• University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Coventry University Featured Masters Courses
Imperial College London Featured Masters Courses
Cass Business School Featured Masters Courses
Loughborough University Featured Masters Courses
"data"×
0 miles

Masters Degrees (Data)

  • "data" ×
  • clear all
Showing 1 to 15 of 3,620
Order by 
Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Read more
Data science combines computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. Data scientists help organisations make sense of their data. As data is collected and analysed in all areas of society, demand for professional data scientists is high and will grow higher. The emerging Internet of Things, for instance, will produce a whole new range of problems and opportunities in data analysis.

In the Data Science master’s programme, you will gain a solid understanding of the methods used in data science. You will learn not only to apply data science: you will acquire insight into how and why methods work so you will be able to construct solutions to new challenges in data science. In the Data Science master’s programme, you will also be able to work on problems specific to a scientific discipline and to combine domain knowledge with the latest data analysis methods and tools. The teachers of the programme are themselves active data science researchers, and the programme is heavily based on first-hand research experience.

Upon graduating from the Data Science MSc programme, you will have solid knowledge of the central concepts, theories, and research methods of data science as well as applied skills. In particular, you will be able to:
-Understand the general computational and probabilistic principles underlying modern machine learning and data mining algorithms.
-Apply various computational and statistical methods to analyse scientific and business data.
-Assess the suitability of each method for the purpose of data collection and use.
-Implement state-of-the-art machine learning solutions efficiently using high-performance computing platforms.
-Undertake creative work, making systematic use of investigation or experimentation, to discover new knowledge.
-Report results in a clear and understandable manner.
-Analyse scientific and industrial data to devise new applications and support decision making.

The MSc programme is offered jointly by the Department of Computer Science, the Department of Mathematics and Statistics, and the Department of Physics, with support from the Helsinki Institute for Information Technology (HIIT) and the Helsinki Institute of Physics (HIP), all located on the Kumpula Science campus. In your applied data science studies you can also include multidisciplinary studies from other master's programmes, such as digital humanities, and natural and medical sciences.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Data Science MSc programme combines elements from computer science and mathematical sciences to provide you with skills in topics such as machine learning, distributed systems and statistical methods. You might also find that knowledge in a particular scientific field is useful for your future career. You can obtain this through minor studies in the MSc programme, or it might already be part of your bachelor-level degree.

Studies in the Data Science MSc programme include both theoretical and practical components, including a variety of study methods (lectures, exercises, projects, seminars; done both individually and in groups). Especially in applied data science, we also use problem-based learning methods, so that you can address real-world issues. You will also practise academic skills such as scientific writing and oral presentation throughout your studies. You are encouraged to include an internship in your degree in order to obtain practical experience in the field.

Minor studies give you a wider perspective of Data Science. Your minor subject can be an application area of Data Science (such as physics or the humanities), a discipline that supports application of Data Science (such as language technology), or a methodological subject needed for the development of new Data Science methods and models (such as computer science, statistics, or mathematics).

Selection of the Major

You can specialise either in the core areas of data science -- algorithms, infrastructure and statistics -- or in its applications. This means that you can focus on the development of new models and methods in data science, supported by the data science research carried out at the University of Helsinki; or you can become a data science specialist in an application field by incorporating studies in another subject. In addition to mainstream data science topics, the programme offers two largely unique opportunities for specialisation: the data science computing environment and infrastructure, and data science in natural sciences, especially physics.

Programme Structure

You should be able to complete the MSc Programme in Data Science of 120 credits (ECTS) in two years of full-time study. The programme consists of:
-Common core studies of basic data science courses.
-Several modules on specific topics within data science algorithms, data science infrastructures and statistical data science, and on data science tools.
-Seminars and colloquia.
-Courses on academic skills and tools.
-Possibly an internship in a research group or company.
-Studies in an application domain.
-Master’s thesis (30 credits).

Career Prospects

Industry and science are flooded with data and are struggling to make sense of it. There is urgent demand for individuals trained to analyse data, including massive and heterogeneous data. For this reason, the opportunities are expected to grow dramatically. The interdisciplinary Data Science MSc programme will train you to work in data-intensive areas of industry and science, with the skills and knowledge needed to construct solutions to complex data analysis problems.

If you are focusing on the core areas of data science, you will typically find employment as a researcher or consultant, sometimes after taking a PhD in Computer Science or Statistics to deepen your knowledge of the field and research methods. If your focus is on the use of data science for specific applications, you will typically find work in industry or in other fields of science such as physics, digital humanities, biology or medicine.

Internationalization

The Data Science MSc is an international programme, with students from around the world and an international research environment. All of the departments taking part in the programme are internationally recognised for their research and a significant fraction of the teaching and research staff come from abroad.

The departments participate in international student exchange programmes and offer you the chance to include international experience as part of your degree. Data Science itself is an international field, so once you graduate you can apply for jobs in any country.

In the programme, all courses are in English. Although the Helsinki area is quite cosmopolitan and English is widely spoken, you can also take courses to learn Finnish at the University of Helsinki Language Centre. The Language Centre also offers an extensive programme of foreign language courses for those interested in learning other languages.

Research Focus

The MSc programme in Data Science is offered jointly by three departments and two research institutes. Their research covers a wide spectrum of the many aspects of data science. At a very general level, the focal areas are:
-Machine learning and data mining
-Distributed computation and computational infrastructures
-Statistical modelling and analysis
-Studies in the programme are tightly connected to research carried out in the participating departments and institutes.

Read less
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data"). Read more
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data").

Why study Data Science at Dundee?

The School of Computing has been working on 'big data' and data analysis for at least five years; not only working with data but also developing new algorithms and techniques for data scientists. The School already runs the most successful Business Intelligence Masters course in the UK.

This course will be led by Professor Mark Whitehorn and Andy Cobley. Mark is an emeritus professor at the University of Dundee and also runs a successful consultancy company that specialises in BI, Data Sciences and analytics. Andy is the course organiser for both the existing BI course and the new Data Science course.

This course will enhance your employability by providing you with knowledge, skills and understanding of data science research and implementation. You will also acquire skills in the professional procedures necessary to ensure that data science research and implementation is both valid and actionable and engage with contemporary debate about the role, ethics and utility of data science in commercial and other settings.

What is the difference between Data Science and Business Intelligence?

There is clearly a huge overlap with Business Intelligence. A BI specialist will need to understand data and data analytics. However there is a bias towards understanding how data is stored in the current operational systems within an enterprise the design and the implementation of an analytical system such as a data warehouse. A data scientist will be less concerned with the construction of a data warehouse and more interested in the message the specific sets of data can deliver.

However, without some understanding of data warehouses the data scientist will find it difficult to interrogate the data for its secrets. For this reason there is overlap between the two courses.

If you already have a strong grounding in Business Intelligence and would like to upgrade your knowledge to include topics from the Data Science MSc, we offer the relevant Data Science modules either on a stand alone basis or as a PGCert.

What's so good about Data Science at Dundee?

Our facilities will give you 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

A booming Postgraduate culture where the School of Computing maintains a friendly, intimate and supportive atmosphere, and we take pride in the fact that we know all of our students - you're far more than just a matriculation number to us. We have a thriving postgraduate department with regular seminars and guest speakers.

