisations.

For example, professionals from outside Strathclyde work together with academic staff and students in the teaching of case studies of outbreaks of water-borne and food-borne diseases and also in urban and industrial air quality management.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/environmentalhealthsciences/

You’ll study

Teaching is based on a core of conventional lectures and tutorials, complemented by group projects, laboratory classes, student-led seminars and fieldwork. The programme can be studied over one year full-time, two years part-time or up to five years through Open Access.

On the full-time programme, you’ll follow a core curriculum of eight classes and four optional class. Each class is taught for two to three hours per week over eight to 12 weeks.

Following successful completion of the taught component, you’ll undertake a dissertation from June to August.

Facilities

Our laboratory facilities are well-equipped for a wide range of chemical and biological measurements. High-technological instrumentation and space are available to investigate:

- marine and freshwater quality

- air quality

- solid and hazardous wastes

- environmental microbiology

Teaching staff

The course is delivered by staff from the Department of Civil & Environmental Engineering. The academic team includes:

- Dr Iain Beverland, programme manager of the MSc in Environmental Health Sciences. He has research & teaching interests in the areas of air pollution control, environmental epidemiology, exposure assessment, & public/environmental health. Current research includes study of the effects of exposure to air pollution on human health, with a focus on traffic-related air pollution in urban areas.

- Dr Tara K Beattie has expertise in the field of public health and the management of water and solid waste. Her research interests include free-living protozoa and their potential to cause human disease.

- Dr Raymond Wong has research and teaching interests in the areas of food laws (EU and UK), policies and compliance; food poisoning, contamination and prevention; and food safety management systems.

- Dr Christine Switzer specialises in contaminant fate, transport and remediation with emphases on non-aqueous phase liquids and aggressive remediation technologies.

Additional information

Staff within the Department of Civil & Environmental Engineering have engaged with developing Environmental Health training in Africa for almost 20 years.

Flexible Options – Distance Learning & CPD

This course is also offered via Distance Learning mode, which allow you to complete an MSc via online study at home, at a time that suits you. This means you can study while balancing your existing work and family commitments. This option is suitable for students located anywhere in the world. The MSc via Distance Learning is via part-time study over 3 years.

Home students can also choose to study through the Professional Development route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification. This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes. Students who do not meet the normal MSc entry requirements for this programme are welcome to apply through this route instead.

Careers

Graduates in environmental health sciences are well prepared for a wide range of professions that require intellectual flexibility and analytical skill.

Many of our graduates have highly successful careers in environmental regulation, government departments, environmental consultancy, health and safety management, food industry, public water utilities, and waste management.

There is increasing recognition by employers in the private sector that graduates in environmental health have skills and backgrounds that are well suited to management roles in a range of related business activities, including the specialist field of corporate social responsibility.

Employers of Strathclyde Environmental Health graduates include:

AECOM; ACS Physical Risk Control Ltd; British Army; British Petroleum; Glasgow Caledonian University; GlaxoSmithKline plc; Health Protection Scotland; IBI Group Inc; International Atomic Energy Agency; Institute of Occupational Medicine; Malaysian Government; Maltese Government; Swaziland Department of Health; Logica plc; Malawi Government; National Health Service in Scotland; Ricardo AEA Ltd; Royal Bank of Scotland; Royal Environmental Health Institute of Scotland; Royal Navy; RPS Group Plc; Scottish Environmental Protection Agency; Scottish Government; UK Meteorological Office; University of Edinburgh; University of Glasgow; University of Strathclyde; World Health Organisation.

The MSc Environmental Health Sciences programme is not a pre-training programme for students wishing to become a local government Environmental Health Officer in Scotland through the Royal Environmental Health Institute of Scotland (REHIS) scheme of professional training.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp



Read less
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Read more
The Aerospace Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of aeronautical engineering. Particular prominence is given to Sustainable Aviation, Advanced Materials and Processes, Experimental Methods and Techniques, Computational Fluid Dynamics, Structural Analysis and Simulation, Flight Dynamics and Simulation, and Advanced Aircraft Systems, in particular Unmanned Aerial Vehicles.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background. The programme is delivered by a specialist team of academics. Access to state of the art laboratory and computing facilities within the new Engineering and Computing building. Personal tutor support throughout the postgraduate study. Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications.

WHY CHOOSE THIS COURSE?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries.

