• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Birkbeck, University of London Featured Masters Courses
King’s College London Featured Masters Courses
Sheffield Hallam University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses

Cancer MPhil


Course Description

Programme Overview

Clinicians, scientists and students engaged in cancer research at Newcastle share a common purpose: to improve treatment outcomes for patients with cancer. Work covers a broad spectrum - understanding the biological and molecular differences between normal and malignant cells and using this knowledge to develop new anti-cancer drugs.

Research Supervision

Exploratory biology, target and biomarker discovery
Molecular genetic and mechanistic studies are used to identify critical molecular changes in cancer and their relevance to disease development and progression, and to validate these as biomarkers and targets for therapeutic intervention. A wide range of contemporary genomic, bioinformatic, molecular biology, biochemical and cell biology techniques are used.

Studies focus on haematological malignancies (leukaemia and lymphoma), paediatric solid tumours (neuroblastoma and medulloblastoma), and adult solid tumours (eg breast, ovarian, prostate, bladder and liver cancers).

Drug development
The exploitation of novel targets is achieved by the use of rational drug design, notably the use of structure-based design, in conjunction with medium-throughput screening. Target molecule synthesis and multiple parallel synthesis approaches are used for lead optimisation, and candidate drugs are evaluated in cell-free and whole cell target-based assays.

Biomarker development
We exploit critical molecular defects as biomarkers to enhance disease detection and diagnosis, prediction of disease course, sensitivity to specific drugs and therapeutic monitoring. We play leading roles in molecular diagnostics, biomarker assessment and therapeutic monitoring for national and international clinical trials.

Clinical trials
Clinical trials (Phase I/II/III) are undertaken in both adults and children. Trials have a strong hypothesis-testing translational research component and are performed under the auspices of national or international research networks (eg CR–UK, CCLG, EORTC), as well as directly in collaboration with the pharmaceutical industry.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Faculty of Medical Sciences Graduate School.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/cancer-mphil-phd-md/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/cancer-mphil-phd-md/#howtoapply

Visit the Cancer MPhil page on the Newcastle University website for more details!

Entry Requirements

A 2:1 honours degree, or international equivalent, in a science or medicine related subject.If your first language is not English you need an overall IELTS score of 6.5.You may need an ATAS (Academic Technology Approval Scheme) clearance certificate.

Email Enquiry

Recipient: Newcastle University
Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X