• Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Southampton Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Leeds Featured Masters Courses
University of Reading Featured Masters Courses
University of Cambridge Featured Masters Courses
Durham University Featured Masters Courses
Bath Spa University Featured Masters Courses
"agronomy"×
0 miles

Masters Degrees (Agronomy)

We have 29 Masters Degrees (Agronomy)

  • "agronomy" ×
  • clear all
Showing 1 to 15 of 29
Order by 
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
There has never been a more urgent need to train scientists in the area of food security, equipped with skills in agronomy; plant pathology, plant disease and plant genetics; and knowledge of modern agricultural systems and agricultural policy. Read more

Food security: a global concern

There has never been a more urgent need to train scientists in the area of food security, equipped with skills in agronomy; plant pathology, plant disease and plant genetics; and knowledge of modern agricultural systems and agricultural policy. The Royal Society report Reaping the Benefits: science and the sustainable intensification of global agriculture published in October 2009, provided the clearest evidence of the challenge of ensuring global food security during the next 50 years. Crop yields need to rise significantly, but in a manner that requires much lower dependency on chemical intervention and fertilisers.

Meeting the challenge of sustainable agriculture

This programme was developed in collaboration with the agricultural industry, government agencies including Department for Environment, Food and Rural Affairs (Defra) and The Food and Environment Research Agency (Fera), and farmers and food manufacturers, to provide a multi-disciplinary training in sustainable agriculture and global food security. Research-led teaching in molecular plant pathology, plant sciences and microbiology is strongly supplemented by Rothamsted Research, North Wyke expertise in grassland management, soil science and sustainable farming systems. Leading social scientists also provide valuable input in rural land use and the rural economy. The combination of expertise in both arable and pastureland systems ensures a truly rounded learning experience.

The curriculum takes account of the key skills shortages in the UK to train highly skilled individuals who can enter government agencies, agriculture and food industries and fulfil very valuable roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security. The programme provides opportunities to gain industrial and practical experiences including field trips.

Expert teaching

Teaching is enriched by expert contributions from a broad cross-section of the industry. Scientific staff from Fera provide specialist lectures as part of the Crop Security module, members of the Plant Health Inspectorate cover field aspects of plant pathology, and a LEAF1 farmer addresses agricultural systems and the realities of food production using integrated farm management. In addition, teaching staff from the University and BBSRC Rothamsted-North Wyke will draw on material and experiences from their academic research and scientific links with industry.

Industrial and practical experience

All students will have opportunities to gain industrial and practical experiences. Teaching visits will be made to the Plant Health Inspectorate in Cornwall to see quarantine management of Phytophthora, and to a local LEAF farm to review the challenges and approaches to food production in integrated farm management systems. You will gain specialised experience in practical science or policy making through a dissertation or project placement with external agencies. Defra and Fera, for example, are offering five dissertation and/or project placements annually.

Programme structure

The programme is made up of modules. The list of modules may include the following; Professional Skills; Research Project; Sustainable Land Use in Grassland Agriculture; Crop Security; Sustainable Livestock and Fisheries; Political Economy of Food and Agriculture and Research and Knowledge Transfer for Food Security and Sustainable Agriculture

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for an up to date list (http://www.exeter.ac.uk/postgraduate/taught/biosciences/foodsecurity/#Programme-structure)

Addressing a skills shortage to tackle global food security

The MSc Food Security and Sustainable Agriculture curriculum has been designed in collaboration with the agricultural industry to tackle the skills shortage that exists in this vital interdisciplinary area. This programme will provide the highly skilled individuals required in government agencies, agriculture and food industries for critical roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security.

Global horizons

With food security and sustainable agriculture a global concern, opportunities for specialists in the areas of agronomy, plant pathology, plant disease and plant improvement will be worldwide. By combining expertise across the natural, social and political sciences, this programme provides valuable interdisciplinary knowledge and skills in both arable and pastureland systems. Graduates will be prepared to take on the global challenges of food security and sustainable agriculture, being able to adapt to farming systems across the world and identify cross-disciplinary solutions to local agricultural problems.

Learning enhanced by industry

The programme is enriched by expert contributions from a broad cross-section of the industry, with specialist lectures, teaching visits to observe the practical application of techniques, and industrial placement opportunities for project work or dissertations in practical science or policy making.

