• University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • FindA University Ltd Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Jacobs University Featured Masters Courses
King’s College London Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leicester Featured Masters Courses
FindA University Ltd Featured Masters Courses

Materials Research - MSc

Course Description

Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Materials research plays an important part in solving challenging problems relating to energy, food, water, health and well-being, the environment, sustainable use of resources, and urbanisation.

An expert in materials research studies the chemical and physical bases of existing and new materials; their synthesis and processing, composition and structure, properties and performance. As an expert in materials research, your skills will be needed in research institutions, the technology industry (electronics and electrotechnical industry, information technology, mechanical engineering, metal industry, consulting), chemical industry, forest industry, energy industry, medical technology and pharmaceuticals.

This programme combines expertise from the areas of chemistry, physics and materials research at the University of Helsinki, which are ranked high in international evaluations. In the programme, you will focus on the fundamental physical and chemical problems in synthesising and characterising materials, developing new materials and improving existing ones. Your studies will concentrate on materials science rather than materials engineering.

Upon graduating from the programme you will have a solid understanding of the essential concepts, theories, and experimental methods of materials research. You will learn the different types of materials and will be able to apply and adapt theories and experimental methods to new problems in the field and assess critically other scientists’ work. You will also be able to communicate information in your field to both colleagues and laymen.

Depending on the study line you choose you will gain in-depth understanding of:
-The synthesis, processing, structure and properties of inorganic materials.
-Modelling methods in materials research.
-The structure and dynamics of biomolecular systems.
-The synthesis, structure and properties of polymers.
-Applications of materials research in industrial applications.
-The use of methods of physics in medicine.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In the programme, all teaching is based on the teachers’ solid expertise in the fundamental chemistry and physics of materials. All teachers also use their own current research in the field in their teaching.

Your studies will include a variety of teaching methods such as lectures, exercises, laboratory work, projects and summer schools.

In addition to your major subject, you can include studies in minor subjects from other programmes in chemistry, physics and computer science.

Selection of the Major

At the beginning of your studies you will make a personal study plan, with the help of teaching staff, where you choose your study line. This programme has the following six study lines representing different branches of materials research.

Experimental Materials Physics
Here you will study the properties and processing of a wide variety of materials using experimental methods of physics to characterise and process them. In this programme the materials range from the thin films used in electronics components, future fusion reactor materials, and energy materials to biological and medical materials. The methods are based on different radiation species, mostly X-rays and ion beams.

Computational Materials Physics
In this study line you will use computer simulations to model the structures, properties and processes of materials, both inorganic materials such as metals and semiconductors, and biological materials such as cell membranes and proteins. You will also study various nanostructures. The methods are mostly atomistic ones where information is obtained with atomic level precision. Supercomputers are often needed for the calculations. Modelling research is closely connected with the experimental work related to the other study lines.

Medical Physics
Medical physics is a branch of applied physics encompassing the concepts, principles and methodology of the physical sciences to medicine in clinics. Primarily, medical physics seeks to develop safe and efficient diagnosis and treatment methods for human diseases with the highest quality assurance protocols. In Finland most medical physicists are licensed hospital physicists (PhD or Phil.Lic).

Polymer Materials Chemistry
In this line you will study polymer synthesis and characterisation methods. One of the central questions in polymer chemistry is how the properties of large molecules depend on the chemical structure and on the size and shape of the polymer. The number of applications of synthetic polymers is constantly increasing, due to the development of polymerisation processes as well as to better comprehension of the physical properties of polymers.

Inorganic Materials Chemistry
Thin films form the most important research topic in inorganic materials chemistry. Atomic Layer Deposition (ALD) is the most widely studied deposition method. The ALD research covers virtually all areas related to ALD: precursor synthesis and characterisation, film growth and characterisation, reaction mechanism studies, and the first steps of taking the processes toward applications. The emphasis has been on thin film materials needed in future generation integrated circuits, but applications of ALD in energy technologies, optics, surface engineering and biomaterials are also being studied. Other thin film deposition techniques studied include electrodeposition, SILAR (successive ionic layer adsorption and reaction) and sol-gel. Nanostructured materials are prepared either directly (fibres by electrospinning and porous materials by anodisation) or by combining these or other templates with thin film deposition techniques.

Electronics and Industrial Applications
Sound and light are used both to sense and to actuate across a broad spectrum of disciplines employing samples ranging from red hot steel to smooth muscle fibres. Particular interest is in exploiting the link between the structure and mechanics of the samples. The main emphasis is on developing quantitative methods suitable for the needs of industry. To support these goals, research concentrates on several applied physics disciplines, the main areas being ultrasonics, photoacoustics, fibre optics and confocal microscopy.

Visit the Materials Research - MSc page on the University of Helsinki website for more details!

Entry Requirements

See website for the latest admission requirements: View Website

Email Enquiry

Recipient: University of Helsinki
Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X