• University of Northampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University at Shrivenham Featured Masters Courses
University College Cork Featured Masters Courses
Birmingham City University Featured Masters Courses
University of Birmingham Featured Masters Courses
"agronomy"×
0 miles

Masters Degrees (Agronomy)

We have 28 Masters Degrees (Agronomy)

  • "agronomy" ×
  • clear all
Showing 1 to 15 of 28
Order by 
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
Get paid to do a Masters with the. Centre for Global Eco-Innovation. at. Lancaster University. , The Sunday Times University of the Year 2018, and Agronomy Research Group. Read more

Get paid to do a Masters with the Centre for Global Eco-Innovation at Lancaster University, The Sunday Times University of the Year 2018, and Agronomy Research Group.

One year enterprise-led funded Masters by Research: Ref.No. 87

·        Get paid £15,000 tax-free

·        Have your tuition fees reduced. Your partner company pays £2,000 towards your fees, meaning UK/EU students pay £2,260, and International students pay £15,945.

·        Be part of the multi award winning Centre for Global Eco-Innovation with a cohort of 50 talented graduates working on exciting business-led R&D.

·        The Centre is based at Lancaster University, so you will gain your Masters from a Top Ten University, recognised as The Sunday Times University of the Year 2018.

·        Finish in a strong position to enter a competitive job market in the UK and overseas.

The lack of available irrigation water for the maintenance of turf grass and ornamental areas is a major limiting factor in both temperate and arid world regions. This project aims to work out the principal modes of action of water conservation treatments for amenity situations. The successful applicant will work with the company to develop a formulation capable of generating positive effects on crop growth in water-limited environments.

The project will be of interest to a researcher interested in developing innovative water conservation treatments and applying solutions to the practical situation and will involve both laboratory and field based testing. 

Applicants should have a degree in plant science or soil science or a related discipline. Driving licence is an advantage.

Enterprise and collaborative partners

This Masters by Research is a collaborative research project between Lancaster University with supervision by Dr Carly Stevens and Dr Shane Rothwell and Agronomy Research Group.  

Agronomy Research Group offers advisory and consultancy services to the agricultural, horticultural and amenity industries. Our key objective is to develop innovative methods of water conservation for the horticulture and amenity industries. We also aim to use smartphone technology to facilitate the effective use of water conservation treatments on site in remote locations where traditional agronomy services are unavailable.

Apply Here

To apply for this opportunity please email with:

·    A CV (2 pages maximum)

·    Application Form

·    Application Criteria Document

·    Reference Form

This project is part funded by the European Regional Development Fund and is subject to confirmation of funding. For further information about the Centre for Global Eco-Innovation, please see our website.

 

Deadline:           Sunday 17th June 2018

Start:                    October 2018



Read less
This Master's offers a broad, research-led syllabus that will benefit life and plant science undergraduates, and professionals in commercial horticulture and agriculture from the UK and overseas looking to develop their career. Read more

This Master's offers a broad, research-led syllabus that will benefit life and plant science undergraduates, and professionals in commercial horticulture and agriculture from the UK and overseas looking to develop their career.

Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Teaching

The programme team is a combination of scientists working within the Natural Resources Institute (NRI), a unique multidisciplinary centre of excellence focused on global food security, sustainable development and poverty reduction, and the Department of Life and Sports Sciences, both part of the university's Faculty of Engineering and Science. Both have reputations founded on excellence in teaching, training and research. You will also benefit from our links with businesses in the South East and other centres of expertise including Hadlow College and East Malling Research.

Professional development

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

Courses can be studied individually as CPD and credits acquired this way can be accumulated towards the MSc over 24 or 36 months towards the full MSc if required. Please contact the programme leaders for information.

Outcomes

The aims of the programme are to:

  • Provide knowledge of the science of plant biology and its application in the commercial and research arena
  • Introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
  • Examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
  • Allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Full time

Year 1

Students are required to study the following compulsory courses.

Students are required to choose 45 credits from this list of options.

Students are required to choose 15 credits from this list of options.

Part time

Year 1

Students are required to choose 90 credits from this list of options.

Year 2

Students are required to study the following compulsory courses.

Students are required to choose 30 credits from this list of options.

