• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Arden University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Reading Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Northumbria University Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Vibration

Masters degrees in Vibration offer advanced study of the oscillations that occur around a point of equilibrium, and the effects of these in various circumstances.

Taught MSc degrees are typical for the field, though research oriented MRes and MPhil programmes may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant Engineering subject.

Why study a Masters in Vibration?

Read more...

  • Engineering×
  • Vibration×
  • clear all
Showing 1 to 15 of 24
Order by 
Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment. Read more
Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment.

This programme will provide you with a solid understanding of the whole process of structural design, analysis and operation. You will discover how to design and manage the dynamic behaviour of structures using state of the art hardware and software for performance assessment, measurement, and instrumentation to withstand normal and extreme operational loads.

The programme is taught by our internationally leading academic team with expertise in structural performance analysis and health monitoring, structural dynamics, control, infrastructure management, systems and informatics.

Successful graduates will be equipped with specialist skills increasingly demanded by employing infrastructure consultants, contractors, operators, and government agencies and can expect to progress into international senior level positions in civil, construction and environmental industries.

Programme Structure

This programme is modular and flexible and consists of nine core engineering modules.

Core modules

The core modules can include; Structural Design; Software Modelling; Conceptual Design of Buildings; Conceptual Design of Bridges; Active and Passive Structural Control; Vibration Engineering; Structural Health and Performance Monitoring; Introduction to Earthquake Engineering and Structural Engineering Dissertation

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

A world-class laboratory

The MSc Structural Engineering programme will take advantage of a cutting edge laboratory, with state of the art measurement and testing technology. This purpose-built teaching and research facility is dedicated to better understanding structural performance including in-situ testing and monitoring of prototype and real life structures. Featuring;
• Unique and reconfigurable prototype floor or footbridge structure weighing up to 15 tonnes
• Instruments capable of measuring static and dynamic structural movements from meter to nanometer
• Ambient and forced vibration testing, facilities including equipment and software
• Vibration control systems
• Individual and group human motion tracking and measurement systems
• Motion capture facilities

Read less
This programme enables you to focus on developing your technical engineering skills, as well as your management skills. Today, structural engineering is more than just design. Read more
This programme enables you to focus on developing your technical engineering skills, as well as your management skills

Today, structural engineering is more than just design. Expert consultants are needed globally with a complete skill set; the ability to design, manage and maintain structures, but also to enable existing civil infrastructure to operate under changing loading and environment.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

This programme will provide you with a solid understanding of the whole process of structural design, analysis and operation. You will discover how to design and manage the dynamic behaviour of structures using state of the art hardware and software for performance assessment, measurement, and instrumentation to withstand normal and extreme operational loads.

The programme is taught by our internationally leading academic team with expertise in structural performance analysis and health monitoring, structural dynamics, control, infrastructure management, systems and informatics.

Successful graduates will be equipped with specialist skills increasingly demanded by employing infrastructure consultants, contractors, operators, and government agencies and can expect to progress into international senior level positions in civil, construction and environmental industries.

Programme Structure

This programme is modular and flexible and consists of eight core engineering modules and one option module.

Core modules

The core modules can include; Structural Design; Software Modelling; Conceptual Design of Buildings; Conceptual Design of Bridges; Active and Passive Structural Control; Vibration Engineering; Management Concepts and Structural Engineering Dissertation

Optional modules

Some examples of the optional modules are Strategic Innovation Management and Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

A world-class laboratory

The MSc Structural Engineering programme will take advantage of a cutting edge laboratory, with state of the art measurement and testing technology. This purpose-built teaching and research facility is dedicated to better understanding structural performance including in-situ testing and monitoring of prototype and real life structures. Featuring;
• Unique and reconfigurable prototype floor or footbridge structure weighing up to 15 tonnes
• Instruments capable of measuring static and dynamic structural movements from meter to nanometer
• Ambient and forced vibration testing, facilities including equipment and software
• Vibration control systems
• Individual and group human motion tracking and measurement systems
• Motion capture facilities

Read less
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering. Read more
This Masters programme provides advanced experience of the central role that manufacture and design take in the integration of mechanical engineering.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and including such famous people as James Watt.
◾This programme is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in any combination of a wide range of Mechanical Engineering areas.
◾This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Engineering Design whilst simultaneously enabling the students to deepen their knowledge of certain engineering disciplines, which have largely been chosen on the basis of the research and design teaching strengths of the Discipline. The choice includes Materials and Mechanics, Dynamics and Control, Desalination Technology and Thermal Science.
◾The compulsory design part deals with innovation aspects of industrial and mechanical design and the integration of design methods and techniques. Not only is design taught in this way, but also practised in its research activities, both explicitly and implicitly. It is practised explicitly through research in, for instance rapid design and manufacture, and implicitly through the design of, for instance, heart assist devices, paraplegic assist devices and mountain bike components together with apparatus for experiments and for demonstration.
◾You will broaden and/or deepen your knowledge of selected engineering disciplines, which have been chosen on the basis of our research strengths, including materials, vibration, control and desalination.
◾This programme has a September and January intake*.