Read less
Harper Adams is the UK’s only provider of a postgraduate course in weed science. Weeds cause significant losses in crop production despite the continued development of cultural, mechanical, biological and chemical controls. Read more
Harper Adams is the UK’s only provider of a postgraduate course in weed science. Weeds cause significant losses in crop production despite the continued development of cultural, mechanical, biological and chemical controls. In addition they reduce crop quality, cause cultivation and harvest problems and act as hosts for crop pests and pathogens. Only by understanding weed life cycles and their interactions with crops and the environment can truly integrated controls be developed. By successfully completing this course you will develop a range of abilities that will prepare you for an interesting and fulfilling career that addresses the development and implementation of weed management in the 21st century.

Although food production has tripled in the last 40 years, approximately 1 billion people still go hungry, with an average of 30 per cent of all available food being wasted during production, processing and distribution. Crop losses through weed interactions are estimated to be on average 13% worldwide, although in certain cases this figure is significantly higher. The cost of weed management is estimated to be nearly half of the total amount spent on crop protection in many situations.

The aim of the course is to provide students with specialized training in weed science.

The course will:
◾ prepare students for a career involving weed science, including agronomy
◾ offer vocational training in the area of applied weed science
◾ prepare students for PhD studies

The course is intended to provide a detailed understanding of basic and applied weed science and the issues associated with current production systems and control strategies. The course is underpinned by an extensive programme of agri-environment research at Harper Adams and longstanding collaborations with research institutes and other organisations in the UK and overseas.

Read less
The Specializing Master Sustainable Design for Complexity is a First and Second-level Politecnico di Milano Specializing Master, born as an evolution of… Read more

The Specializing Master Sustainable Design for Complexity is a First and Second-level Politecnico di Milano Specializing Master, born as an evolution of the five editions of the Specializing Master Sustainable Environments and Architecture to give designers, architects, and engineers bespoke, specialized training for ecologically and bioclimatically compatible projects in the built environment, integrating energy planning into new and existing architectural spaces.

Operating Context

Issues of complexity, nomadism, environmental and energy resources, the crisis for cities, and the gradual acceptance of ecological compatibility principles have brought the following needs to the fore:

a design and knowledge approach inspired by sustainable development;

innovation in the principles for settling and building cities and surrounding areas;

tight synergy with the potential technological innovation;

new skills on the part of designers in social, ecological, and energy fields;

finding new ways to design the land, its towns, and a sustainable built environment.

Relation to Job Market

Training is designed to build professionals and researchers:

who can interpret and manage the complexity of new land, town, and architecture scenarios;

who own the knowledge to use renewable energy resources and advanced technology properly;

who are optimally equipped to enhance the enormous potential of new nomadism.

Main Content

This Specializing Master seeks to build opportunities to acquire and experience the following features:

interpretative evaluation of the ways of interethnic living;

innovative approaches to understanding local context and transforming the natural and built environments;

knowledge of advanced technology and the use of alternative energy sources;

integrated design of photovoltaic and thermal solar technology;

integrated design of phytopurification, botanical land use and agronomy;

integrated design of re-naturalized rivers and farmland;

Innovation in the conceptions/concept of the structures.

Starting date: January 29, 2018.



Read less
This programme aims at providing a multidisciplinary background for architects, with a special focus on environmental sustainability and landscape design. Read more

Mission and Goals

This programme aims at providing a multidisciplinary background for architects, with a special focus on environmental sustainability and landscape design. The concept of sustainability is associated with a high quality transformation of landscape, from the macro-scale of urban planning, to the micro-scale of technical details, how the varied scales connect and interrelate with each other. This method is oriented to a physical, social and technical approach, passing over a close specialized theme vision. The international program involves also workshops, study trips, and summer schools.