Duncan Ross (Director of Data Sciences at Teradata) has said that: "The first and most important trait is curiosity. Insane curiosity. In many walks of life evolution selects against the kind of person who decides to find out what happens 'if I push that button'. Data Science selects for it."

How you will be taught

The programme will be delivered by Prof. Mark Whitehorn with input from Andy Cobley, Yasmeen Ahmad, Chris Hillman and other specialists from within the School of Computing in an innovative blend of live co-presented master-classes, video seminars and recorded materials. A series of guest speakers from industry will provide case studies across both semesters.

The programme will be provided predominantly on-campus, with two intensive study weeks in each of the semesters. Other classes may be taken off-campus using the university’s VLE, remote desktop, Adobe Connect and video conferencing systems along with telephone conferencing.

What you will study

Semester 1
Big Data - 20 Credits
Business Intelligent Systems - 20 Credits
Data Analysis and Visualisation - 20 Credits

Semester 2
Analytical Database Models and Design - 20 Credits
Advanced statistics and data mining - 20 credits
MDX - 20 Credits

Semester 3
Data Science Mini Project - 20 credits (for Certificate)
Data Science Research Project - 60 credits

PGCert:
The PGCert is intended for students who have a strong grounding in Business Intelligence and would like to upgrade their knowledge to include topics from the Data Science MSc. The modules are available stand alone for those who want to take their time studying the material and perhaps build up to a PGCert.

The three modules that make up the PGCert are:
Big Data
Advanced Anlaysis
Mini Project

For more information about the content of the course, please visit the course webpage on the School of Computing website.

How you will be assessed

Assessment will be by examination, practical coursework and research project.

Careers

Various job sites now report an increase in jobs carrying the title of data scientist. Other career opportunities are in intelligence analysis, data management/database maintenance, data processing manager, database development and research, business intelligence consultant and more.

Read less
Master in BIG DATA. Read more
Master in BIG DATA : Data Analytics, Data Science, Data Architecture”, accredited by the French Ministry of Higher Education and Research, draws on the recognized excellence of our engineering school in business intelligence and has grown from the specializations in Decision Support, Business Intelligence and Business Analytics. The Master is primarily going to appeal to international students, "free movers" or those from our partner universities or for high-potential foreign engineers who are looking for an international career in the domain of Business Analytics.

This program leads to a Master degree and a Diplôma accredited by the French Ministry of Higher Education and research.

Objectives

Business Intelligence and now Business Analytics have become key elements of all companies.

The objective of this Master is to train specialists in information systems and decision support, holding a large range of mathematic- and computer-based tools which would allow them to deal with real problems, analyzing their complexity and bringing efficient algorithmic and architectural solutions. Big Data is going to be the Next Big Thing over the coming 10 years.

The targeted applications concern optimization in the processing of large amounts of data (known as Big Data), logistics, industrial automation, but above all it’s the development of BI systems architecture. These applications have a role in most business domains: logistics, production, finance, marketing, client relation management.

The need for trained engineering specialists in these domains is growing constantly: recent studies show a large demand of training in these areas.

Distinctive points of this course

• The triple skill-set with architecture (BI), data mining and business resource optimization.
• This master will be run by a multidisciplinary group: statistics, data mining, operational research, architecture.
• The undertaking of interdisciplinary projects.
• The methods and techniques taught in this program come from cutting-edge domains in industry and research, such as: opinion mining, social networks and big data, optimization, resource allocation and BI systems architecture.
• The Master is closely backed up by research: several students are completing their end-of-studies project on themes from the [email protected] laboratory, followed and supported by members from the laboratory (PhD students and researcher teachers).
• The training on the tools used in industry dedicated to data mining, operational research and Business Intelligence gives the students a plus in their employability after completion.
• Industrial partnerships with companies very involved in Big Data have been developed:
• SAS via the academic program and a ‘chaire d’entreprise’ (business chair), allowing our students access to Business Intelligence modules such as Enterprise Miner (data mining) and SAS-OR (in operational research).

Practical information

The Master’s degree counts for 120 ECTS (European Credit Transfer System) in total and lasts two years. The training lasts 1252 hours (611 hours in M1 and 641 hours in M2). The semesters are divided as follows:
• M1 courses take place from September until June and count for a total of 60 ECTS
• M2 courses take place from September until mid-April and count for a total of 42ECTS
• A five-month internship (in France) from mid- April until mid- September for 9 ECTS is required and a Master thesis for 9 ECTS.

Non-French speakers will be asked to participate to a one week intensive French course that precedes the start of the program and allows students to gain the linguistic knowledge necessary for daily interactions.

[[Organization ]]
M1 modules are taught from September to June (60 ECTS, 611 h)
• Data exploration
• Inferential Statistics (3 ECTS, 30h, 1 S*)
• Data Analysis (2 ECTS, 2h, 1 S)
• Mathematics for Computer science
• Partial Differential Equations and Finite Differences (3 ECTS, 30h, 1 S)
• Operational Research: Linear Optimization (2 ECTS, 20h, 1 S)
• Combinatory Optimization (2 ECTS, 18h, 1 S)
• Complexity theory (1 ECTS, 9h, 1 S)
• Simulation and Stochastic Process (3 ECTS, 30h, 2 S**)
• Introduction to Predictive Modelling (2ECTS, 21h, 2 S)
• Deterministic and Stochastic Optimization (3 ECTS, 30h, 2 S)
• Introduction to Data Mining (2 ECTS, 21h, 2 S)
• Software and Architecture
• Object-Oriented Modelling (OOM) with UML (3 ECTS, 30h, 1 S)
• Object-Oriented Design and Programming with Java (2 ECTS, 30h, 1 S)
• Relational Database: Modelling and Design (3ECTS, 30h, 1 S)
• PLSQL (2 ECTS, 21h, 2 S)
• Architecture and Network Programming (3 ECTS, 30h, 2 S)
• Parallel Programming (3 ECTS, 30h, 2 S)
• Engineering Science
• Signal and System (3 ECTS, 21 h, 1 S)
• Signal processing (3 ECTS, 30h, 1 S)

• Research Initiation
• Scientific Paper review (1 ECTS, 9h, 1 S)
• Final research project on BIG DATA (5 ECTS, 50h, 2 S)
• Project Management
• AGIL Methods & Transverse Project (2 ECTS, 21h, 2 S)
• Languages and workshops
• French and Foreign languages (6 ECTS, 61h, 1&2 S)
• Personal and Professional Project (1 ECTS, 15, 1 S)
*1 S= 1st semester, ** 2 S= 2nd semester

M2 Program: from September to September (60 ECTS, 641h)
M2 level is a collection of modules, giving in total 60 ECTS (42 ECTS for the modules taught from September to April, plus 9 ECTS for the internship and 9 ECTS for the Master thesis).