Assessment

Assessment methods include:

  • Examinations
  • Coursework
  • Research project dissertation
  • Practical work
  • Laboratory/Glasshouse

Careers

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Specialised equipment

Molecular biology laboratories, horticultural and agricultural facilities



Read less
Food security. a global concern. There has never been a more urgent need to train food security researchers who are equipped with skills in agronomy, plant pathology, plant disease and plant genetics, and knowledge of modern agricultural systems and agricultural policy. Read more

Food security: a global concern

There has never been a more urgent need to train food security researchers who are equipped with skills in agronomy, plant pathology, plant disease and plant genetics, and knowledge of modern agricultural systems and agricultural policy. As outlined in The Royal Society’s 2009 report Reaping the Benefits: science and the sustainable intensification of global agriculture, it is of vital importance that we increase crop yields significantly over the next 50 years, while also decreasing our dependency on chemical intervention and fertilizers.

Meeting the challenge of sustainable agriculture

This interdisciplinary programme was developed in collaboration with a variety of stakeholders, including: the agricultural industry, government agencies (including Department for Environment, Food and Rural Affairs (defra) and The Food and Environment Research Agency (fera)), and farmers and food manufacturers. Research-led teaching in molecular plant pathology, plant sciences, and microbiology is strongly supplemented by Rothamsted Research, North Wyke expertise in grassland management, soil science, and sustainable farming systems. The combination of expertise in both arable and pastureland systems ensures a truly rounded learning experience. Leading social scientists also provide valuable input on land use and economic practices in rural areas.

The curriculum is designed to address critical shortages of experts capable of working in government agencies, agriculture, and the food industry as researchers, advisers, policy developers, and managers. The programme provides opportunities to gain industrial and practical experience and observe food security issues first-hand during field trips.

Expert teaching

Teaching is enriched by expert contributions from a broad cross-section of the industry. Scientific staff from Fera provide specialist lectures as part of the Crop Security module, members of the Plant Health Inspectorate cover field aspects of plant pathology, and a LEAF1 farmer addresses agricultural systems and the realities of food production using integrated farm management. In addition, teaching staff from the University and BBSRC Rothamsted-North Wyke will draw on material and experiences from their academic research and scientific links with industry.

Industrial and practical experience

All students will have opportunities to gain industrial and practical experiences. Teaching visits will be made to the Plant Health Inspectorate in Cornwall to see quarantine management of Phytophthora, and to a local LEAF farm to review the challenges and approaches to food production in integrated farm management systems. You will gain specialised experience in practical science or policy making through a dissertation or project placement with external agencies. Defra and Fera, for example, are offering five dissertation and/or project placements annually.

Programme structure

The programme is made up of modules. The list of modules may include the following;

  • Professional Skills;
  • Research Project;
  • Sustainable Land Use in Grassland Agriculture;
  • Crop Security;
  • Sustainable Livestock and Fisheries;
  • Political Economy of Food and Agriculture
  • Research and Knowledge Transfer for Food Security and Sustainable Agriculture

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for an up to date list (http://www.exeter.ac.uk/postgraduate/taught/biosciences/foodsecurity/#Programme-structure)

Addressing a skills shortage to tackle global food security

The MSc Food Security and Sustainable Agriculture curriculum has been designed in collaboration with the agricultural industry to tackle the skills shortage that exists in this vital interdisciplinary area. This programme will provide the highly skilled individuals required in government agencies, agriculture and food industries for critical roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security.

Global horizons

With food security and sustainable agriculture a global concern, opportunities for specialists in the areas of agronomy, plant pathology, plant disease and plant improvement will be worldwide. By combining expertise across the natural, social and political sciences, this programme provides valuable interdisciplinary knowledge and skills in both arable and pastureland systems. Graduates will be prepared to take on the global challenges of food security and sustainable agriculture, being able to adapt to farming systems across the world and identify cross-disciplinary solutions to local agricultural problems.

Learning enhanced by industry

The programme is enriched by expert contributions from a broad cross-section of the industry, with specialist lectures, teaching visits to observe the practical application of techniques, and industrial placement opportunities for project work or dissertations in practical science or policy making.



Read less
Oats are very well suited to Ireland’s climate and there is currently a renewed interest in oats as a result of a growing appreciation of the nutritional and health benefits of oat grains. Read more

Oats are very well suited to Ireland’s climate and there is currently a renewed interest in oats as a result of a growing appreciation of the nutritional and health benefits of oat grains. This project will aim to (a) quantify potassium cycling through the oat crop growing season, (b) understand the mechanics of potassium cycling, and (c) optimise the nutritional agronomy of the oat crop. It is expected that this research will

  1. Expand our understanding of this important crop
  2. Enable the nutritional agronomy of the crop to be optimised
  3. Help form a firm basis for the Irish Oat industry to expand the production of this important functional food which is so beneficial to the human diet.