The programme is taught in english.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

Career Opportunities

The programme trains architects with an expertise in sustainable architecture and landscape design, to follow a career in the private and public sector as covered by EU directives in: architecture, urban planning, urban design, and landscape architecture.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Architecture-Piacenza.pdf
The MSc Degree programme in Sustainable Architecture and Landscape Design offers the student the tools to become an Architect with a sound competence on theories, methods and applications of Architecture and of Landscape Design, highly skilled in the issues of contemporary territories: regeneration of productive landscapes; sustainable transformation of the architectural, urban and rural landscapes; transformation of the built environment and re-use of the existent soil; design of open spaces and infrastructures; protection of the territory; valorisation of the ecological and cultural resources; design strategies for new forms of sustainable inhabiting.
To this aim, this Degree Programme offers a complex view on the environment, dealing with all the landscape forms: from urban, to agricultural and to suburban areas, in line with the European Landscape Convention (2000) which “applies to the entire territory of
the Parties and covers natural, rural, urban and peri-urban areas”. More specifically, the landscape is seen as “represented”, “constructed” and “productive” landscape, with a specific attention to the aspects of sustainability (from a physical, economic and social point of view). The programme is taught in English.

Subjects

Theories of architecture, city and landscape; Steel, timber and reinforced concrete structures; History of architecture and landscape in the contemporary age; Urban and landscape Regeneration studio (environmental technology, landscape as heritage, general ecology); Architectural design studio 1 (sustainable architecture, technical environmental systems, multi-criteria analysis and project appraisal); Urban and environmental design studio (design of public spaces and infrastructures, agronomy and food sciences, sociology of the environment); Architectural design studio 2 (advanced architectural design, topography and cartography, landscape urbanism and land planning); Landscape design studio (advanced landscape design, physical geography and geo-morphology, techniques and tools for environmental design); Landscape representation and aesthetics.

Optional courses
- Italian territories and landscape tradition
- Open source architecture
- Arboriculture and agrobiotechnologies
- Architecture and creativity: cultural industries
- Special topics in landscape (workshop)
- Special topics in architecture(workshop)

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Read more
Significant increases in the global human population, increasing climatic instability and a concurrent reduction in fossil fuel availability, impacting upon agricultural production and policy. Food production must increase without a simultaneous increase in resource use.

Improvements in crop yield and production efficiency often come through the utilisation of individual elements of new research. Integrated Crop Management (ICM) however utilises multiple facets of research simultaneously to bring about larger, more sustainable results. This course focuses on incorporating the latest research to develop students’ critical and analytical thinking in subjects such as pest dynamics, genetic improvement, crop technology, sustainable practice and soil management.

This MSc, delivered at Myerscough and awarded by the University of Central Lancashire will integrate these topics alongside a broader critical evaluation of crop sciences enabling you to design bespoke ICM programmes for given situations.
It is aimed at graduates in biological sciences who are looking to find employment as agronomists, farm advisors, agro-technical specialists particularly in allied agricultural industries. Successful completion of this MSc degree will also facilitate progression to PhD level research in food production science.

COURSE CONTENT:

Year 1

Integrated approaches in high-input cropping systems

High-input crop production systems typically focus on achieving both high yields and profitability. This module explores the science and agronomic principles of a range of crops under such management regimes as well as their associated problems and limitations. Consideration will be given to integrated management approaches currently being adopted by industry as well as the major drivers of these changing practices. These include legislation, resistance to agrochemicals and public acceptance.

Invertebrate Dynamics in Crop Production

Approximately 10-15% of global crop production is lost to invertebrate pests. Conversely, invertebrates constitute a significant ecosystem service through pest predation and pollination. In any integrated production system, the management of invertebrates is therefore fundamental to effective crop production. This module will focus on critical evaluation of current research on invertebrate ecology and dynamics and applying this to their potential impacts on conventional cropping systems. Concepts of pest population dynamics, herbivory and species life histories will be considered in relation to their effects on the crop. Alongside this, their ‘value’ as pollinators, predators, vectors and the effects of lethal and sub-lethal pesticide doses will be evaluated.

Contemporary agronomic research and development

Research into agronomy, technology and management is of critical importance if the industry is to continue to adapt to modern pressures and challenges worldwide. This module will explore the research path including laboratory to field trials and, ultimately, application into practice. Case studies will be explored where research and development has made or could make a significant impact to management practice.

Year 2

Integrated approaches in low-input cropping systems

Low-input cropping systems seek to optimise crop yields whilst using fewer inputs when compared to conventional crop production systems. In parts of the world this is due to a lack of financial and physical resources whilst in others this is due to perceived environmental benefits. This module explores the science of the integrated management of crops under such systems, including enhanced soil management and factors influencing nutrition and disease control. Limitations will also be considered as will approaches that conventional crop production could learn from low-input management systems.