The Aerospace Engineering MSc curriculum consists of eight mandatory core topics and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Aerospace Engineering. Completion of the taught modules without a project leads to the award of a Post Graduate Diploma.

WHAT WILL I LEARN?

The mandatory study topics are as follows:
-Mathematical modelling in Aerospace Engineering
-Unmanned Aerial Vehicle Systems (UAV)
-Experimental Methods and Techniques
-Computational Fluid Dynamics (CFD)
-Advanced Materials and Processes
-Design and analysis of Aerospace structures
-Flight Dynamics and Simulation
-Project Management
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s research centres or industry. Typical project titles include:
-Integration of Advanced Materials into Aircraft Structures
-Sustainable Aircraft Development and Design
-Intelligent Power Generation
-UAV SWARM Systems

You will have access to:
-Unique Flight Simulator Suite (3 flight simulators, 2 UAV ground control systems plus the associated UAV,1 Air Traffic Control unit);
Harrier Jump Jet;
-New bespoke Mercedes-Petronas low speed wind tunnel and associated measurement;
-Faculty workshop (metal/woodwork), Composites Laboratory, Metrology Laboratory, Electrical Laboratory, Communications and Signal Processing Laboratory, Cogent Wireless Intelligent Sensing Laboratory
-Faculty Open Access Computer Facilities

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with aeronautical engineering. There are also many roles in related industries that rely on the technology. Possible destinations include:
-Design, Development, Operations and Management;
-Projects/Systems/Structural/Avionics Engineers.

Typical student destinations include:
-BAE Systems
-Rolls-Royce
-Airbus
-Dassult

Opportunities also exist to complete a PhD research degree upon completion of the master’s course:
-Research at Coventry University
-Cogent Computing
-Control Theory and Applications Centre
-Distributed Systems and Modelling

Aerospace Engineering MSc has been developed to improve upon the fundamental undergraduate knowledge of aerospace/aeronautical students and help mechanical students learn more about the application of their subject to aircraft. The whole aerospace/aviation industry is committed to a more sustainable and a more efficient future. The techniques, methods and subjects covered in this degree explore the ever changing industrial environment in more detail.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. Read more

Mission and goals

The programme provides a preparation particularly focused on issues of design, operation and maintenance of aircraft and their on-board systems. The objective is to prepare highly culturally and professionally qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion in national and international contexts, both in autonomy or in cooperation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Career opportunities

The graduate finds employment in aeronautical and space industries; in public and private bodies for experimentation in the aerospace field; in aircraft fleet management and maintenance companies; in air-traffic control agencies; in the airforce; in industries producing machinery and equipment in which aerodynamics and lightweight structures play a significant role.
Aeronautical engineers are particularly sought after in related fields. In fact, they may be involved in the design of terrestrial or nautical vehicles or large buildings or bridges or even in the design of power plants. Graduates are also in demand in the lightweight constructions industry, in the motor industry in the areas of monitoring the mechanical behaviour of structures subject to stress.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Aeronautical_Engineering.pdf
This programme aims at providing the students with specific skills in design, operation and maintenance of aircrafts and their on-board systems. The objective is to prepare culturally and professionally highly qualified technicians able to carry out and manage activities related to research and design in the fields of aerodynamics, materials, lightweight structures, aircraft systems and aerospace propulsion. Graduates can find employment in national and international contexts in aeronautical and space industries, public and private bodies for experimentation in the aerospace field, aircraft fleet management and maintenance companies, air-traffic control agencies, or in the air force. The track in Rotary wing is taught in English, while the other tracks are partially available in English.

Subjects

Specializations available:
- Aerodynamics
- Flight mechanics and systems
- Propulsion
- Structures
- Rotary-wing aircraft

Mandatory courses are:
- Aerodynamics
- Flight Dynamics
- Aerospace Structures
- Dynamics and control of aerospace structures

Other courses:
- Fundamentals of Aeroelasticity
- Nonlinear analysis of aerospace structures
- Fundamentals of Thermochemical propulsion
- Management of aerospace projects
- Gasdynamics
- Aircraft instrumentation & integrated systems
- Aircraft Design
- Heat transfer and thermal analysis
- Numerical modeling of differential problems
- Rotorcraft design
- Aircraft engines
- Airport and air traffic management
- Aerospace materials
- Communication skills
- Thesis