Further information

These projects are funded under the President’s Research Fellowship Programme of the Institute, with the college fees and research materials and consumables covered. A small student stipend will also be provided. The successful candidates will work in the enviroCORE, which is the Institute’s environmental research centre, in a team of research supervisors and postgraduate students.

Applicants should have a primary honours degree (Level 8) in an appropriate discipline (Biosciences, Microbiology, Genetics, Biology, Bioinformatics, Zoology, Environmental Science etc.). They must also hold a minimum of a Second Class Honours Grade 1 (2.1) undergraduate degree. The successful candidates are expected start in the postgraduate positions no later than September 2018.

To apply for a President’s Research Fellowship Scholarship, please email with the title(s) of the project being applied for, a CV and a statement (c.500 words) as to why this project is of interest to you. If applying for more than one research project, please list them in your order of preference.

Closing Date: Monday 5th June 2018



Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
Food is a fundamental human necessity, essential to the sustenance of the human body. At the same time, food may be associated with pleasure, passion, even luxury. Read more
Food is a fundamental human necessity, essential to the sustenance of the human body. At the same time, food may be associated with pleasure, passion, even luxury. Food is also essential to the social body. Who eats what, who eats with whom, and whose appetites are satisfied and whose denied, are all profoundly social dynamics through which identities, relationships, and hierarchies are created and reproduced.

The SOAS MA programme in the Anthropology of Food offers students the opportunity to explore historically and culturally variable foodways, from foraging to industrial agriculture, from Europe and North America to Africa, Asia and South America. The programme asks students to trace the passage of food from plant to palate, and to examine who benefits, and who suffers, from contemporary modes of food production, exchange, preparation, and consumption. Students examine food policy at national and international levels, as well as the role played in its formation by the food industry.

Focus is given to the study of famine and the controversial role of food aid in securing food supplies. Debates over the impact of agricultural biotechnology on agrarian livelihoods and knowledge systems, as well as on the natural environment, are assessed. Movements toward organic agriculture, fair trade, and slow food are also analysed.

An anthropological approach to the study of food draws upon and challenges the perspectives of other disciplines, whether agronomy or nutritional science, economics or law, history or literature. Dependent upon individual interests and experiences, graduates of the programme may pursue research degrees in any number of academic disciplines, or find employment in food-related government ministries, international organizations, development agencies, or non-governmental associations, as well as in the fields of public health, education, and media, or in the catering industry.

Click here for a last of past Dissertation Titles (http://www.soas.ac.uk/anthropology/programmes/maanthoffood/ma-anthropology-of-food-dissertation-titles-2006---present.html)

Click here for Alumni Profiles (http://www.soas.ac.uk/foodstudies/studentprofiles/)

Course teachers Johan Pottier, Harry G. West, and Jakob Klein were awarded the 2009 Excellence in Instruction Award by the Agriculture, Food, and Human Values Society. West was named joint runner-up for the SOAS Director’s Teaching Prize in 2011-2012. The SOAS MA in the Anthropology of Food was named a Finalist in the Best Food Initiative category in the BBC Food & Farming Awards in 2015.

Scholarships:
Applicants for the MA Anthropology of Food may be eligible to apply for Scholarships and Bursaries (http://www.soas.ac.uk/registry/scholarships/).

Visit the website http://www.soas.ac.uk/anthropology/programmes/maanthoffood/

Programme Structure Overview

The programme consists of four units in total: three units of examined courses and a one unit dissertation of 10,000 words.

Core Courses:
- The Anthropology of Food - 15PANC013 (1.0 unit).

- Dissertation in Anthropology and Sociology - 15PANC999 (1.0 unit). This is a 10,000 word dissertation on a topic agreed with the Programme Convenor of the MA Anthropology of Food and the candidate’s supervisor.

- Additionally all MA Anthropology students 'audit' the course Ethnographic Research Methods during term 1 - this will not count towards your 4 units.

Foundation Course:
- Theoretical Approaches to Social Anthropology - 15PANC008 (1.0 unit). This is compulsory only for students without a previous anthropology degree.