*For suitable qualified candidates

Programme structure

Modes of delivery of the MSc in Mechanical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Core courses

◾Advanced manufacture
◾Integrated engineering design project.

Optional courses

◾Advanced thermal engineering
◾Control
◾Desalination technology
◾Dynamics
◾Lasers
◾Materials engineering
◾Mechanics of solids and structures
◾Vibration.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Mechanical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The MSc in Mechanical Engineering has been developed for students with different training backgrounds or from different educational origins; and it is particularly suitable if you currently work or intend to work in Mechanical Engineering industries.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include positions in engineering design, materials and mechanics, dynamics, control, desalination technology and thermal science.

Graduates of this programme have gone on to positions such as:
Technical Engineer at Bridon International Ltd
Mechanical Engineer in a university
Mechanical Engineer for Oil and Gas at AKER Solutions
Project Engineer in state government.

Accreditation

The MSc Mechanical Engineering is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This course is designed to respond to a growing shortage of workforce in manufacturing sector. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in manufacturing sector. It intends to equip our students with relevant and up-to-date knowledge and skills of advanced design tools, materials, manufacturing processes and systems in conjunction with developing efficient operation and effective management skills. Integrating these will ensure our students to develop the technological and practical ability to meet manufacturing demand for product, company and market needs.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

This course aims to provide you with the inter-disciplinary knowledge, attributes and skills necessary to apply the principles of advanced manufacturing systems within the manufacturing industry. You will study several key topics and also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Integrated Manufacturing Systems: Systems concepts and techniques are developed in logistics and manufacturing areas with a strong emphasis on simulation techniques and practical case study analysis.

Operations and Quality Management: A strategic approach is used with modern inventory and supply chain management and logistics tools and techniques. Management strategies are developed for quality, including quality systems and quality control.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Supply Chain Management: Supply chain management involves the coordination of production, inventory, location and transportation, among participants in a supply chain. This unit considers the principles and tools of supply chain management, with an emphasis on lean six sigma methods.

Virtual Systems Design and Simulation for Production: This unit is particularly designed to enhance students’ analytical knowledge and practical skills focusing on a sustainable development of systematic approaches and lean production methods to support manufacturing systems analysis, design and performance evaluation with an aid of using advanced computer design and modelling simulation tools.

CAD/CAM Systems: An integrated approach is used towards CAD and CAM. Significant practical hands-on experience is given with commercial level software. Emphasis is placed on case study analysis and system selection and evaluation.

Individual Project: A strong feature that comprises a third of the course. You will be encouraged to undertake projects where possible in industrial companies. However, we also use our extensive resources and staff skills to undertake them within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled manufacturing engineers is always present and it is generally accepted that there is a current shortage of engineers.

This course has a record of almost 100 per cent of our graduates gaining employment in relevant areas such as manufacturing and logistics management, systems engineering, production engineering, design engineering and project management. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Manufacturing engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
Learn the analytical and design skills needed to create successful structures in challenging environments. This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities. Read more

About the course

Learn the analytical and design skills needed to create successful structures in challenging environments.

This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities.

We have international-level expertise in cement chemistry, aggregate science, binder technology, concrete durability, alternative concrete materials, structural performance and design, earthquake and nuclear reactor design, and finite element analysis.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural 
Analysis and Research Skills
Advanced Concrete Design
Sustainable Concrete Technology
Innovations in Structural Concrete
Structural Design

Examples of optional modules

Blast and Impact Effects on Structures
Advanced Simulation of High Strain Rate Dynamics
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation. Read more

About the course

The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation.