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/aeronautical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The M.A. in Mathematics at West Chester University is a thirty-three credit master’s program, eighteen credits of core courses and fifteen credits of electives, which offers great flexibility. Read more
The M.A. in Mathematics at West Chester University is a thirty-three credit master’s program, eighteen credits of core courses and fifteen credits of electives, which offers great flexibility. Elective courses may be in mathematics education, statistics, computer science, pure mathematics, applied and computational mathematics, actuarial science, business, and others. By properly selecting their electives, our M.A. candidates may train for work in a large variety of fields, including, but not limited to, actuarial science, computer science, operations research, biomathematics, cryptography, teaching in a high school or a two-year college, research, economics, environmental mathematics, geophysical mathematics, air traffic control operations, photogrammetry, and many more. Upon completion of the M.A. in Mathematics, students are also well prepared to pursue a doctoral program in mathematics.

Curriculum

Required modules:

MAT 515 Algebra I
MAT 516 Algebra II
MAT 545 Real Analysis I
MAT 546 Real Analysis II
MAT 532 Geometry I
STA 505 Mathematical Statistics I

Electives:

A student may choose from among 500-level MAT course offerings, as well as MTE 507, MTE 508, MTE 512, and MTE 604. A student may select CSC or STA courses with approval of their advisor.

Capstone Experience:

A student may choose one of two different capstone experiences:

Thesis - Student selects MAT 609 and MAT 610, which replace 6 credits of electives.

Oral Comprehensive Exam in 3 different subject areas.

For more detailed information about the modules taught on this course, please visit the website:

http://catalog.wcupa.edu/graduate/sciences-mathematics/mathematics/#coursestext

Read less
If you are a numerate graduate who wants a smart track to employment in a rapidly expanding sector addressing the environmental impacts of transport, or a practitioner who wants insight into best-practice research to accelerate your career, this Masters is for you. Read more

If you are a numerate graduate who wants a smart track to employment in a rapidly expanding sector addressing the environmental impacts of transport, or a practitioner who wants insight into best-practice research to accelerate your career, this Masters is for you.

Learn the cutting edge data collection and analytical skills to translate your passion for improving the air quality of our cities and the wellbeing of your fellow citizens into a reality.

97% of our graduates find employment in a professional or managerial role, or continue with further studies.*

Be taught by researchers who are shaping the national and international environmental transport agenda – members of our team advise European and national governments on emissions control.

Study on a course that is designed in collaboration with industry, and covers transport and urban pollution; transport and public health; road safety management; green logistics; traffic network modelling; system dynamics: modelling policy; and global transferability in policy-making. In particular gain:

  • Inside knowledge of how diverse data sources can be used to improve government policy making
  • Fluency in the design of sophisticated models to design traffic systems and pollution controls to reduce harm to people and the environment
  • Hands on experience, using state-of-the-art monitoring tools:
  • Measuring vehicle emissions and evaluating the data
  • Analysing and shaping policies to reduce air traffic pollution.

And experience what it is like to be part of a project team working across disciplinary boundaries within the transport sector. Through this, gain insights into how environmental science, modelling, planning, economics and engineering can work together to design sustainable solutions to global challenges. This industry-inspired approach will enable you to apply your knowledge to real-world issues in the field.

Your colleagues will be among the best and brightest from Latin America to the Far East, from Africa to Europe and the UK. Together you will learn environmental research techniques that will help you develop transport networks that are founded on robust evidence, sustainable and equitable principles, state-of-the-art modeling, accurate data analysis, and a profound understanding of human psychology.

ITS – the global institute teaching the transport leaders of tomorrow.

*Higher Education Statistics Agency (HESA), Destinations of Leavers from Higher Education (DLHE) 2015, http://www.hesa.ac.uk

We have redesigned our suites of courses following close consultation with Industry and academia.

With a strong focus on industry needs, our degrees will prepare you for employment in your chosen field. They will also address the multi-disciplinary nature of transport – enabling you to make effective decisions for clients, employers and society.

And to experience what it’s really like to work in the transport sector, collaborate with a project team of students from our other degrees through our new Transport Integrated Project module.

Research environment

The Institute for Transport Studies (ITS) was established as the UK’s first multi-disciplinary transport department, and we continue to lead the field with our research.

