• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Birkbeck, University of London Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Centre for Digital Media Featured Masters Courses
Ulster University Featured Masters Courses
Bath Spa University Featured Masters Courses

Biomedical Sciences (Clinical Biochemistry) (MSc)


Course Description

This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. The course aims to further enhance your knowledge of clinical biochemistry, to engage you with contemporary issues and debates within the discipline, and to develop your critical and analytical skills.

The taught programme contains specific modules in Clinical Biochemistry, such as endocrinology and metabolism and diagnostic clinical biochemistry, which you can apply to diagnostic biomedicine, as well as offering you a choice of modules related to molecular diagnostics or haematology.

Core Modules

• Clinical Endocrinology and Metabolism
This module aims to emphasise the intellectual skills and knowledge you require to understand endocrine function, assays of hormone concentration, pathologies and their laboratory investigation. Emphasis is placed on developing a deep understanding of the cellular and biochemical processes which underlie pathology

• Diagnostic Clinical Biochemistry
An in depth study of the aetiology, pathogenesis and laboratory investigation of selected pathologies and their laboratory investigation. Principles of key and current analytical methods in the field are also included as well as the latest developments in diagnostic clinical biochemistry.

• Molecular Science and Diagnostics
This module is designed to make you aware of the impact of molecular biology on the diagnosis of human diseases. You will critically review the technologies and determine the advantages and disadvantages associated with each diagnostic strategy. Issues of accuracy, implementation, ethics and safety will be addressed.

• Postgraduate Project
This module aims to enhance your skills of self-management, experimental design, critical analysis and interpretation of data, enabling you to present and justify your research.

• Postgraduate Research Methods
You will be able to develop your skills in information retrieval, critical analysis and presentation relevant to your research topic, and form a clear plan for your project.

Option Modules

• Automation in Biomedical Sciences
This module will explore the current and potential impact of laboratory automation on the practice of biomedical science in the context of diagnosis and research. You will explore automation from the perspectives of technology, quality, impact on skill requirements, cost/benefit and laboratory organisation. The module will include site visits to laboratories using state-of-the-art automation.

• Cell Signalling and Genetics
This module provides up-to-date information on cell signalling processes coupling surface receptor engagement to changes in gene expression. Transcriptional, post-transcriptional and post-translational mechanisms are discussed in relation to selected cell-signalling pathways responsible for controlling cell functions such as cell cycle, cell differentiation and cell death. Examples of defective cell signalling through inherited and somatically acquired mutations in signalling components will be highlighted in relation to human disease.

• Cellular Haematology
This module will enable you to understand how blood cells are produced and how they function in normal and pathological situations. You will consider the causes, consequences and laboratory features of a range of red cell disorders and haematological malignancies, and be able to evaluate and interpret the relevant diagnostic testing procedures.

• Communicating Science
Introducing you to key concepts in science communication, its challenges, rewards and applications, this module is designed to incorporate scenarios related to your interests, such as health, drug discovery and water science. The roles of science and scientists in society and how the public perceives, interacts with and responds to the information produced by scientists are explored, with the history of communicating science used to contextualise current issues in disseminating information.

• Extended Postgraduate Project
This module gives you the opportunity to investigate an appropriate research topic, generate and critically analyse data, and present your results and discuss findings in the context of previously published work. The project proposed and undertaken must include rigorous and critical analysis of data with a high level of initiative. This module is intended for students wishing to gain greater research experience and includes an extended period of research activity and extended assessment regime.

• Immunohaematology and Haemostasis
This module will cover clinically important blood group systems and laboratory techniques used to identify blood group antigens and antibodies, and to ensure safety of blood components for transfusion and transplantation. In addition you will examine the various components of the haemostasis system together with clinical disorders leading to increased risk of bleeding or thrombosis. Anticoagulant therapy and relevant laboratory techniques for investigation of haemostasis will also be covered.
• Immunopathology
You will analyse and discuss cellular and molecular aspects of innate and adaptive immune responses, and advances in modern methods for disease diagnosis and treatment. This will include strategies available for the diagnosis of inherited and acquired immunological disorders, normal and pathological immune responses to extracellular and intracellular pathogens, transplantation of organs and tissues, immune surveillance of tumours, autoimmune and immunodeficiency disorders.

• Principles of Molecular Medicine
The module provides you with a critical appreciation of the human genome, its regulation, functional significance of gene mutations and current approaches of identification of human genetic disorders. Topics covered include: molecular basis of host-pathogen interaction; molecular pathology of disease with simple genetics; molecular genetics of disease; complex systems, immunogenetics and disease; and molecular genetics of cancer.

Associated careers

The course has been designed to provide professionals with a broad range of transferable skills in clinical biomedical sciences, with particular reference to possessing the ability to critically discuss and evaluate concepts, analytical techniques, current research and advanced scholarship in Clinical Biochemistry.

Successful completion of the course will enhance the career prospects of graduates for entering Ph.D programmes; you may find employment in hospital laboratories, academia, research institutes, as well as in the pharmaceutical and related industries.

Professional recognition

The course is accredited by the Institute of Biomedical science (IBMS).

Employability

At Westminster, we have always believed that your University experience should be designed to enhance your professional life. Today’s organisations need graduates with both good degrees and employability skills, and we are committed to enhancing your graduate employability by ensuring that career development skills are embedded in all courses.

Opportunities for part-time work, placements and work-related learning activities are widely available, and can provide you with extra cash and help you to demonstrate that you have the skills employers are looking for. In London there is a plentiful supply of part-time work – most students at the University of Westminster work part time (or full time during vacations) to help support their studies.

We continue to widen and strengthen our links with employers, involving them in curriculum design and encouraging their participation in other aspects of career education and guidance. Staff take into account the latest data on labour market trends and employers’ requirements to continually improve the service delivered to students.

Visit the Biomedical Sciences (Clinical Biochemistry) (MSc) page on the University of Westminster website for more details!

Entry Requirements

You must have at least a BSc Honours in Biomedical Sciences or a closely related subject, a professional qualification of equivalent status and associated work experience or an equivalent qualification deemed suitable by the course team. If you are applying for part-time study, you will normally be working in a relevant area and will require written support from your employer including confirmation that facilities will be available in your workplace for you to carry out your research project. If your first language is not English you should have an IELTS score of at least 6.5, with 6.0 in each element.

Email Enquiry

Recipient: University of Westminster
Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X