• University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
University of Warwick Featured Masters Courses
University of Leeds Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Nottingham Featured Masters Courses
USA ×
0 miles
Physics×

Masters Degrees in Physics, USA

We have 9 Masters Degrees in Physics, USA

  • Physics×
  • USA ×
  • clear all
Showing 1 to 9 of 9
Order by 
The Physics Department at Binghamton University offers a two-year master's (MS) degree and a PhD in physics. The MS program is for students seeking careers in applied physics or in research and development in industrial laboratories. Read more
The Physics Department at Binghamton University offers a two-year master's (MS) degree and a PhD in physics. The MS program is for students seeking careers in applied physics or in research and development in industrial laboratories. It is also intended for technical personnel in industry who wish to attain a higher level of understanding of the physical principles on which modern technology is based.

Upon completion of the PhD program, graduates will be able to lead efforts in acedeme and industry in the areas of condensed matter physics, applied physics and materials science. Graduates receive their degree having made significant contributions to advance knowledge in their particular area of research. Courses and seminars provide necessary background in the basic principles, methods and theories of physics.

As as young and vibrant program, faculty are currently engaged in various collaborative research projects, such as Physics of Metal Oxides through Piper Laboratory, Levy Studies of DNA, and Nanoelectronic Physics and Materials Science for Energy Generation and Information Processing. Research activities emphasize energy sciences, biophysics, and information sciences, with the intent to leverage significant research infrastructure investment under the Small Scale Systems Integration and Packaging Center at Binghamton University.

The Physics Department also has a major focus on materials physics and condensed matter physics with strong interactions with Materials Engineering and industry. The Nanofabrication Laboratory at Binghamton University provides state-of-the-art resources pivotal to conducting cutting-edge nano-scale research.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended. Undergraduate degree in physics or related field desirable for admission.
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE general test scores
- Official GRE subject test in physics scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
----Physics applicant minimum TOEFL scores:
*80 on the Internet-based exam
*550 on the paper exam
----Physics applicant minimum IELTS score:
*6.5, with no band below 5.0
----Physics applicant minimum PTE Academic score:
*53

Read less
Apply your physics background. A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Read more
Apply your physics background
A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Medical physicists play a critical role at the cutting-edge of patient healthcare, overseeing effective radiation treatment, ensuring that instruments are working safely, and researching, developing and implementing new therapeutic techniques.

The Medical Physics Programs at the University of Pennsylvania prepare students to bridge physics and clinical medicine, overseeing clinical applications of radiation and creating the cutting-edge medical technologies of tomorrow. The master’s degree and post-graduate certificate programs combine the resources of one of the world’s top research universities and most prestigious medical schools, offering you unmatched opportunities to shape your own path.

Unsurpassed resources and a rich array of options
Access to Penn’s outstanding facilities creates a unique opportunity for you to sample four subspecialties of medical physics, including radiation oncology, diagnostic imaging, nuclear medicine and health physics. Whether you enter a residency, seek employment directly after the program, go on to a PhD, earn an MBA or change career directions with your PhD, you’ll have the resources at your fingertips to build the career most compelling to you.

Our research facilities—all of which are located on campus, within a 10-minute walk—include the state-of-the art Perelman Center for Advanced Medicine; the Roberts Proton Therapy Center, the largest and most advanced facility in the world for this form of cancer radiation; and the Smilow Center for Translational Research, which brings Penn scientists and physicians together to collaborate on research projects.

Preparation for professional success
Our programs, accredited by the Commission on Accreditation of Medical Physics Educational Programs (CAMPEP), are grounded in providing the highest standard of patient care. Our students have numerous opportunities to gain hands-on experience at some of the most advanced medical imaging and therapy facilities in the world, through part-time clinical work, residencies, practicum training and much more. It is for this reason that our degree and certificate programs enjoy a high placement rate for our students, year after year. Faculty from Penn’s CAMPEP-accredited residency program participate in professional development to make our students competitive for medical physics residency programs.

We welcome you to contact a member of our program team to learn more about the possibilities that await you in the Medical Physics Programs at Penn.

Read less
The 30 credit MS program in applied physics offers graduate courses in physics in collaboration with the New Jersey Institute of Technology. Read more

The 30 credit MS program in applied physics offers graduate courses in physics in collaboration with the New Jersey Institute of Technology. The program is designed to meet the demands of modern industry for young researchers with a basic knowledge of quantum mechanics, statistical mechanics and electrodynamics that they can apply it to problems in laser spectroscopy, photonics, magnetic resonance and surface physics.

Learning goals and assessment

Learning Goal 1 for Students: Master the fundamental knowledge of the field.

