• Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Jacobs University Featured Masters Courses
  • FindA University Ltd Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Leeds Featured Masters Courses
Ross University School of Veterinary Medicine Featured Masters Courses
University of St Andrews Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Imperial College London Featured Masters Courses
Bath Spa University Featured Masters Courses

Physics and Engineering in Medicine: Radiation Physics - MSc/PGDip

Course Description

This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Students gain an understanding of scientific principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

Degree information

Students study the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes research project, workplace skills development and computational skills needed to apply this theory into practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits). A Postgraduate Diploma of eight modules (120 credits) is offered.

Core modules
-Clinical Practice
-Medical Imaging (Ionising)
-Ultrasound in Medicine
-Magnetic Resonance Imaging and Biomedical Optics
-Research Project
-Professional Skills module
-Treatment with Ionising Radiation
-Ionising Radiation Physics: Interactions & Dosimetry

Optional modules
-Biomedical Engineering
-Computing in Medicine
-Programme Foundations for Medical Image Analysis

All MSc students undertake an independent research project within the broad area of Physics and Engineering in Medicine which culminates in a report up to 10,000 words, a poster and an oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.


A large percentage of graduates from the MSc continue on to PhD study, often in one of the nine research groups within the department, as a reult of the skills and knowledge they acquire on the programme. Other graduates commence or resume training or employment within the heaalthcare sector in hospitals or industry, both within the UK and abroad.

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students on this programme receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre, currently under construction.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development.

Visit the Physics and Engineering in Medicine: Radiation Physics - MSc/PGDip page on the University College London website for more details!

All Available Videos:

Student Profiles

Entry Requirements

A minimum of an upper-second class UK Bachelor’s degree from a UK university or an overseas qualification of an equivalent standard in physics, engineering, computer science, mathematics, or other closely related discipline. Workplace knowledge and expertise are also considered. Applicants with a lower than upper-second class degree may be invited for a short online interview with programme tutors as part of their application process.

Email Enquiry

Recipient: University College London
Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X