Computer technologies
• Web Services (3 ECTS, 24h, 1 S)
• NOSQL (2 ECTS, 20h, 1 S)
• Java EE (3 ECTS, 24, 1S)
Data exploration
• Semantic web and Ontology (2 ECTS, 20h, 1 S)
• Data mining: application (2 ECTS, 20h, 1S)
• Social Network Analysis (2ECTS, 18h, 1S)
• Collective intelligence: Web Mining and Multimedia indexation (2 ECTS, 20h, 2 S)
• Enterprise Miner SAS (2 ECTS, 20h, 2 S)
• Text Mining and natural language (2 ECTS, 20h, 2 S)
Operations Research
• Thorough operational research: modelling and business application (2 ECTS, 21h, 1 S)
• Game theory (1 ECTS, 10h, 1 S)
• Forecasting models (2 ECTS, 20h, 1 S)
• Constraint programming (2 ECTS, 20h, 2 S)
• Multi-objective and multi-criteria optimisation (2 ECTS, 20h, 2 S)
• SAS OR (2 ECTS, 20h, 2 S)
Research Initiation Initiative
• Scientific Paper review (1 ECTS, 10h, 1 S)
• Final research project on BIG DATA (2 ECTS, 39, 2 S)
BI Architecture
• BI Theory (2 ECTS, 20h, 2 S)
• BI Practice (2 ECTS, 20h, 2 S)
Languages and workshops (4 ECTS, 105h, 1&2 S)
• French as a Foreign language
• CV workshop
• Personal and Professional Project
Internship
• Internship (9 ECTS, 22 weeks minimum)
Thesis
• Master thesis (9 ECTS, 150h)

Teaching

Fourteen external teachers (lecturers from universities, teacher-researchers, professors etc.), supported by a piloting committee, will bring together the training given in Cergy.

All the classes will be taught in English, with the exception of:
• The class of FLE (French as a foreign language), where the objective is to teach the students how to understand and express themselves in French.
• Cultural Openness, where the objective is to enrich the students’ knowledge of French culture.
The EISTI offers an e-learning site to all its students, which complements everything the students will learn through their presence and participation in class:
• class documents, practical work and tutorials online
• questions and discussions between teachers and students, and among students
• a possibility of handing work in online

All Master’s students are equipped with a laptop for the duration of the program that remains the property of the EISTI.

Read less
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights. Read more
Data science is an emerging new area of science. With City’s MSc in Data Science you can develop the skills and knowledge to analyse data in many forms and communicate insights.

Who is it for?

This programme is for students who have a numerate first degree or can demonstrate numerate skills. Students are often at the early stages of their careers in diverse professions including economics, statistics and computer science.

Students will have a curiosity about data, and will want to learn new techniques to boost their career and be part of exciting current industry developments. The MSc in Data Science includes some complex programming tasks because of the applied nature of the course, so many students have a mathematics or statistics background and enjoy working with algorithms.

Objectives

The demand for data scientists in the UK has grown more than ten-fold in the past five years *. The amount of data in the world is growing exponentially. From analysing tyre performance to detecting problem gamblers, wherever data exists, there are opportunities to apply it.

City’s MSc Data Science programme covers the intersection of computer science and statistics, machine learning and practical applications. We explore areas such as visualisation because we believe that data science is about generating insight into data as well as its communication in practice.

The programme focuses on machine learning as the most exciting technology for data and we have learned from our own graduates that this is of high value when it comes to employment within the field. At City, we have excellent expertise in machine learning and the facilities students need to learn the technical aspects of data analysis. We also have a world-leading centre for data visualisation, where students get exposed to the latest developments on presenting and communicating their results – a highly sought after skill.

Placements

There is the opportunity to do an internship as part of the programme. The final project, which is normally three months for a full-time student, can be extended to six months if you want to study within a specific organisation. When it comes to the big data and data science area, we have established relationships with organisations including the BBC, Microsoft and The British Library so you can be confident that with City, your access to professional experience is unparalleled. One recent student undertook an internship with Google and has since secured a job within the company.

Academic facilities

The School's computer science laboratories are equipped with the latest up-to-date hardware and software. From Oracle’s leading commercial object-relational database server to PCs with state-of-the-art NVidia GPUs for computer graphics, you will have access to an array of tools to support your learning.

The MSc Data Science programme offers two (three by mid 2016) dedicated computer servers for the Big Data module, which you can also use for your final project to analyse large data sets. We give you the opportunity to undertake training in MATLAB, the most popular numerical and technical programming environment, while you study.

Scholarships

A scholarship for the full fees of the MSc will be offered to an outstanding applicant. The scholarship is available to UK/EU and overseas students, studying full-time. To be considered for the scholarship, please include with your full application a one-page essay with your answer to the question:

'What are the challenges that Data Science faces and how would you address those challenges?'

The submission deadline for anyone wishing to be considered for the scholarship is: 1 MAY 2017

Teaching and learning

The teaching and learning methods we use mean that students’ specialist knowledge and autonomy increase as they progress through each module. Active researchers guide your progress in the areas of machine learning, data visualization, and high-performance computing, which culminates with an individual project. This is an original piece of research conducted with academic supervision, but largely independently and, where appropriate, in collaboration with industrial partners.

Taught modules are delivered through a series of 20 hours of lectures and 10 hours of tutorials/laboratory sessions. Lectures are normally used to:
-Present and exemplify the concepts underpinning a particular subject.
-Highlight the most significant aspects of the syllabus.
-Indicate additional topics and resources for private study.

Tutorials help you develop the skills to apply the concepts we have covered in the lectures. We normally achieve this through practical problem solving contexts.

Laboratory sessions give you the opportunity to apply concepts and techniques using state-of-the-art software, environments and development tools.

In addition to lectures, laboratory sessions and tutorial support, you also have access to a personal tutor. This is an academic member of staff from whom you can gain learning support throughout your degree. In addition, City’s online learning environment Moodle contains resources for each of the modules from lecture notes and lab materials, to coursework feedback, model answers, and an interactive discussion forum.

We expect you to study independently and complete coursework for each module. This should amount to approximately 120 hours per module if you are studying full time. Each module is assessed through a combination of written examination and coursework, where you will need to answer theoretical and practical questions to demonstrate that you can analyse and apply data science methods and techniques.

The individual project is a substantial task. It is your opportunity to develop a research-related topic under the supervision of an academic member of staff. This is the moment when you can apply what you have learnt to solve a real-world problem using large datasets from industry, academia or government and use your knowledge of collecting and processing real data, designing and implementing big data methods and applying and evaluating data analysis, visualisation and prediction techniques. At the end of the project you submit a substantial MSc project report, which becomes the mode of assessment for this part of the programme.

Course content

Data science is the area of study concerned with the extraction of insight from large collections of data.

The course covers the study, integration and application of advanced methods and techniques from:
-Data analysis and machine learning
-Data visualisation and visual analytics
-High-performance, parallel and distributed computing
-Knowledge representation and reasoning
-Neural computation
-Signal processing
-Data management and information retrieval.

It gives you the opportunity to specialise so, once you graduate, you can apply data science to any sector from health to retail. By engaging with researchers and industrial partners during the programme, you can develop your knowledge and skills within a real-world context in each of the above areas.

Core modules
-Principles of data science (15 credits)
-Machine learning (15 credits)
-Big Data (15 credits)
-Neural computing (15 credits)
-Visual analytics (15 credits)
-Research methods and professional issues (15 credits)

Elective modules
-Advanced programming: concurrency (15 credits)
-Readings in computer science (15 credits)
-Advanced databases (15 credits)
-Information retrieval (15 credits)
-Data visualisation (15 credits)
-Digital signal processing and audio programming (15 credits)
-Cloud computing (15 credits)
-Computer vision (15 credits)
-Software agents (15 credits)

Individual project - (60 credits)

Career prospects

From health to retail, and from the IT industry to government, the Data Science MSc will prepare you for a successful career as a data scientist. You will graduate with specialist skills in data acquisition, information extraction, aggregation and representation, data analysis, knowledge extraction and explanation, which are in high demand.