Option Courses:
- The remaining unit(s) of your programme, either 1 unit of option courses (if taking Theoretical Approaches to Social Anthropology) or 2 units (if exempted from Theoretical Approaches to Social Anthropology), may then be selected from the Option Courses list below.

- Your 1 or 2 total units may be made up of any combination of 0.5 or 1 unit option courses.

- However, courses without a "15PANxxxx" course code are taught outside of the Anthropology Department. No more than 1 unit in total of these courses may be selected.

- Alternatively, one language course may be taken from the Faculty of Languages and Cultures.

Programme Specification 2012/2013 (pdf; 147kb) - http://www.soas.ac.uk/anthropology/programmes/maanthoffood/file39766.pdf

Destinations

For more information about Graduate Destinations from this department, please visit the Careers Service website (http://www.soas.ac.uk/careers/graduate-destinations/).

Find out how to apply here - http://www.soas.ac.uk/admissions/pg/howtoapply/

Read less
This programme is aimed at students who wish to pursue a career in agriculture and sustainable development in the private sector, research, NGO or government communities. Read more

This programme is aimed at students who wish to pursue a career in agriculture and sustainable development in the private sector, research, NGO or government communities. It provides a firm grounding in research methods applicable to the study of sustainable agriculture and the intellectual tools for understanding sustainable agriculture systems. The courses combine theoretical approaches and empirically based learning from case studies of real projects and agricultural scenarios.

Many of NRI's academics are research active. Teaching will focus on case studies from NRI's corporate experience. You will look at how research into agricultural issues, both in the natural and social sciences, can be translated into knowledge and products that have real impact on increasing the effectiveness of agriculture in enhancing livelihoods for all stakeholders. The potential role of agricultural innovations, both in technology, including biotechnology, knowledge systems, extension services and institutional partnerships in promoting development are also a strong theme in courses.

The aims of the programme are:

  • To understand modern agricultural systems and the associated technologies of production together with their potential impacts on agriculture and livelihoods
  • To understand the social, institutional and economic context within which agriculture operates
  • To understand modern agriculture and its role in sustainable development.

As of the 2018/2019 session the courses offered on this programme will be revised and the programme title may change, but the content will still focus on sustainable agriculture.

What you'll study

Students are required to study the following compulsory courses

Students are required to choose 60 credits from this list of options

All courses are subject to student numbers

Assessment

Assessment consists of a combination of: 

  • Assignments 
  • Essays 
  • Presentations
  • Reports 
  • Portfolios 
  • Formal examinations

Careers

This programme provides specialist expertise for those working or seeking to work in agricultural development or research, or pursuing an advanced agricultural or development qualification in the UK and overseas. Students graduate with a broad general knowledge of agricultural applications in sustainable development and also more focused in-depth knowledge.



Read less
This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS). Read more

International Course Programme

This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS).

The Master of Water Resources Engineering addresses water-related issues in developed and developing countries, with a focus on problems in the latter. The MSc programme provides multi-disciplinary and high-quality higher education in the field of water resources engineering.

Water Resources Engineering deals with the methods and techniques applied in the study of:
- water needs for agriculture, industry, households, recreation, navigation, hydroelectric power generation;
- problems related to storm water drainage and flood damage mitigation;
- problems related to water quality in streams and aquifers, erosion, sedimentation, protection of ecosystems and other natural resources;
- integrated water management; and
- institutional, socio-economic, and policy issues related to water resources development and management.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Curriculum

Details available on http://www.iupware.be/

The Interuniversity Programme in Water Resources Engineering offers a two year Master of Water Resources Engineering course, which is intended for graduates (or equivalent) in engineering, agriculture, hydrology and other related subjects. The main goal is to offer comprehensive training in water resources engineering to engineers and scientists from developing as well as industrialized countries. The programme blends various basic and applied courses, hydrology and engineering sciences associated with water resources development with appropriate organizational and managerial skills. The course is specially tailored for those who want to develop their knowledge and understanding of water resources engineering, and are or expect to be involved in the design, operation or day-to-day management of water resources schemes in developing countries or anywhere in the world.

The first year curriculum is common for all participants while in the second year, a common base with optional courses. After successful completion of the 2-year study programme, a Master of Water Resources Engineering degree is offered.

In the 1st year of the study programme a review of the basic knowledge is proposed, in order to achieve a common base level between students with different backgrounds. The 1st year is primarily organized at the K.U.Leuven. This programme consists of a number of courses (Advanced mathematics for water engineering, Statistics for water engineering, Irrigation agronomy, Aquatic ecology, Hydraulics, Surface Hydrology, Groundwater Hydrology and Water quality assessment, monitoring and treatment) and 4 workshops: (1) Hydrological data processing; (2) GIS; (3) Hydrological measurements and (4) Remote sensing.