The core modules give you a grounding in engineering analysis and design. In the second semester, you can follow your interests and choose from a list of specialist modules.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Specialist facilities

Our laboratories are equipped to a very high standard:

Large-scale tri-axial apparatus for stress path and cyclic load testing; flexible walled tri-axial calibration chambers; optical microscopy, digital camera and measurement software; model pile testing and durability testing facilities. We have recently established the Centre for Energy and Infrastructure Ground Research that is home to our world leading 4m diameter beam centrifuge and complementary £1m teaching facility.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural Analysis and Research Skills
Structural Design
Design of Earthquake Resistant Structures
Advanced Simulation of High Strain Rate Dynamics

Examples of optional modules

Advanced Concrete Design
Sustainable Concrete Technology
Structural Design and Fire Resistance
Innovations in Structural Concrete
Blast and Impact Effects on Structures
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Students have a chance to broaden and deepen their knowledge in wide range of mechanical engineering subjects. This enables our students to undertake an advanced treatment of core mechanical engineering disciplines such as design and critical evaluation of structural integrity, computation fluid dynamics, advanced materials, energy and control systems.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET), meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics that will help equip you to work as a mechanical engineer in a broad spectrum of mechanical engineering business activity management, research, design and development roles. You will also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Structural Integrity: Contemporary approaches are applied to the evaluation of mixed mode fracture and fatigue failure. Dynamic plastic responses of structures and the performance of composite structures are evaluated.

Industrial Control Systems: This unit covers mathematical representation of control system models is developed principally using Laplace transforms. System behaviour and simulation is analysed with practical case studies, leading to control system specifications.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Energy Systems: This unit is designed to study the principles and techniques of operation of thermodynamics and combustion systems, as well as the provision and management of energy. The current and future requirements and trends in energy production and consumption are addressed.

Structural Application of Finite Elements: The use of finite element analysis techniques and software applied to structural problems is developed. Modelling with both isotropic and orthotropic materials is investigated, as well as such topics as cracking in dissimilar materials and composite laminates.

Computational Fluid Dynamics: A practical case study analysis approach is used for model formulation and CFD simulation. Fundamental principles are used to appraise the results of CFD analysis of problems with industrial applications.

Individual Project: A strong feature of the course is the individual project, which comprises a third of the course. We encourage students to undertake projects in industrial companies, but we can also use our extensive resources and staff skills to undertake projects within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled mechanical engineers is always present and it is generally accepted that there is a current shortage of engineers.

When you graduate from this course you could find employment in a wide range of mechanical engineering-based careers, such as design, research and development and manufacturing. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Mechanical engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. Read more
The Mechanical Engineering MSc is designed to offer an advanced level of study in specific aspects of mechanical engineering that are in demand from industry. The degree comprises study in analysis and design of power machinery systems, engineering structures, vibration, control and the use of computers in advanced engineering analysis.

Degree information

You will develop an advanced knowledge of mechanical engineering and associated disciplines, alongside an awareness of the context in which engineering operates, in terms of safety, environmental, social and economic aspects. Alongside this you will gain a range of intellectual, practical and transferable skills necessary to develop careers in this field.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), optional modules (15 credits), and a research project (75 credits).

Core modules
-Advanced Computer Applications in Engineering
-Group Project
-Materials and Fatigue
-Vibrations, Acoustics and Control
-Project Management
-Power Transmission and Auxiliary Machinery Systems

Optional modules - one of the following subject to availability:
-Applied Thermodynamics and Turbomachinery
-Heat Transfer and Heat Systems
-New and Renewable Energy Systems

Dissertation/report
Culminating in a substantial dissertation, the research project, which often has industry input, focuses your research interests and develops high-level presentation and critical thinking skills.

Teaching and learning
This dynamic programme is delivered through a combination of lectures, seminars, tutorials and example classes all of which frequently draw upon real-life industrial case studies. Each module is assessed by coursework submission alone or a combination of examination and coursework. Some include an oral presentation of project or assignment work.

Careers

Engineering graduates with good analytical abilities are in high demand and our graduates have little difficulty gaining employment across many industries. The programme specifically aims to equip students with skills in analysis and design such that they can be employed as professional engineers in virtually any sector of the mechanical engineering industry.

Top career destinations for this degree:
-Foreign Exchange Analyst, JP Morgan
-Mechanical Engineer, Lloyds Register
-PhD Mechanical Engineering, University College London (UCL)
-Graduate Trainee Engineer, Rolls-Royce
-Mechanical Engineer, Shanghai Electric

Employability
Delivered by leading researchers from across UCL, you will definitely have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Shell are key to our success and we will encourage you to develop networks through the programme itself and via the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

UCL Mechanical Engineering scored highly in the UK's most recent Research Excellence Framework survey with research in such diverse areas as Formula 1, biomedical engineering and naval architecture. The department is located in the centre of one of the most dynamic cities in the world.