City's unique internships, our emphasis on machine learning and visual analytics, together with our links with the industry and Tech City, should help you gain employment as a specialist in data analysis and visualization. Graduates starting a new business can benefit from City's London City Incubator and City's links with Tech City, providing support for start-up businesses.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics
- Data Science Research Methods and Seminars
- Big Data and Data Mining
- Big Data and Machine Learning
- Mathematical Skills for Data Scientists
- Data Visualization
- Human Computer Interaction
- High Performance Computing in C/C++
- Graphics Processor Programming
- Computer Vision and Pattern Recognition
- Modelling and Verification Techniques
- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst
- Data mining Developer
- Machine Learning Developer
- Visual Analytics Developer
- Visualisation Developer
- Visual Computing Software Developer
- Database Developer
- Data Science Researcher
- Computer Vision Developer
- Medical Computing Developer
- Informatics Developer
- Software Engineer

Read less
Big data has turned out to have giant potential, but poses major challenges at the same time. On the one hand, big data is driving the next stage of technological innovation and scientific discovery. Read more

Big Data and Data Engineering

Big data has turned out to have giant potential, but poses major challenges at the same time. On the one hand, big data is driving the next stage of technological innovation and scientific discovery. Accordingly, big data has been called the “gold” of the digital revolution and the information age. On the other hand, the global volume of data is growing at a pace which seems to be hard to control. In this light, it has been noted that we are “drowning in a sea of data”.

Faced with these prospects and risks, the world requires a new generation of data specialists. Data engineering is an emerging profession concerned with big data approaches to data acquisition, data management and data analysis. Providing you with up-to-date knowledge and cutting-edge computational tools, data engineering has everything that it takes to master the era of big data.

Program Features

The Data Engineering program is located at Jacobs University, a private and international English-language academic institution in Bremen, Germany. The two-year program offers a fascinating and profound insight into the foundations, methods and technologies of big data. Students take a tailor-made curriculum comprising lectures, tutorials, laboratory trainings and hands-on projects. Embedded into a vibrant academic context, the program is taught by renowned experts. In a unique setting, students also team up with industry professionals in selected courses. Core components of the program and areas of specialization include:

- The Big Data Challenge
- Data Analytics
- Big Data Bases and Cloud Services
- Principles of Statistical Modeling
- Data Acquisition Technologies
- Big Data Management
- Machine Learning
- Semantic Web and Internet of Things
- Data Visualization and Image Processing
- Document Analysis
- Internet Security and Privacy
- Legal Aspects of Data Engineering and Data Ethics

For more details on the Data Engineering curriculum, please visit the program website at http://www.jacobs-university.de/data-engineering.

Career Options

Demand for data engineers is massive – in industry, commerce and the public sector. From IT to finance, from automotive to oil and gas, from health to retail: companies and institutions in almost every domain need experts for data acquisition, data management and data analysis. With an MSc degree in Data Engineering, you will excel in this most exciting and rewarding field with very attractive salaries. Likewise, an MSc degree in Data Engineering allows you to move on to a PhD and to a career in science an research.

Application and Admission

The Data Engineering program starts in the first week of September every year. Please visit http://www.jacobs-university.de/graduate-admission or use the contact form to request details on how to apply. We are looking forward to receiving your inquiry.

Scholarships and Funding Options

All applicants are automatically considered for merit-based scholarships of up to € 12,000 per year. Depending on availability, additional scholarships sponsored by external partners are offered to highly gifted students. Moreover, each admitted candidate may request an individual financial package offer with attractive funding options. Please visit http://www.jacobs-university.de/study/graduate/fees-finances to learn more.

Campus Life and Accommodation

Jacobs University’s green and tree-shaded campus provides much more than buildings for teaching and research. It is home to an intercultural community which is unprecedented in Europe. A Student Activities Center, various sports facilities, a music studio, a student-run café/bar, concert venues and our Interfaith House ensure that you will always have something interesting to do.

For graduate students who would like to live on campus, Jacobs University offers accommodation in four residential colleges. Each college has its own dining room, recreational lounge, study areas, and common and group meeting rooms. Please visit http://www.jacobs-university.de/study/graduate/campus-life for more information.

Read less
What's the "sexiest job of the 21st century"? According to Harvard Business Review, it's data scientist. A job devoted to giving structure to large quantities of formless data. Read more
What's the "sexiest job of the 21st century"? According to Harvard Business Review, it's data scientist. A job devoted to giving structure to large quantities of formless data. Ever-changing, ever-challenging big data.

The Master of Data Science (MDS) teaches you how to explore data and discover its potential – how to find innovative solutions to real problems in science, business and government, from technology start-ups to global organisations.With a degree in science, engineering, arts or computing, you can pursue a Master of Data Science, gaining skills in data management, data analytics and data processing – skills needed in this fast-growing field.

The MDS expands your knowledge of the analytical, organisational and computational aspects of data. You learn to manage data and gain an understanding of its impact on society.

The MDS caters to students from a variety of backgrounds by including foundation units in programming, databases and maths or statistics. However, if you have this background from previous studies or work experience, you may accelerate your study with an exemption from these units, or choose to take more data science electives.

The core coursework covers data science objectives, data analysis and data management. You then select data science electives such as applied data analysis, visualisation, data pre-processing, big data handling and data in society. You can also choose to take the Advanced Data Analytics stream where you build deeper skills in data analytics and machine learning.

Our highly regarded faculty takes great pride in developing the most up-to-date material while maintaining a solid core of established theory and platforms, including Python and R (two of the most popular open-source programming languages for data analysis), Hadoop and Spark (for distributed processing). You also gain hands-on experience with state-of-the-art tools and get exposure to key industry players.

In your final semester, you may take part in an Industry Experience team project, working with industry mentors to develop data-driven IT solutions. Or you may undertake a minor-thesis research project, investigating cutting-edge problems under the supervision of internationally recognised researchers.

Visit the website http://www.study.monash/courses/find-a-course/2016/data-science-c6004?domestic=true

Course Structure

The course is structured in three parts, A, B and C. All students complete Part B (core studies). Depending upon prior qualifications, you may receive credit for Part A (foundation studies) or Part C (advanced studies) or a combination of the two.

Note that if you are eligible for credit for prior studies you may elect not to receive the credit.

PART A. Foundations for advanced data science studies
These studies will provide an orientation to the field of data science at graduate level. They are intended for students whose previous qualification is not in a cognate field.

PART B. Core Master's study
These studies draw on best practices within the broad realm of data science practice and research. You will gain a critical understanding of theoretical and practical issues relating to data science. Your study will focus on your choice either of data science or advanced data analytics.

PART C. Advanced practice
The focus of these studies is professional or scholarly work that can contribute to a portfolio of professional development. You have two options.

The first option is a program of coursework involving advanced study and an Industry experience studio project.

The second option is a research pathway including a thesis. Students wishing to use this Masters course as a pathway to a higher degree by research should take this second option.