Our reputation allows us to invest in world-class facilities, such as the University of Leeds Driving Simulator – one of the most sophisticated in any university in the world, allowing us to research driver behaviour in controlled lab conditions. We also have access to a variety of specialist software tools including those we’ve developed in-house such as SATURN, PLUTO, DRACULA, MARS and KonSULT.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

You can also study this subject at Postgraduate Diploma level, part time or full time, or at Postgraduate Certificate level with our PGCert in Transport Studies.

Accreditation

This programme is recognised by the major professional bodies in the transport sector. It fulfils the educational requirements for membership of the Chartered Institute of Logistics and Transport (CILT UK) and the Chartered Institution of Highways and Transportation (CIHT) and provides a pathway towards the Transport Planning Professional (TPP) qualification.

It is also accredited as meeting the requirements for technical Further Learning for Chartered Engineer (CEng) status for candidates who have already acquired a CEng accredited BEng (Hons). Please see the Joint Board of Moderators website for further information.



Read less
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems. Read more
With increasing traffic density of civil aircraft, and the need for increased military precision in conflicts around the world, safer aircraft operations require more sophisticated avionic systems.

This specialist option of the MSc Aerospace Vehicle Design (http://www.cranfield.ac.uk/courses/taught/aerospace-vehicle-design) provides you with an understanding of avionic systems design, analysis, development, test and airframe integration.

Who is it for?

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience. It provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.

Why this course?

The Avionic Systems Design option aims to provide an understanding of avionic systems design, analysis, development, test and airframe integration. This includes a detailed look at robust and fault-tolerant flight control, advanced 4D flight management and RNP navigation, self-separation and collision avoidance and advanced digital data communications systems, as well as pilot-friendly and intelligent cockpit displays and situation awareness.

We have been at the forefront of postgraduate education in aerospace engineering since 1946. Aerospace Vehicle Design at Cranfield University was one of the original foundation courses of the College of Aeronautics. Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which hold a number of networking and social events throughout the year.

Cranfield University is well located for students from all over the world, and offers a range of library and support facilities to support your studies. This enables students from all over the world to complete this qualification whilst balancing work/life commitments.

Informed by Industry

The course has an Industrial Advisory Committee with senior members from major UK aerospace companies, government bodies, and the military services. The committee meets twice a year to review and advise on course content, acquisition skills and other attributes are desirable from graduates of the course. Panel members include:

- BAE Systems
- Airbus
- Royal Air Force
- Department for Business, Enterprise and Regulatory Reform
- Royal Australian Air Force
- Messier-Dowty
- Department of National Defence and the Canadian Armed Forces.

We also arrange visits to sites such as BAE Systems, Thales, GKN and RAF bases which specialise in the maintenance of military aircraft. This allows you to get up close to the aircraft and components to help with ideas for the group project

Accreditation

Royal Aeronautical Society (RAeS) - http://aerosociety.com/
Institution of Mechanical Engineers (IMechE) - http://www.imeche.org/

Course details

This option is comprised of 14 compulsory modules and a minimum of 60 hours of optional modules, selected from a list of 10 options. You are also required to complete a group design project and an individual research project. Delivered via a combination of structured lectures, industry guest lectures, computer based workshops and private study.

A unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project.

Group project

The extensive group design project is a distinctive and unique feature of this course. This teamwork project takes place over six months, usually between October and March; and recreates a virtual industrial environment bringing together students with various experience levels and different nationalities into one integrated design team.

You will be given responsibility for the detailed design of a significant part of the aircraft, for example, forward fuselage, fuel system, or navigation system. The project will progress from the conceptual phase through to the preliminary and detail design phases. You are required to run project meetings, produce engineering drawings and detailed analyses of their design. Problem solving and project coordination must be undertaken on a team and individual basis. At the end of the project, groups are required to report and present findings to a panel of 200 senior engineers from industry.

This element of the course is both real and engaging, and places the student group in a professional role as aerospace design engineers. Students testify that working as an integrated team on real problems is invaluable and prepares them well for careers in a highly competitive industry.

Watch past presentation YouTube videos to give you a taster of our innovative and exciting group projects:

- Blended Wing Body Aircraft - https://www.youtube.com/watch?v=UfD0CIAscOI
- A9 Dragonfly Box Wing Aircraft - https://www.youtube.com/watch?v=C4LQzXBJInw
- MRT7 Tanker Aircraft - https://www.youtube.com/watch?v=bNfQM2ELXvg
- A-13 Voyager - https://www.youtube.com/watch?v=LS6Wq7lpmDw
- SL-12 Vimana - https://www.youtube.com/watch?v=HjEEazsVtSc

Individual project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place over six months. The project may be theoretical and/or experimental and drawn from a range of topics related to the course and suggested by teaching staff, your employer or focused on your own area of interest.