Global Drivers for Agricultural Change

This module examines the global drivers behind the need to refocus agricultural production to meet the needs of the increasing world population and mitigate the impacts of climate change. It will focus on concepts such as the effects of globalisation; the economic issues with pesticide development; the globalisation and privatisation of agricultural technology and the use of targeted pest control techniques. Furthermore, the module will assess the impacts of corporate responsibility and the necessity of having sustainable global supply chains.

Research Methodology and Design

This module provides students with the essential personal, organisational, management, theoretical and statistical skills needed to work at Postgraduate Level. It will explore research philosophies, research process and design and the process of questionnaire development and design. The module will develop skills in advanced data organisation, presentation, dissemination and problem solving.

Year 3

Masters Dissertation

The dissertation is a triple module and allows students to design and conduct a substantial piece of independent, supervised research related to the field of study. The dissertation is an independent piece of academic work which allows the student to identify and work in an area of interest to them and manage the research process to agreed deadlines.

Read less
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Read more
Life and plant science undergraduates, and professionals in commercial horticulture and agriculture looking to develop their career, from the UK and overseas, will benefit from a broad, research-led syllabus. Taught content will equip the graduate with the expertise needed to work independently in a range of areas of current commercial plant science, at supervisory or management level, or in applied research. As well as ensuring a thorough grounding in basic science and horticultural technology, the modern molecular biology content is particularly relevant, since new technologies are rapidly entering the commercial arena. The independent research project will be set in a research institution or appropriate local industry, and will be designed around the student's interests and expertise.

The MSc focuses on methods used in the evaluation and improvement of conventional crops that feed the growing world population, but also alternative protected crops and ornamentals along with postharvest management, business and environmental concerns, and plant stress and disease in a changing climate.

Experts in this increasingly important area are needed in businesses nationally and internationally, in research and innovation, and at government and agency level where the ability to understand and follow current developments is required to guide and direct global sustainable solutions to population change.

The aims of the programme are:
• To provide knowledge of the science of plant biology and its application in the commercial and research arena
• To introduce the practicalities of horticulture and agriculture technologies including consideration of sustainability
• To examine the commercial aspects of this business area, including the planning, execution and evaluation of trials to exploit and develop novel approaches, practices, and crops
• To allow the student to synthesise, evaluate and critically judge which technologies and research findings are of value and appropriate to their current or future employment environment in a UK or international setting.

Visit the website http://www.gre.ac.uk/pg/engsci/aps

Food and Agricultural Sciences

The Natural Resources Institute (NRI) has an internationally-recognised academic reputation and provides taught postgraduate courses in a wonderful environment for students.

NRI provide research, consultancy, training and advisory services to underpin sustainable development, economic growth and poverty reduction. The majority of our activities focus on the harnessing of natural and human capital for the benefit of developing countries, though much of our expertise has proved to be of growing relevance to industrialised nations.

What you'll study

• Molecular and plant biology principles for plant improvement
• Research methods in plant science
• Independent research project
• Plant growth and cropping technology

Options:
• Agroforestry
• Agronomy and crop physiology
• Applications and aspects of commercial crop science
• Food and markets
• Planning for personal and professional development
• Plant disease management

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Examinations, coursework, research project dissertation.

Specialist equipment/facilities

Molecular biology laboratories, horticultural and agricultural facilities

Career options

Production managers - management of plant/crop production (protected and non-protected crops) and postharvest facilities.

Development specialists - selection, development and evaluation of existing and novel plants and crops.

Retailing produce - food and crop technologists, retailing food and non-food derived crops and products, including fresh produce and postharvest technologists.

Institutes, NGOs and governmental bodies - governance and policy linked to application of horticultural/agricultural technologies.

Applied research scientist - application of plant science into practice.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The M.S. degree in Sustainable Agriculture aims to provide advanced knowledge in the field of agricultural systems as well as skills to develop and manage sustainable production systems. Read more

Sustainable agriculture

The M.S. degree in Sustainable Agriculture aims to provide advanced knowledge in the field of agricultural systems as well as skills to develop and manage sustainable production systems.