Students admitted to the course, who have a recognised honours degree in a discipline cognate to data science, will receive credit for Part C, however, should they wish to complete a 24 point research project as part of the course they should consult with the course coordinator.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/information-technology

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/data-science-c6004?domestic=true#making-the-application

Read less
Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms. Data plays a role in almost every scientific discipline, business industry or social organisation. Read more
Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms.

Data plays a role in almost every scientific discipline, business industry or social organisation. Medical scientists sequence human genomes, astronomers generate terabytes of data per hour with huge telescopes and the police employ seismology-like data models that predict where crimes will occur. And of course, businesses like Google and Amazon are shifting user preference data to fulfil desires we don’t even know we have. There is therefore an urgent need for data scientists in whole array of fields. In the Master’s specialisation in Data Science you’ll learn how to turn data into knowledge with the help of computers and how to translate that knowledge into solutions.

Although this Master’s is an excellent stepping-stone for students with ambitions in research, most of our graduates work as data consultants and data analysts for commercial companies and governmental organisations.

Why study Data Science at Radboud University?

- This specialisation builds on the strong international reputation of the Institute for Computing and Information Sciences (iCIS) in areas such as machine learning, probabilistic modelling, and information retrieval.
- We’re leading in research on legal and privacy aspects of data science and on the impact of data science on society and policy.
- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.
- Because of its relevance to all kinds of different disciplines, we offer our students the chance to take related courses at other departments like at language studies (information retrieval and natural language processing), artificial intelligence (machine learning for cognitive neuroscience), chemistry (pattern recognition and chemometrics) and biophysics (machine learning and optimal control).
- The job opportunities are excellent: some of our students get offered jobs before they’ve even graduated and almost all of our graduates have positions within six months after graduating.
- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Computing Science together with the specialisation in Web and Language Interaction (Artificial Intelligence). This will take three instead of two years.

See the website http://www.ru.nl/masters/datascience

Admission requirements for international students

- A proficiency in English
In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- TOEFL score of >550 (paper based) or >213 (computer based) or >80 (internet based)
- IELTS score of >6.0
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data:
- To come up with a creative and useful solution.
- To find or program the right tool to turn the data into knowledge.
- To communicate the obtained findings to others.

By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

The job perspective for our graduates is excellent. Industry desperately needs data science specialists at an academic level, and thus our graduates have no difficulty in find an interesting and challenging job. A few of our graduates decide to go for a PhD and stay at the university, but most of our students go for a career in industry. They then typically either find a job at a larger company as consultant or data analysis, or start up their own company in data analytics.

Examples of companies where our graduates end up include SMEs like Orikami, Media11 and FlexOne, and multinationals like ING Bank, Philips, ASML, Capgemini, Booking.com and perhaps even Google.

Our approach to this field

Data nowadays plays a role in almost every scientific discipline as well as industry and is rapidly becoming a key driver of scientific discoveries, business innovation, and solutions for societal challenges such as better healthcare. Medical scientists are sequencing and analysing human genomes to uncover clues to infections, cancer, and other diseases. With huge telescopes, astronomers generate terabytes of data per hour to study the formation of galaxies and the evolution of quasars. Businesses like Google and Amazon are sifting social networking and user preference data to fulfill desires we don't even know we have. Police employing seismology-like data models can predict where crimes will occur and prevent them from happening.

It is then with good reason that data science has been called the sexiest job of the 21st century. Many companies complain about the difficulty to find skilled data scientists and predict this to be even harder in the future. A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data, to come up with a creative and useful solution, to find or program the right tool to turn the data into knowledge, and to communicate the obtained findings to others. By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

See the website http://www.ru.nl/masters/datascience

Read less
Take advantage of one of our 100 Master’s Scholarships to study Health Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Health Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Healthcare, with an already established strong relationship with Information & Communication Technologies (ICT), is continuously expanding the knowledge forefront as new methods of acquiring data concerning the health of human beings are developed.

Processing this data to extract valuable information about a population (epidemiological applications) or the individual (personalised healthcare applications) is the work of health data scientists. Their work has the potential to improve quality of life on a large scale.

Swansea University is the first institution in the UK to offer this taught master's programme in Health Data Science designed to develop the essential skills and knowledge required of the Health Data Scientist.

Key Features of the Health Data Science Programme

- A one year full-time taught master's programme designed to develop the essential skills and knowledge required of the Health Data Scientist.
- The Health Data Science course is also available for three years part-time study.
- An integrated programme of studies tailored to the essential skill set required for Data Scientists operating within healthcare organisations covering key topics in computation, data modeling, visualisation, machine learning and key methodologies in the analysis of linked health data.
- Hands on experiential learning from the professionals behind the Secure Anonymised Information Linkage (SAIL) Databank, a UK-exemplar project for the large scale mining of healthcare data within a secure environment.
- Strong collaboration links with colleagues from the Centre for Health Services Research of the University of Western Australia, a group of leading experts in the analysis of linked health data.
- The Health Data Science course is based within the award winning Centres for Excellence for Administrative Data and eHealth Research of Swansea University, awarded by the Economic and Social Research Council (ESRC) and Medical Research Council (MRC), enhancing the quality of the course.

Who should study MSc Health Data Science?

The Health Data Science course is suitable for those working in healthcare with roles involving the analysis of health data and also computer scientists with experience in working with data from the healthcare domain, as well as biomedical engineers and other similar professions.

Course Structure

Students must complete 6 modules of 20 credits each and produce a 60 credits dissertation on a Health Data Science project. Each module of the programme requires a short period of attendance that is augmented by preparatory and reflective material supplied via the course website before and after attendance.

Attendance Pattern

Health Data Science students are required to attend the University for 1 week (5 consecutive days) for each module in Part One. Attendance during Part Two is negotiated with the supervisor.

Modules

Modules on the Health Data Science programme typically include:

Scientific Computing and Health Care
Health Data Modelling
Introductory Analysis of Linked Health Data
Machine Learning in Healthcare
Health Data Visualisation
Advanced Analysis of Linked Health Data

Professional Development

The College of Medicine offers the modules on the Health Data Science course as standalone opportunities for prospective students to undertake continued professional development (CPD) in the area of Health Data Science.

You can enroll on the individual modules for the Health Data Science programme as either an Associate Student (who will be required to complete the module(s) assessments) or as a Non-Associate Student (who can attend all teaching sessions but will not be required to complete any assessments).

For information and advice on applying for any of the continuing education opportunities, please contact the College directly at .

Employability

Postgraduate study has many benefits, including enhanced employability, career progression, intellectual reward and the opportunity to change direction with a conversion course.

From the moment you arrive in Swansea, specialist staff in Careers and Employability will help you plan and prepare for your future. They will help you identify and develop skills that will enable you to make the most of your postgraduate degree and enhance your career options. The services they offer will ensure that you have the best possible chance of success in the job market.

The student experience at Swansea University offers a wide range of opportunities for personal and professional development through involvement in many aspects of student life.

Co-curricular opportunities to develop employability skills include national and international work experience and study abroad programmes and volunteering, together with students' union and athletic union societies, social and leisure activities.

For the MSc Health Data Science course, we are in the process of identifying opportunities for our students to complete volunteering placements with a number of our collaborative partners.