Assessment

Taught modules 10%, Group project 50%, Individual research project 40%

Your career

The Avionic Systems Design option is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

This course prepares graduates for careers as project design engineers, systems design, structural design or avionic engineers in aerospace or related industries, with the aim of progressing to technical management/chief engineer. Graduates from the MSc in Avionic Systems Design can therefore look forward to a varied choice of challenging career opportunities in the above disciplines.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce plc

Read less
The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field. Read more

The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field.

About this degree

Students develop an understanding of the evolving networks and applications using the internet protocol. Particular attention is given to the convergence of telecommunications and data networks into 'all IP'-carrier grade networks. The programme offers specialisms including fundamental network design, applications and services, and security and network management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a dissertation (60 credits).

Core modules

  • Introduction to Telecommunications Networks
  • Mobile Communications Systems
  • Software for Network and Services Design
  • Internet of Things
  • Introduction to IP Networks
  • Professional Development Module: Transferable Skills (not credit bearing)

Optional modules

  • Communications System Modelling
  • Network and Services Management
  • Telecommunications Business Environment
  • Optical Transmission and Networks
  • Wireless Communications Principles
  • Internet Multimedia Systems

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through a combination of formal lectures, guest lectures, tutorials, seminars, laboratory and workshop sessions and project work. Assessment is through unseen written examination, coursework, design exercises and the research project.

Further information on modules and degree structure is available on the department website: Internet Engineering MSc

Careers

In the next 15 years, all of the facets of our life will be "online". Our health (bio-sensors, health records), entertainment (games, 3D TV, Virtual Reality), security (children GPS tracking, CCTV) and other social interactions will use fascinating internet applications that are only now being envisaged. Our graduates will be in a prime position at the forefront of this revolution by having in-depth knowledge of all of its components.

Recent graduates have gone on to become graduate engineers, R&D engineers and network services engineers at companies including France Telecom, BT, Huawei, Cisco, Motorola and PwC.

Recent career destinations for this degree

  • Graduate Software Engineer, Accenture
  • Java Developer, Loxbit PA and studying Communication Engineering, University College London (UCL)
  • IT Development Officer, China Unicoms
  • IT Network Development Engineer, BSkyB
  • Software Engineer, Air Watch

Employability

The Internet Engineering MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies and also carry out extensive practical assignments in several related areas.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

This MSc offers a wide variety of modules that include the physical layer (optical, wireless), the Internet layer (routing, congestion control, traffic engineering), the application layer (codecs, security) and the "business layer" (regulation, business opportunities).

Lectures are delivered by world-class researchers in all these fields with regular lectures from the main industrial leaders in the telecommunications industry.

Accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The world we live in is an increasingly urban one as cities currently account for half the world’s population. By 2030, it is expected that three out of every five people will live in an urban environment. Read more

The world we live in is an increasingly urban one as cities currently account for half the world’s population. By 2030, it is expected that three out of every five people will live in an urban environment. Sustainable management of the urban environment has become one of the major challenges of the 21st century as you will learn during the two-year master's Urban Environmental Management programme at the university. This development calls for control of the environmental impacts of urbanisation like growing traffic, increasing waste emissions, deteriorating air and water quality, and growth in energy and resource consumption. 

Study programme

Inadequate water supply, sanitation, waste collection and waste management systems are the cause of serious urban pollution and health hazards in many Asian, African and Latin American cities. The MSc programme Urban Environmental Management is an international and interactive programme providing a balanced curriculum of theory, tools and application. It aims to train students like you to guide the future along the path of sustainable urbanisation.

On the Programme of Urban Environmental Management page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Thesis tracks

Within the master's programme you can choose one of the following Thesis tracks to meet your personal interests.

Your future career

Graduates from the MSc Urban Environmental Management (MUE) programme are well-equipped with the skills and knowledge to continue academic training (PhD) or continue their career outside the University.

Read more about career perspectives and opportunities after finishing the programme and Career preparation during your studies.

Related programmes:

MSc Environmental Sciences 

MSc International Development Studies 

MSc Landscape Architecture and Planning



Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less

Show 10 15 30 per page



Cookie Policy    X