• University of Derby Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
New College of the Humanities Featured Masters Courses
University of Warwick Featured Masters Courses
Cardiff University Featured Masters Courses

New and Renewable Energy (MSc)


Course Description

The MSc in New and Renewable Energy is designed to equip our graduates with the skills required to meet the growing challenge to achieve energy and environmental sustainability through the application of new and renewable energy technologies. The programme aims to enable students to develop the capacity to solve problems across the traditional Engineering boundaries and to have an appreciation of complete energy systems from source to end user, to have knowledge of the relevant technologies and to understand the interactions between them. The programme also provides students with the opportunity to develop skills in research, development, design and project management through individual and team-based project work.

Course Structure

The programme consists of four core modules to provide a solid foundation in a broad range of New and Renewable Energy technologies and three optional modules that allow students to choose more specialised study programmes that are most suited to their interests. The modules include lecture courses, a group design project and a major, individual research and development project. The course starts in September with a fundamentals module which prepares students from different backgrounds to take full advantage of the courses modules that follow and which combines lectures, tutorials and laboratory experiments.

Core Modules

-Renewable Energy Fundamentals
-Renewable Energy and Environment
-Group Design Project
-Research and Development Project

Optional Modules

Students select three optional modules. In previous years these modules have included:
-Low Carbon and Thermal Technologies
-Turbomachinery and Nuclear Power Engineering
-Energy Delivery and Network Integration
-Energy Generation and Conversion Technologies
-Energy Markets and Risk

Learning and Teaching

This is a 12-month full time degree course that starts in September with an intensive core module on engineering fundamentals and finishes at the end of August the following year, when students submit a report and have an oral examination on their chosen research project. The programme consists of four core modules to provide a solid foundation in a broad range of New and Renewable Energy technologies and three optional modules that allow students to choose study programmes which are most suited to their interests. The modules include lecture courses, a group design project and an individual research and development project.

The course starts in September the first of the core modules (Renewable Energy Fundamentals), which prepares students from different backgrounds to take full advantage of all aspects of the courses. This module consists of an intensive study programme which typically combines over 30 hours of lectures with 12 hours of tutorials and labs. Topics studied include thermodynamics, fluid mechanics, power system plant, electrical circuits and power electronics and converters. The module also introduces students to best practice research techniques.

The second core module (Renewable Energy & the Environment) typically involves 19 hours of lectures and tutorials. Assessment is through a combination of examination and a coursework.

The third core module is a group design project focused on a realistic application of renewable energy. Students gain experience of teamwork and project management, as well as the technical aspects of engineering design.

A major individual research and development project completes the core modules. This provides an open-ended challenge to each individual student, in collaboration with a staff supervisor. Regular meetings are held with the supervisor to discuss project progress and planning issues. A mid-term assessment is carried out to ensure project is on track. At the end of the project students are required to submit a final report on their work, in the style of a research paper. They are also required to prepare and to present a poster to allow an assessment to be made of their understanding and ability to present their work, plus an oral examination is held to allow detailed questions to be put to the student regarding the technical aspects of their project. Students should expect to have up to 20 hours of contact time with their supervisors plus 500 hours of research work, supported by the School’s technicians and other research workers, over the course of their research projects.

Each of the optional modules involves typically 19 hours of lectures in addition to tutorials, laboratory work and assignments.

Visit the New and Renewable Energy (MSc) page on the Durham University website for more details!

Entry Requirements

To be admitted to the MSc programme in New and Renewable Energy, you need the equivalent of a UK Honours degree to at least an upper second class standard. This should normally be in an Engineering or Engineering-related subject although in some instances we can consider industrial or other relevant experience if you have a different first degree.

Email Enquiry

Recipient: Durham University

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully



Share this page:

Cookie Policy    X