Read less
The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science- http://www.gold.ac.uk/pg/msc-data-science/. Read more
The MSc in Data Science will provide you with the technical and practical skills to analyse the big data that is the key to success in future business, digital media and science- http://www.gold.ac.uk/pg/msc-data-science/

The rate at which we are able to create data is rapidly accelerating. According to IBM, globally, we currently produce over 2.5 quintillion bytes of data a day. This ranges from biomedical data to social media activity and climate monitoring to retail transactions. These enormous quantities of data hold the keys to success across many domains from business and marketing to treating cancer or mitigating climate change.

The pace at which we produce data is rapidly outstripping our ability to analyse and use it. Science and industry are crying out for a new generation of data scientists who combine the statistical skills of data analysis and the computational skills needed to carry out this analysis on a vast scale.

The MSc in Data Science provides you with these skills.

Studying this Masters, you will learn the mathematical foundations of statistics, data mining and machine learning, and apply these to practical, real world data.

As well as these statistical skills, you will learn the computational techniques needed to efficiently analyse very large data sets. You will apply these skills to a range of real world data, under the guidance of experts in that domain. You will analyse trends in social media, make financial predictions and extract musical information from audio files.

The degree will culminate in a final project in which you will you can apply your skills and follow your specialist interests. You will do a novel analysis of a real world data of your choice.

The programme includes:

-A firm grounding in the theory of data mining, statistics and machine learning
-Hands-on practical real world applications such as social media, biomedical data and financial data with Hadoop (used by Yahoo!, Facebook, Google, Twitter, LinkedIn, IBM, Amazon, and many others), R and other specialised software
-The opportunity to work with real-world software such as Apache

Contact the department

If you have specific questions about the degree, contact the Programme Director, Dr Daniel Stamate.

Modules & Structure

You will study the following:
Data Programming- 15 credits
Data Science Research- 15 credits

Skills & Careers

Data Science is one of the fastest growing sectors of employment internationally. Big Data is an important part of modern finance, retail, marketing, science, social science, medicine and government.

The study of a combination of long established fields such as statistics, data mining, machine learning and databases with very modern and strongly related fields as big data management and analytics, sentiment analysis and social web mining, offers graduates an excellent opportunity for getting valuable skills in advanced data processing.

This could lead to a variety of potential jobs including:

Data Scientist
Data Mining Analyst
Big Data Analyst
Hadoop Developer
NoSQL Database Developer
R Programmer
Python Programmer
Researcher in Data Science and Data Mining

Funding

The Department of Computing offers a number of scholarships for students with remarkably good applications. The scholarships will be a one-off payment of £2,000. You don't need to submit a separate application to be considered for one of these awards. You can find out more from the department.

Funding

Please visit http://www.gold.ac.uk/pg/fees-funding/ for details.

Read less
We offer a suite of Masters programmes at Stirling. This is a one year, full time taught MSc. designed to lead to a job in data science or analytics. Read more

Introduction

We offer a suite of Masters programmes at Stirling.
This is a one year, full time taught MSc. designed to lead to a job in data science or analytics.
Big Data skills are in high demand and they attract high salaries. The MSc Big Data at the University of Stirling is a taught advanced Master's degree covering the technology of Big Data and the science of data analytics.
The course is taught in the beautiful Stirling campus in the heart of Scotland with support from companies who recruit data scientists.
The course covers Big Data technology, advanced analytics and industrial and scientific applications. The syllabus includes:
- Mathematics for Big Data
- Python scripting
- Big Data theory and computing foundations
- Big databases and NoSQL
- Analytics, machine learning and data visualisation
- Optimisation and heuristics for big problems
- Hadoop and MapReduce
- Scientific and commercial applications
- Student projects

Key information

- Degree type: MSc
- Duration: One year
- Start date: September
- Course Director: Kevin Swingler

Course objectives

- An understanding of the issues of scalability of databases, data analysis, search and optimisation
- The ability to choose the right solution for a commercial task involving big data, including databases, architectures and cloud services
- An understanding of the analysis of big data including methods to visualise and automatically learn from vast quantities of data
- An appreciation of the size of search spaces in large problems and the ability to choose an appropriate heuristic to find a near optimal solution
- The programming skills to build simple solutions using big data technologies such as MapReduce and scripting for NoSQL, and the ability to write parallel algorithms for multi processor execution.

English language requirements

If English is not your first language you must have one of the following qualifications as evidence of your English language skills:
- IELTS: 6.0 with 5.5 minimum in each skill
- Cambridge Certificate of Proficiency in English (CPE): Grade C
- Cambridge Certificate of Advanced English (CAE): Grade C
- Pearson Test of English (Academic): 54 with 51 in each component
- IBT TOEFL: 80 with no subtest less than 17

For more information go to English language requirements https://www.stir.ac.uk/study-in-the-uk/entry-requirements/english/

If you don’t meet the required score you may be able to register for one of our pre-sessional English courses. To register you must hold a conditional offer for your course and have an IELTS score 0.5 or 1.0 below the required standard. View the range of pre-sessional courses http://www.intohigher.com/uk/en-gb/our-centres/into-university-of-stirling/studying/our-courses/course-list/pre-sessional-english.aspx .

Structure and content

Our Big Data MSc is a mix of practical technology such as Hadoop, NoSQL, and Map-Reduce, important maths and computing theory, and advanced computational techniques. The course will teach you what you need to know to collect, manage and analyse big, fast moving data for science or commerce

REF2014

In REF2014 Stirling was placed 6th in Scotland and 45th in the UK with almost three quarters of research activity rated either world-leading or internationally excellent.

Strengths

Stirling is a member of The Data Lab, which is an Innovation Centre with the aim of developing the data science talent and skills required by industry in Scotland. The data lab with facilitate industry involvement and collaboration and provide funding and resources for students.
The Stirling MSc in Big Data has been developed in partnership with global and local companies who employ data scientists. HSBC have a development centre in Stirling and have provided some very interesting Big Data projects to our students. Amazon’s development centre in Scotland is close by in Edinburgh. The course features a long summer project, generally in partnership with a company or technology provider, that provides students with a showcase of their skills to take to employers or launch online.
We also have a programme of invited speakers from industry who give the students a chance to ask questions of people who are doing data science every day. Recent companies have included MongoDB, SkyScanner and HSBC.

Career opportunities

Demand for people with big data skills is projected to grow rapidly in the coming years. Average salaries are higher in Big Data jobs than the IT average and the skills shortage will make that gap bigger.
The Stirling Big Data MSc is run in partnership with industry and is designed to produce graduates with the skills that companies need.
e-Skills UK estimate that:
- The number of Big Data jobs in the UK rose by 41% from 2012 - 2013
- By 2020 there will be 56,000 Big Data jobs in the UK alone
- Big Data professionals earn on average 31% more than other IT professionals
- 77% of companies say it is difficult to recruit people with the Big Data skill they need

Read less
The opportunity to exploit Big Data is recognised world-wide and some countries include it in their economic strategies. The UK Government identified Big Data as one of the 8 great technologies which will have a strong impact on growth and the Scottish Government highlights it as an emerging opportunity for Scotland. Read more
The opportunity to exploit Big Data is recognised world-wide and some countries include it in their economic strategies. The UK Government identified Big Data as one of the 8 great technologies which will have a strong impact on growth and the Scottish Government highlights it as an emerging opportunity for Scotland.