In the the 2nd year of the Master programme, a broad spectrum of topics is given to ensure the coverage of the main aspects related to water resources engineering. The topics in the second year are intended to broaden the water resources engineering knowledge and to provide a deeper understanding in either Hydrology, Irrigation, Water Quality or Aquatic Ecology depending on the area of specialization. The 2nd year is primarily organized at the V.U.B. The courses in the programme make extensive use of modelling tools relevant to various aspects of the design, operation and management of water resources development projects.

Admission requirements

Candidates must hold a Bachelor's degree from a four-stage programme in agricultural, civil or environmental engineering. Study results should reflect the equivalent of a 70% pass rating in Flanders. Students should have a proven proficiency in English. Applicants from non-English-speaking countries should have a TOEFL score of at least 550 on the written test and 213 on the computer-based test or equivalent results on similar language test.

Students from a 5-stage engineering or equivalent degree, including the prerequisites to the second stage courses, can be exempted from 60 ECTS. Applications are evaluated on an individual basis.

Read less
Details available on http://www.iupware.be/ . The MSc in Water Resources Engineering addresses water-related issues in developed and developing countries. Read more

Details available on http://www.iupware.be/ ;

The MSc in Water Resources Engineering addresses water-related issues in developed and developing countries. It is jointly organized by KU Leuven and the Vrije Universiteit Brussel (VUB). The general programme objective is to educate professionals and scientists through multidisciplinary and high-quality university education to contribute effectively to the development and management of local and global water resources. The programme trains students with cutting-edge technical and managerial knowledge and skills to  

(i) successfully plan, design, operate and manage water resources projects; and (ii) advise and support authorities in decision-making and policy-making that enhance the safe exploitation and re-use of wastewater and the equitable distribution and conservation of local, regional, and global water resources.  

A strong focus is put on the use of state-of-the-art numerical simulation tools for integrated water management. 

The programme deals with the methods and techniques applied in the study of 

- water needs for agriculture, industry, households, recreation, navigation, hydroelectric power generation - problems related to storm water drainage and flood damage mitigation - problems related to water quality in streams and aquifers, erosion, sedimentation, protection of ecosystems and other natural resources - integrated water management - institutional, socio-economic, and policy issues related to water resources development and management 

Employment prospects 

A combination of theory and practice ensures that students are equipped with excellent knowledge for further research and exciting job opportunities across the world. Graduates of the programme are primarily employed as 

(i) academics or scientists at universities and research institutions. Their major task is to strengthen the training and research capacity of those institutions in the field of water resources 

(ii) engineers or managers in public administrations, water user associations or private companies. 

Water resources engineers and scientists play a decisive role in the development and management of aquifers and river basins, and in deciding who does what, how much services cost, and who pays. They are the decision-makers and water managers of the future, who are capable of taking into account increased user demand and environmental needs, i.e. managing limited water resources in a sustainable and responsive way. 

International Mobility 

The master programme takes place in an intercultural and international environment. Students have the possibility to join excursions and field trips abroad and to carry out master thesis research in cooperation with our partner universities. 

Curriculum 

The full programme comprises 120 ECTS. Students with a relevant Master degree can apply for the 1-year abridged programme (60 ECTS) and will mainly follow second year courses. 

The first year curriculum builds a common foundation and is the same for all students. In the second year students design a personal programme through the selection of three elective courses, an integrated project and their master thesis research. Courses are held both at KU Leuven and the VUB campus.  

Year 1 (compulsory) 

- Advanced Mathematics for Water Engineering - Statistics for Water Engineering - Hydraulics - Groundwater Hydrology - Surface Water Hydrology - Irrigation Agronomy - Aquatic Ecology - Waste Water Treatment and Resource Recovery - Water Quality - Integrated Water Management - GIS & Data Processing for Water Resources Engineering - Remote Sensing and Measuring Techniques for Water Resources Engineering 

Year 2 

Compulsory 

- Systems Approach to Water Management - Social, Political, Institutional, Economic and Environmental Aspects of Water Resources 

Electives (three courses to be chosen) 