Programme Summary

The context of the topics is international, having as its main area of investigation warm-temperate environments at a global level. The graduate in Sustainable agriculture must work to achieve food security objectives associated with improving the quality and wholesomeness of food products. The graduate must know the issues related to biodiversity, global change and ecosystem services, which are analyzed according to a systemic and adaptive approach, considering also the traceability of processes.
To address the global challenges, students are equipped with a wide learning platform, and are able to make comparisons between different production systems at the international level in terms of environmental, socio-economics, and regulatory environments.

Dual degree with USA

With the aim of strengthening this global approach to sustainability and food security, the degree program has been included in an internationalization project in collaboration with the University of Georgia, USA, which enables students to achieve a dual degree in "Sustainable Agriculture" (Italy) and "Crop and Soil Science" (USA).

Who is the MSc candidate?

The course is intended for highly-motivated national and international students and is conceived for Bachelor graduates with a main interest in agricultural and environmental sciences.

What career opportunities does the MSc provide?

The graduate in Sustainable Agriculture is able to perform a wide range of activities in a professional and efficient manner:
1) Operate internationally by conducting activities of planning, management, monitoring, coordination and training in agricultural production processes to meet the needs of the international market;
2) Be involved in activities of experimentation and research in both the public and private sectors (eg. Biotechnology companies);
3) Fill a position or interact with international organizations such as FAO, EU and World Bank;
4) Be involved in the transfer of technologies (innovation broker);
5) Manage technical and international business related to agricultural products and processing, and related to agricultural mechanization;
6) Play an active role in private and public structures aimed at land management and the management of water resources, including historical, cultural and landscape values of agricultural land;
7) Collaborate in the establishment and operation of projects in basic and applied research in the field of agricultural production in the international arena.

How is the programme organised?

The training course in Sustainable Agriculture, lasting two years, includes two main areas of study:
1) Production: training in the areas of agronomy, crop and animal productions, soil science, plant breeding, and integrated management of pests and diseases, all aimed at the sustainability of the production process and its social implications;
2) Technology: training in the areas of management and protection of air-soil-water, use of biomass of agricultural plants and animals, land management, and management of the production process (at different geographic scales) considering both innovative technologies and socio-economic aspects.
Learning is based on active studies covering activities in the classroom, in the laboratory and in the field as well as the possibility of using the contribution of Italian and foreign teachers, and industry experts that can provide specific case studies. The program offers intensive individual tutoring of students, as well as the opportunity to intern for six months, in companies in the public and private sectors, possibly abroad, for the study of cases of excellence in preparation of the thesis

Visit the MSc “Sustainable agriculture” page on the Università di Padova web-site http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2016&key=AV2293 for more details.

Read less
In the future, agricultural and horticultural production will demand new intellectual and technological understanding and skills. Read more
In the future, agricultural and horticultural production will demand new intellectual and technological understanding and skills. The new technologies of sensors, computing, data analysis, remote sensing, robotics, drones and systems of data analysis and interpretation will allow new and sophisticated ways of managing both productive and natural environments.

The course will explore and study the high level of technical innovation currently being applied to agricultural and horticultural production, as will business management and the entrepreneurial skills that will be of fundamental importance to those entering this dynamic, technical based sector. Students will gain skills in data capture, processing, infographics, and the application of such technologies to all aspects of production and for the management of natural environments.

This course will be of relevance to those wishing to start a career in this emerging industry, join an established company, or looking to develop the skills needed to start their own enterprise.

Structure

The course may be studied full-time over 12 months. You will study six modules over the autumn and spring terms, followed by a Research Project, which is carried out over the summer to be submitted the following September. This may include a viva voce examination.

You will have the opportunity to engage with real-world problems, to find solutions to current issues and experience the working world of new technologies in animal and crop production, and the natural environment.

Modules are assessed primarily by coursework. Some modules have an examination as part of the assessment.