Our MSc in Data Science aims to produce specialist data scientists with training in industry relevant data acquisition, storage, warehousing, analytics and visualisation tools and techniques and a good understanding of the needs of industry. The course will prepare graduates in technical disciplines for a career in the design and implementation use of computer-analytics and visualisation solutions for industry.

Visit the website: http://www.rgu.ac.uk/computing/study-options/postgraduate/masters-in-data-science

Course detail

The course will focus on satisfying industry’s demand for data scientists who have the ability to:

• Apply appropriate data science tools and techniques to industry’s data in order to uncover important, previously unknown information only implicit in the data.
• Relate a company’s key performance indicators to a data science problem area in order to focus a data science task.
• Handle large amounts of real-time, non-persistent, data.
• Contribute to business decision-making by effectively communicating (potentially large volumes of) key data visually.
• Understand, clean up, summarise, interpret and manage data.
• Grasp key knowledge about new problem areas in order to communicate with end-users; understand key business needs and processes and identify added value through data analytics.
• Provide user-centred data analytics at an appropriate level.
• Protect and share data as appropriate.

The course will emphasise Big Data, covering not only traditional data management systems but also systems where data and/or its storage is unstructured.

Format

Throughout the course, content is complemented by practical work, allowing you to support your theoretical knowledge with practical experience in data storage, mining, warehousing, visualisation and analysis as well as transferrable skills. You will be taught through a mixture of lectures, tutorials, labs. You will be invited to attend talks presented by highly-experienced researchers, speakers from industry, and members of the BCS (British Computer Society) on a wide range of industry-related topics. You will also be supported through our online virtual learning environment where you can access a wide variety of resources and other support materials.

The individual project provides an opportunity for applying specialist knowledge together with analytic, problem-solving, managerial and communication skills to a particular area of interest within data science. Working with the full support and guidance of an allocated project supervisor, you will be given the opportunity to propose, plan, specify, develop, evaluate, and present a substantial project.

Placements and accreditation

Students who perform particularly well during their first semester of studies will be invited to apply for a 45-week internship.

Careers

The course prepares you for a career in Data Science. Job openings include: Data Scientist, Data Analyst, Data Visualisation Specialist, Data Manager, Database Designer/Manager, Data Mining Expert and Big Data Scientist.

Aberdeen is home to many multinational oil and gas companies and associated suppliers such as mainstream software houses, IT providers to major oil-related companies, specialist software consultancies, and venture capital start-ups.

The university is involved in a number of commercial collaborations on a local, national and international scale with organisations such as BP, British Geological Survey, Wood Group PSN, Accenture, WIPRO and many Aberdeen-based software development companies.

The course also prepares students for research careers by providing the skills necessary of an effective researcher. Suitable MSc graduates may continue to PhD programmes within the school.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
The world is awash with data and much more is on the way, creating a tidal wave of Big Data. Data Engineers develop the infrastructure to store, manage, analyse this wave of data, to bridge the gap between Data and Computer Science. Read more
The world is awash with data and much more is on the way, creating a tidal wave of Big Data. Data Engineers develop the infrastructure to store, manage, analyse this wave of data, to bridge the gap between Data and Computer Science. This unique course will give you the skills you’ll need to succeed as a Data Engineer.

Why study Data Engineering at Dundee?

The role of “Data Scientist” has been described as the “sexiest job of the 21st Century. However, there is a emerging a new role, that of Data Engineer as more companies are realising they need employees with specific skills to handle the amount of data that is being generated and the coming tidal wave from the Internet of Things.

This MSc has been created with industry input to prepare its students with the skills to handle this wave of data and to be at the forefront of its exploitation. Students on the sister programmes (“Data Science” and “Business Intelligence”) have gone on to work for some of the biggest companies in the industry and we are confident that graduates from this MSc will have the same success.

The School of Computing at the University of Dundee has been successfully offering related MSc programmes such as Business Intelligence and Data Science since 2010. These innovative programmes attract around 40 students per year, drawn from across Europe and Overseas.

What's so good about Data Engineering at Dundee?

Our facilities:
You will have 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

Special features

The University of Dundee has close ties with the Big Data industry, including Teradata, Datastax and Microsoft. We have worked with SAS, Outplay, Tag, GFI Max, BrightSolid and BIPB, and our students have enjoyed guest lectures from Big Data users such as O2, Sainsbury’s, M&S and IBM.

You will be able to work with a range of leading researchers and tutors, including top vision and imaging researchers and BI experts. Our honorary staff include legal experts, entrepreneurs and renowned industry experts such as John Richards of the newly formed IBM Watson Group.

How you will be taught

The course will be taught by staff of the School of Computing. Depending on the modules you take this will include Andy Cobley, Professor Mark Whitehorn, and Professor Stephen McKenna.

What you will study

The course will be taught in 20 credit modules with a 60 credit dissertation. Students will require to complete 180 credits for the award of the MSc (including 60 credits for the dissertation). Students completing 120 credits (without the dissertation) will be eligible for a Postgraduate Diploma.

Course content

Each module on the course is designed to give the student the skills and understanding they need to succeed in the Data Engineering/ Science field. Content on the course includes (but is not limited to):

CAP theorem
Lamda Architecture
Cassandra, Neo4j and other nosql databases
The Storm distributed real time computation system
Hadoop, HDFS, MapReduce, and other Hadoop/SQL technologies
Spark and Shark frameworks
Data Engineering languages such as Python, erlang, R, Matlab
Vision systems, which are becoming increasingly important in data engineering for extracting features from large quantities of images such as from traffic, medical and industrial
RDBMS systems which will continue to play an important role in data handing and storage. You will be expected to research the history of RDMBS and delve in to the internals of modern systems
OLAP cubes and Business Intelligence systems, which can be the best and quickest way to extract information from data stores
Goals of machine learning and data mining
Clustering: K-means, mixture models, hierarchical
Dimensionality reduction and visualisation
Inference: Bayes, MCMC
Perceptrons, logistic regression, neural networks
Max-margin methods (SVMs)
Mining association rules
Bayesian networks

How you will be assessed

The course is assessed through a combination of examinations, coursework, presentations and interviews. Each module is different: for instance the Big data module has 40% coursework, consisting of Erlang programming and a presentation on nosql databases, along with an examination worth 60%.

Careers

Our experience suggests that graduates of this course will have most impact in the following areas:

Cloud and web based industries that handle large volumes of fast moving data that need to be stored, analysed and maintained. Examples include the publishing industry (paper, TV and internet), messaging services, data aggregators and advertising services

Internet of Things. A large amount of data is being generated by devices (robotic assembly lines, home power management, sensors etc.) all of which needs to be stored and analysed.

Health. The NHS (and others) are starting to store and analyse patient data on an unprecedented scale. The healthcare industry is also combining data sources from a large number of databases to improve patient well-being and health outcomes

Games industry. The games industry records an extraordinary amount of data about its customers' play activities, all of which needs to be stored and analysed. This course will equip students with the knowledge and skill to engage with the industry.

Read less
The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society and are the basis of growth of the economy and success of businesses. Read more
The techniques we use to model and manipulate data guide the political, financial and social decisions that shape our modern society and are the basis of growth of the economy and success of businesses. Technology is growing and evolving at an incredible speed, and both the rate of growth of data we generate and the devices we use to process it can only increase.