The department has an international reputation for the excellence of its research which is funded by numerous bodies including: the Royal Society, the Leverhulme Trust, UK Ministry of Defence, BAE Systems, Cosworth Technology, Shell, BP, Lloyds Register Educational Trust, and many others.

The Mechanical Engineering MSc has been accredited by the Institute of Mechanical Engineers (IMechE) and the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake.

Read less
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. Read more
The Masters in Mechanical Engineering & Management offers you the opportunity to develop the knowledge and skills needed for modern engineering or technology management. The programme content includes design engineering and other mechanical engineering disciplines.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Mechanical Engineering is a core engineering discipline that has a long history in the University of Glasgow, dating back to the 1760’s and includes famous people as James Watt.
◾If you have a mechanical engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of mechanical engineering, this programme is designed for you.
◾You will learn to understand management principles and practices in an engineering environment, evaluate engineering information, and apply business and management tools. You will combine engineering and management knowledge and skills in projects and problem solving.
◾The programme is split into two semesters and a summer session. One semester will be based in the Business School and is aimed at developing knowledge and skills of management principles and techniques. An applied approach is adopted, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾During the other semester there will be a combination of compulsory and optional courses that will combine to provide the required credits in Mechanical Engineering.
◾In the summer session, a project will be undertaken by MSc students. The topic of the project can be either in Management, or Mechanical Engineering, in which case the topic will usually be closely allied with the research interests of the Discipline.
◾This programme has a September and January intake.

Aims of the programme:
◾To understand management principles and practices in an engineering environment.
◾To evaluate engineering information, and subsequent application of business and management.
◾To combine engineering and management knowledge and skills in projects and problem solving.

Programme structure

TThere are two semesters of taught material and a summer session working on a project or dissertation for MSc students. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen mechanical engineering subjects.

Core course
◾Integrated systems design project.

Optional courses
◾Desalination technology
◾Dynamics
◾Materials engineering
◾Vibration.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to mechanical engineering projects, and January entry students have a choice of mechanical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and accountancy.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can either choose a topic from a list of MSc projects in Mechanical Engineering or the Management portion of your degree. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾In addition to providing an in-depth area in engineering, the programme aims to give graduate engineers with little or no Management experience, the opportunity to develop the knowledge and skills needed for modern engineering or technology management.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributors, in the area of Mechanical Engineering include: Babcock, Howdens, Doosan & Terex.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in Mechanical Engineering industries.

Career prospects

Career opportunities include positions in project management, engineering design, materials & mechanics, dynamics, control and desalination technology.

Graduates of this programme have gone on to positions such as:
Technology Engineer at Procter and Gamble
Quality Engineer at Worcester Bosch.

Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
The International Master in Electro acoustics offers students the opportunity to learn the fundamentals in electro acoustics and in relating fields. Read more
The International Master in Electro acoustics offers students the opportunity to learn the fundamentals in electro acoustics and in relating fields. The program offers a specialized education in:
• Electro acoustics
• Mechanics and materials
• Transducers (loudspeakers, microphones)
• Acoustic loads and acoustic radiation
• Real time signal processing
The program covers the entire range of the whole electro acoustic chain. All courses are given in English on an advanced scientific and technical level. The teaching is based on cutting-edge research in electro acoustics.

The master’s programme prepares students for careers dealing with different aspects of electroacoustics which require strong analytical and research skills, whether in the public or private sectors and for PhD studies or research activities.

General description and ECTS credits:
- Level Refresh (semester 1) - 8 ECTS: Mathematics, digital electronics, signal processing, measurement, acoustics and vibration, theoretical mechanics.
- General skills - 38 ECTS: Mathematics, programming methods, signal processing, acoustics, vibrations, vibro acoustics, acoustic waveguides, analytical modelling of transducers, radiation of transducer systems, advanced modelling of transducers (non linearities, viscothermal effects ...).
- Professional courses - 47 ECTS: Real time signal processing, audio signal processing, optical measurement methods, measurement method of transducers, 3D mechanical modelling, 3D sound, micro technologies, physics of magnets, materials for transducers, numerical modelling of transducers, application project.
- Master’s Thesis– 25 ECTS: Thesis on an electro acoustics engineering-related theme
- Elective courses – 2 ECTS: Fluid mechanics, mechanics of deformable bodies, musical acoustics, room acoustics.

Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of mechanical engineers in the UK, your skills will be in demand.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering a broad range of topics in mechanical design and analysis.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and choosing and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing materials to improve insulation and temperature control in pipelines and refineries • developing ultra-light solar and electric powered vehicles.

Course structure

Core modules

  • engineering principles
  • mechanical engineering principles
  • project and quality management
  • international product development (group project)

Options

  • equipment engineering and design
  • competitive design for manufacture
  • advanced CAD/CAM
  • industrial applications of finite element methods
  • advanced vibration and acoustics
  • competitive materials technology 

Assessment

Assessments will be a mix of coursework and exam, depending on the specific module studied.

Employability

Mechanical engineering is an area with a high demand for skilled graduates. The government has identified this sector as key for driving growth, and the skills you learn on this course prepares you for a highly paid career.

Our graduates have gone on to roles including • design engineer, Rolls-Royce • engineer, GE Aviation • assistant engineer, Boeing • mechanical engineer, Mott Macdonald • design engineer, Siemens • sub-sea turbine engineer, E.ON.

As a mechanical engineer, you make a major contribution to the built environment, the economy and the quality of life of every member of society. Mechanical engineering is ever-changing and offers diverse career opportunities, with plenty of potential to transfer between career routes.

You can move into various industries including • aerospace • automotive • transport • building services • medical engineering • sport equipment design • power generation • alternative energy • product testing • project management.



Read less
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Read more

Your programme of study

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas.Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Semester 1
Electrical Systems for Renewable Energy
Renewable Energy 1 (Solar and Geothermal)
Renewable Energy 2 (Biomass)
Fundamental Concepts in Safety Engineering

Second Half Session
Renewable Energy 3 (Wind, Marine and Hydro)
Energy Conversion and Storage
Renewable Energy Integration to Grid
Legislation, Planning and Economics

Semester 3
Project

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/278/renewable-energy-engineering/
or online:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

Why study at Aberdeen?

• You study with industry professionals and industry lead projects to encourage and challenge you in practical application
• The full supply of energy is covered in the programme from the initial harvesting to the conversion methods required to link to grid
• You can study your degree at University of Aberdeen or online to fit flexibly with your needs
• You learn within a lab setting with industry visits and events in a global sector community

Where you study

• University of Aberdeen
• Online option available (above)

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that online fees may offer a different structure

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less
This course is offered full or part time over one or two years respectively. This MSc provides a qualification for recent UK Engineering graduates and equivalently qualified international students. Read more
This course is offered full or part time over one or two years respectively. This MSc provides a qualification for recent UK Engineering graduates and equivalently qualified international students. It assumes that applicants will have a broad engineering background, which it then builds on.

Course content

The programme is divided into three stages, to complete the Master’s level qualification, you must complete six, 20 credit modules and an individual engineering project worth 60 credits. During the course, you complete four compulsory modules and choose two optional modules. Theoretical lectures and seminars are reinforced by engineering examples and case studies and using our state of the art computer simulation tools and laboratory facilities.

Course modules (16/17)

-Advanced Control Technology
-Computer-Aided Analysis and Visualisation of Mechanical Systems
-Condition Monitoring
-Individual Engineering Project
-Mathematical Modelling
-Professional Practice for Technologists
-System Dynamics and Vibrations

Methods of Learning

Learning methods will be varied and include seminar and case study discussions, lectures and practical sessions. The course has a strong industrial focus in the method of delivery. This very specialist course ensures that you are given the attention you deserve from staff who are approachable and helpful with a wide range of specialist backgrounds in both research and consultancy.

Schedule

Sessions are held at Avenue Campus for one or two days per week (depending on module choices), the university provides a free shuttle bus for students to use.

Assessments

Assessment is by coursework, oral presentations, group work, practical reports, critical reviews and all students undertake a substantial individual research project.

Facilities and Special Features

At the University of Northampton we have recently refurbished and upgraded our laboratories and research facilities to enable all of our students to learn their skills in a cutting edge and supportive environment. We enrol small cohorts onto our postgraduate courses to ensure you receive personalised support and guidance throughout your programme.

Careers

Engineering and associated industries are experiencing a major short fall in well qualified graduates, this has produced a significant demand for flexible individuals with relevant knowledge and expertise. Companies of all sorts now require professional engineers to design, acquire, install, operate, and manage engineering systems. The career opportunities for graduates from this course are, therefore, very good.

Read less

Show 10 15 30 per page



Cookie Policy    X