Modules

• 4230 Production Resource Management
• 4231 Research Project in Agricultural Technology and Innovation
• 4232 Business Development
• 4233 Computing and Information Technology in Precision Agriculture
• 4234 Livestock Production Technology
• 4235 Environmental Technology
• 4236 Crop Production Technology

Career prospects

Graduates are highly likely to go on to pursue a career within:

• The high-tech agricultural and environmental sectors
• Industries allied to crop and animal production
• Technical consultancy
• Government and international agencies
• The development of new companies through entrepreneurial initiatives

Potential job opportunities

• Agricultural and horticultural engineering
• Information technology
• Resource appraisal
• Agronomy
• Farm management

How to apply

For information on how to apply, please follow this link: https://www.rau.ac.uk/STUDY/POSTGRADUATE/HOW-APPLY

Funding

For information on funding, please view the following page: https://www.rau.ac.uk/study/postgraduate/fees-and-funding/funding

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Soil Science aims at training researchers, academics, government staff and expert consultants in the inventory and detailed characterization of land capacity, and of soils in particular. Graduates should be able to understand the development and evolution of soils under natural conditions or following human interference using field, map, laboratory and remote sensing data. They should have the scientific knowledge to use and manage soil and water in a sustainable way, and to optimize land use under different natural and environmental conditions.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning Outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Land Resources Engineering offers training in non-agricultural use and application of soil, and includes geotechnical aspects (use of soil as a building material or for foundations, slope stability and stability of excavations), the role of soil- and groundwater for water management and supply, soil management in relation to environment and land use (erosion, sediment transport, coastal development and protection).

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
Golf is a significant global sport played on diverse areas of land within both urbanised and rural landscapes. Golf course managers are in essence custodians of this land and therefore have a responsibility to manage these facilities for both the game of golf and the environment. Read more
Golf is a significant global sport played on diverse areas of land within both urbanised and rural landscapes. Golf course managers are in essence custodians of this land and therefore have a responsibility to manage these facilities for both the game of golf and the environment. Golf courses offer wide ranging economic, social and environmental opportunities when managed appropriately but face many challenges in the 21st century if they are to survive in a highly competitive social and recreational market place. Competing forms of leisure, economic factors and other constraints continue to impact on golf globally. Course managers have to be mindful of these factors, which directly impact on the resources needed to sustain surfaces and meet customer expectations.

This part-time MA Sustainable Golf Course Management, awarded from the University of Central Lancashire, is an innovative course which encompasses a multidisciplinary approach to contemporary golf course management. The course aims to develop students’ critical and analytical thinking to enable implementation of effective and efficient management practices. The MA will encourage debate and critical evaluation within an environment that develops holistic understanding of international issues.

Year 1

Theoretical Perspectives of Sustainability

In this module you will develop your knowledge and understanding to define sustainability. This will be used to investigate the impact of practice on global resources and the environment. You will critically appraise economic, social and environmental issues in the context of golf course management.

Management of Performance and Quality

In order to successfully manage a golf course in a challenging economic climate you will need to understand customer expectations and demands. This module will develop an understanding of both objective and subjective quality criteria for golf courses to allow you to provide positive customer experiences.

Contemporary Agronomic Research and Development

Research into agronomy, technology and management is of critical importance if the industry is to continue to adapt to modern pressures and challenges worldwide. This module will explore the research path including laboratory to field trials and, ultimately, application into practice. Case studies will be explored where research and development has made or could make a significant impact to management practice.

Year 2

Resource Efficiency and Management

This module will assess the impact that resource management can have on the overall success of the business. Managing physical, financial and human resources efficiently will allow responsible use of finite resources whilst maximising quality output and minimising waste.

Golf Course Policy and Strategic Planning

Management practices can have a significant impact on both the landscape and the fundamental design of a golf course. Within this module you will review the importance of managing and planning structural and physical developments on a golf course through the implementation of a course policy document.

Research Methodology and Design

This module provides students with the essential personal, organisational, management, theoretical and statistical skills needed to work at Postgraduate Level. It will explore research philosophies, research process and design and the process of questionnaire development and design. The module will develop skills in advanced data organisation, presentation, dissemination and problem solving.

Year 3

Masters Dissertation

The dissertation is a triple module and allows students to design and conduct a substantial piece of independent, supervised research related to the field of study. The dissertation is an independent piece of academic work which allows the student to identify and work in an area of interest to them and manage the research process to agreed deadlines.

Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less

Show 10 15 30 per page



Cookie Policy    X