- Surface Water Modelling - Groundwater Modelling - River Modelling - Soil Water Modelling - Irrigation Design and Crop Water Productivity Management - Urban Hydrology and Hydraulics - Environmental Programming - Freshwater and Marine Ecology 

 

Integrated Project: Students work in groups on a particular watershed and travel to the case study area. They define problems and tackle them from different angles using modelling as well as nonmodelling tools



Read less
This programme aims at providing a multidisciplinary background for architects, with a special focus on environmental sustainability and landscape design. Read more

Mission and Goals

This programme aims at providing a multidisciplinary background for architects, with a special focus on environmental sustainability and landscape design. The concept of sustainability is associated with a high quality transformation of landscape, from the macro-scale of urban planning, to the micro-scale of technical details, how the varied scales connect and interrelate with each other. This method is oriented to a physical, social and technical approach, passing over a close specialized theme vision. The international program involves also workshops, study trips, and summer schools.

The programme is taught in english.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

Career Opportunities

The programme trains architects with an expertise in sustainable architecture and landscape design, to follow a career in the private and public sector as covered by EU directives in: architecture, urban planning, urban design, and landscape architecture.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Architecture-Piacenza.pdf
The MSc Degree programme in Sustainable Architecture and Landscape Design offers the student the tools to become an Architect with a sound competence on theories, methods and applications of Architecture and of Landscape Design, highly skilled in the issues of contemporary territories: regeneration of productive landscapes; sustainable transformation of the architectural, urban and rural landscapes; transformation of the built environment and re-use of the existent soil; design of open spaces and infrastructures; protection of the territory; valorisation of the ecological and cultural resources; design strategies for new forms of sustainable inhabiting.
To this aim, this Degree Programme offers a complex view on the environment, dealing with all the landscape forms: from urban, to agricultural and to suburban areas, in line with the European Landscape Convention (2000) which “applies to the entire territory of
the Parties and covers natural, rural, urban and peri-urban areas”. More specifically, the landscape is seen as “represented”, “constructed” and “productive” landscape, with a specific attention to the aspects of sustainability (from a physical, economic and social point of view). The programme is taught in English.

Subjects

Theories of architecture, city and landscape; Steel, timber and reinforced concrete structures; History of architecture and landscape in the contemporary age; Urban and landscape Regeneration studio (environmental technology, landscape as heritage, general ecology); Architectural design studio 1 (sustainable architecture, technical environmental systems, multi-criteria analysis and project appraisal); Urban and environmental design studio (design of public spaces and infrastructures, agronomy and food sciences, sociology of the environment); Architectural design studio 2 (advanced architectural design, topography and cartography, landscape urbanism and land planning); Landscape design studio (advanced landscape design, physical geography and geo-morphology, techniques and tools for environmental design); Landscape representation and aesthetics.

Optional courses
- Italian territories and landscape tradition
- Open source architecture
- Arboriculture and agrobiotechnologies
- Architecture and creativity: cultural industries
- Special topics in landscape (workshop)
- Special topics in architecture(workshop)

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Sustainable agriculture. The M.S. degree in Sustainable Agriculture aims to provide advanced knowledge in the field of agricultural systems as well as skills to develop and manage sustainable production systems. Read more

Sustainable agriculture

The M.S. degree in Sustainable Agriculture aims to provide advanced knowledge in the field of agricultural systems as well as skills to develop and manage sustainable production systems.

Programme Summary

The context of the topics is international, having as its main area of investigation warm-temperate environments at a global level. The graduate in Sustainable agriculture must work to achieve food security objectives associated with improving the quality and wholesomeness of food products. The graduate must know the issues related to biodiversity, global change and ecosystem services, which are analyzed according to a systemic and adaptive approach, considering also the traceability of processes.

To address the global challenges, students are equipped with a wide learning platform, and are able to make comparisons between different production systems at the international level in terms of environmental, socio-economics, and regulatory environments.

Dual degree with USA

With the aim of strengthening this global approach to sustainability and food security, the degree program has been included in an internationalization project in collaboration with the University of Georgia, USA, which enables students to achieve a dual degree in "Sustainable Agriculture" (Italy) and "Crop and Soil Science" (USA).

Who is the MSc candidate?

The course is intended for highly-motivated national and international students and is conceived for Bachelor graduates with a main interest in agricultural and environmental sciences.

What career opportunities does the MSc provide?