Data science is a growing and important field of study with a fast-growing number of jobs and opportunities within the private and public sector. The application of theory and methods to real-world problems and applications is at the core of data science, which aims especially to use and to exploit big data.

If you are interested in solving real-world problems, you like to develop skills to use smart devices efficiently, you want to use and to foster your understanding of mathematics, and you are interested and keen to use statistical techniques and methods to interpret data, MSc Data Science at Essex is for you. You study a balance of solid theory and practical application including:
-Computer science
-Programming
-Statistics
-Data analysis
-Probability

Our Department of Mathematical Sciences has an international reputation in many areas including semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology.

You also benefit from being taught in our School of Computer Science and Electronic Engineering, who are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of their research rated ‘world-leading’ or ‘internationally excellent’ (REF 2014).

The collaborative work between our departments has resulted in well-known research in areas including artificial intelligence, data analysis, data analytics, data mining, data science, machine learning and operations research.

Our expert staff

Our Department of Mathematical Sciences is a small but influential department, so our students and staff know each other personally. You never need an appointment to see your tutors and supervisors, just knock on our office doors – we are one of the few places to have an open-door policy, and no issue is too big or small.

The academic staff in our School of Computer Science and Electronic Engineering are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist staff working on data analytics include Dr Paul Scott, who researches data mining, models of memory and attention, and artificial intelligence, and Professor Maria Fasli, who researches data exploration, analysis and modelling of complex, structured and unstructured data, big data, cognitive agents, and web search assistants.

Specialist facilities

-Unique to Essex is our renowned Maths Support Centre, which offers help to students, staff and local businesses on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
-We have our own computer labs for the exclusive use of students in the Department of Mathematical Sciences – in addition to your core maths modules, you gain computing knowledge of software including Matlab and Maple
-We have six laboratories that are exclusively for computer science and electronic engineering students
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-You have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors
-We host regular events and seminars throughout the year
-Collaborate with the Essex Institute of Data Analytics and Data Science (IADS) and the ESRC Business and Local Government (BLoG) Data Research Centre of the University of Essex
-The UK Data Archive and the Institute for Social and Economic Research (ISER) at Essex contribute to our internationally outstanding data science environment

Your future

With a predicted shortage of data scientists, now is the time to future-proof your career. Data scientists are required in every sector, carrying out statistical analysis or mining data on social media, so our course opens the door to almost any industry, from health, to government, to publishing.

Our graduates are highly sought after by a range of employers and find employment in financial services, scientific computation, decision making support and government, risk assessment, statistics, education and other sectors.

We also offer supervision for PhD, MPhil and MSc by Dissertation. We have an international reputation in many areas such as semi-group theory, optimisation, probability, applied statistics, bioinformatics and mathematical biology, and our staff are strongly committed to research and to the promotion of graduate activities.

We additionally work with our Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Dissertation (optional)
-MSc Project and Dissertation (optional)
-Applied Statistics
-Machine Learning and Data Mining
-Modelling Experimental Data
-Text Analytics
-Artificial Neural Networks (optional)
-Bayesian Computational Statistics (optional)
-Big-Data for Computational Finance (optional)
-Combinatorial Optimisation (optional)
-High Performance Computing (optional)
-Natural Language Engineering (optional)
-Nonlinear Programming (optional)
-Professional Practice and Research Methodology (optional)
-Programming in Python (optional)
-Information Retrieval (optional)
-Data Science and Decision Making (optional)
-Research Methods (optional)
-Statistical Methods (optional)
-Stochastic Processes (optional)

Read less
1. Big Challenges being addressed by this programme – motivation. Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills.
• Accenture, Gartner and McKinsey have all identified Data Analytics as one of the fastest growing employment areas in computing and one most likely to make an impact in the future.
• The Irish Government’s policy is for Ireland to become a leading country in Europe for big data and analytics, which would result in 21,000 potential new employment opportunities in Ireland alone.
• CNN has listed jobs in this area in their Top 10 best new jobs in America.

2. Programme objectives & purpose

This is an advanced programme that provides Computing graduates with advanced knowledge and skills in the emerging growth area of Data Analytics. It includes advanced topics such as Large-Scale Data Analytics, Information Retrieval, Advanced Topics in Machine Learning and Data Mining, Natural Language Processing, Data Visualisation and Web-Mining. It also includes foundational modules in topics such as Statistics, Regression Analysis and Programming for Data Analytics. Students on the programme further deepen their knowledge of Data Analytics by working on a project either in conjunction with a research group or with an industry partner.

Graduates will be excellently qualified to pursue careers in national and multinational industries in a wide range of areas. Our graduates currently work for companies as diverse as IBM, SAP, Cisco, Avaya, Google, Fujitsu and Merck Pharmaceuticals as well as many specialised companies and startups. Opportunities will be found in:
• Multinational companies, in Ireland and elsewhere, that provide services and solutions for analytics and big data or whose business depend on analytics and big data technologies;
• Innovative small to medium-sized companies and leading-edge start-ups who provide analytics solutions, services and products or use data analytics to develop competitive advantage
• Companies looking to extend their research and development units with highly trained data analytic specialists
• PhD-level research in NUI Galway, elsewhere in Ireland, or abroad

3. What’s special about CoEI/NUIG in this area:

• The MSc in Computer Science (Data Analytics) is being delivered by the Discipline of Information Technology in collaboration with the Insight Centre for Data Analytics (http://insight-centre.org) and with input from the School of Mathematics, Statistics and Applied Mathematics in NUI Galway
• The Discipline of Information Technology at NUI Galway has 25-year track record of education, academic research, and industry collaboration in the field of Computer Science
• The Insight centre at NUI Galway is Europe’s largest research centre for Data Analytics

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Foundational Modules:

• Tools and Techniques for Large Scale Data Analytics
• Programming for Data Analytics
• Machine Learning and Data Mining
• Modern Information Management
• Probability and Statistics
• Discrete Mathematics
• Applied Regression Models
• Digital Signal Processing

Sample Advanced Modules:

• Advanced Topics in Machine Learning and Information Retrieval
• Web Mining and Analytics
• Systems Modelling and Simulation
• Natural Language Processing
• Data Visualisation
• Linked Data Analytics
• Case Studies in Data Analytics
• Embedded Signal Analysis and Processing

6. Testimonials

Ms. Gofran Shukair, MSc, Research Engineer at ZenDesk, Ireland

After graduating with an MSc at NUI Galway, Gofran worked with Fujitsu’s Irish Research Lab as a research engineer before moving to a software engineering position at Zendesk, Ireland.

“The mix of technical and soft skills I gained through my Masters studies at NUI Galway is invaluable. I had the chance to work with great people and to apply my work on real world problems. With the data management and analysis skills I gained, I am currently pursuing my research in an international research project with one of the leading IT companies. I will be always thankful for studying at NUI Galway, a great historic place based in a culturally-rich vibrant city with an international mix of young and ambitious students that made me eager to learn and contribute back the moment I graduated.”

For further details

visit http://www.nuigalway.ie/courses/taught-postgraduate-courses/msc-in-computer-science-data-analytics.html

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC) https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Computer Science – Data Analytics - PAC code GYE06

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Visit the M.Sc. Computer Science – Data Analytics page on the National University of Ireland, Galway web site for more details!

Read less

Show 10 15 30 per page
Featured Listing
★