The graduate in Sustainable Agriculture is able to perform a wide range of activities in a professional and efficient manner:

1) Operate internationally by conducting activities of planning, management, monitoring, coordination and training in agricultural production processes to meet the needs of the international market;

2) Be involved in activities of experimentation and research in both the public and private sectors (eg. Biotechnology companies);

3) Fill a position or interact with international organizations such as FAO, EU and World Bank;

4) Be involved in the transfer of technologies (innovation broker);

5) Manage technical and international business related to agricultural products and processing, and related to agricultural mechanization;

6) Play an active role in private and public structures aimed at land management and the management of water resources, including historical, cultural and landscape values of agricultural land;

7) Collaborate in the establishment and operation of projects in basic and applied research in the field of agricultural production in the international arena.

How is the programme organised?

The training course in Sustainable Agriculture, lasting two years, includes two main areas of study:

1) Production: training in the areas of agronomy, crop and animal productions, soil science, plant breeding, and integrated management of pests and diseases, all aimed at the sustainability of the production process and its social implications;

2) Technology: training in the areas of management and protection of air-soil-water, use of biomass of agricultural plants and animals, land management, and management of the production process (at different geographic scales) considering both innovative technologies and socio-economic aspects.

Learning is based on active studies covering activities in the classroom, in the laboratory and in the field as well as the possibility of using the contribution of Italian and foreign teachers, and industry experts that can provide specific case studies. The program offers intensive individual tutoring of students, as well as the opportunity to intern for six months, in companies in the public and private sectors, possibly abroad, for the study of cases of excellence in preparation of the thesis

Visit the MSc “Sustainable agriculture” page on the Università di Padova web-site http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2016&key=AV2293 for more details.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
In the future, agricultural and horticultural production will demand new intellectual and technological understanding and skills. Read more
In the future, agricultural and horticultural production will demand new intellectual and technological understanding and skills. The new technologies of sensors, computing, data analysis, remote sensing, robotics, drones and systems of data analysis and interpretation will allow new and sophisticated ways of managing both productive and natural environments.

The course will explore and study the high level of technical innovation currently being applied to agricultural and horticultural production, as will business management and the entrepreneurial skills that will be of fundamental importance to those entering this dynamic, technical based sector. Students will gain skills in data capture, processing, infographics, and the application of such technologies to all aspects of production and for the management of natural environments.

This course will be of relevance to those wishing to start a career in this emerging industry, join an established company, or looking to develop the skills needed to start their own enterprise.

Structure

The course may be studied full-time over 12 months. You will study six modules over the autumn and spring terms, followed by a Research Project, which is carried out over the summer to be submitted the following September. This may include a viva voce examination.

You will have the opportunity to engage with real-world problems, to find solutions to current issues and experience the working world of new technologies in animal and crop production, and the natural environment.

Modules are assessed primarily by coursework. Some modules have an examination as part of the assessment.

Modules

• 4230 Production Resource Management
• 4231 Research Project in Agricultural Technology and Innovation
• 4232 Business Development
• 4233 Computing and Information Technology in Precision Agriculture
• 4234 Livestock Production Technology
• 4235 Environmental Technology
• 4236 Crop Production Technology

Career prospects

Graduates are highly likely to go on to pursue a career within:

• The high-tech agricultural and environmental sectors
• Industries allied to crop and animal production
• Technical consultancy
• Government and international agencies
• The development of new companies through entrepreneurial initiatives

Potential job opportunities

• Agricultural and horticultural engineering
• Information technology
• Resource appraisal
• Agronomy
• Farm management

How to apply

For information on how to apply, please follow this link: https://www.rau.ac.uk/STUDY/POSTGRADUATE/HOW-APPLY

Funding

For information on funding, please view the following page: https://www.rau.ac.uk/study/postgraduate/fees-and-funding/funding

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Soil Science aims at training researchers, academics, government staff and expert consultants in the inventory and detailed characterization of land capacity, and of soils in particular. Graduates should be able to understand the development and evolution of soils under natural conditions or following human interference using field, map, laboratory and remote sensing data. They should have the scientific knowledge to use and manage soil and water in a sustainable way, and to optimize land use under different natural and environmental conditions.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning Outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Land Resources Engineering offers training in non-agricultural use and application of soil, and includes geotechnical aspects (use of soil as a building material or for foundations, slope stability and stability of excavations), the role of soil- and groundwater for water management and supply, soil management in relation to environment and land use (erosion, sediment transport, coastal development and protection).

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less

Show 10 15 30 per page



Cookie Policy    X