Assessment of student achievement of Goal 1:

  • Performance on homework, examinations and class participation in courses
  • Comprehensive qualifying examination to assess basic knowledge in physics
  • Essay on a current topic in the field or a research thesis evaluated by faculty
  • Placement in a career or a continuation of graduate study that requires ability in applied physics.

Role of the program in helping students to achieve Goal 1:

  • Assure that students are being prepared in a coherent and academically rigorous fashion
  • Effective monitoring of student progress
  • Evaluations of teaching effectiveness of instructors in graduate courses
  • If effectiveness is below expectations, work with instructors to improve
  • Periodic review of curriculum offerings and assessment tools

Learning Goal 2 for Students: Engage in and conduct original research (for Master’s degrees with thesis)

Assessment of graduate student achievement of Goal 2:

  • Assessment of quality of Master’s thesis
  • Public defense of thesis
  • Critical reading of thesis by a committee of graduate faculty members
  • Submission and acceptance of conference papers and of peer reviewed articles based on the thesis
  • Achievement of students as evidenced by professional placement, selection for conference presentations, peer-reviewed publications, and the awarding of individual grants

Role of graduate program in helping students achieve Goal 2:

  • Provide an early introduction to research methods and opportunities for research
  • Provide opportunities and support to present research and receive feedback

Learning Goal 3 for Students: Prepare professionals working in applied physics

Assessment of graduate student achievement of Goal 3:

  • Evaluations of teaching effectiveness of graduate student instructors
  • Collection of placement and awards data

Role of the program in helping students achieve Goal 3:

  • Host professional development and career exploration activities
  • Acquaint students with non-academic career opportunities

The leadership of the Graduate Program of the Department of Applied Physics will regularly review the structure and content of the program and feedback received from assessments, surveys and students. These reviews are used to improve the program to achieve the goal of providing the best possible education for students.

Programs and Facilities

Students in the graduate program in applied physics have access to many resources, including far-infrared free electron laser, laser spectroscopy laboratory, surface science laboratory, biosensor laboratory, and a Microelectronics Research Center with class 10 clean room facility for CMOS technology and micromachining research. Other available technology includes molecular beam epitaxy (MBE) for III-V optoelectronic materials and device research, chemical vapor deposition (CVD) and physical vapor deposition (PVD) materials synthesis, ultrafast optical and optoelectronic phenomena, ultrathin film and microelectromechanical systems (MEMS), Electronic Imaging Center, rapid thermal annealing, infrared optoelectronic device laboratory, and various materials- and device-characterization facilities.

Interdisciplinary applied physics research is carried out in collaboration with electrical engineering, chemistry, biological sciences, and geological sciences faculty members, as well as with the University of Medicine and Dentistry of New Jersey (UMDNJ). There also is extensive cooperative research with the National Solar Observatory, Bell Laboratories, the U.S. Army Research Laboratory, and other industrial and federal research laboratories.



Read less
The Professional Science Master’s Degree Program in Physics is an innovative two-year graduate degree affiliated with the national Professional Science Master's Association that allows you to pursue advanced training and excel in science while simultaneously developing highly valued business skills. Read more
The Professional Science Master’s Degree Program in Physics is an innovative two-year graduate degree affiliated with the national Professional Science Master's Association that allows you to pursue advanced training and excel in science while simultaneously developing highly valued business skills. The program prepares you for science careers in business, government, or nonprofit organizations—a field that is expanding.

Programs are characterized by “science-plus,” combining rigorous study in science or mathematics with skills-based coursework in management, policy, or law. PSM programs emphasize writing and communication skills, and most require a final project or team experience, as well as a “real-world” internship in a business or public sector enterprise.

-Customize your study by choosing a minimum of six courses with the help of your faculty advisor.
-Gain valuable real-world experience in an industrial setting during your internship (four credits of PHYS 799). In your internship/research project, you’ll pursue a solution to illuminate our understanding of a problem; you’ll write a report that details the problem as well as your findings and results.
-Electives add variety and excitement to your 30-hour PSM requirement. Your graduate advisor is available to help focus your choices for maximum effect.

Read less
There has never been a more exciting time to study the universe beyond the confines of the Earth. A new generation of advanced ground-based and space-borne telescopes and enormous increases in computing power are enabling a golden age of astrophysics. Read more

Program overview

There has never been a more exciting time to study the universe beyond the confines of the Earth. A new generation of advanced ground-based and space-borne telescopes and enormous increases in computing power are enabling a golden age of astrophysics. The MS program in astrophysical sciences and technology focuses on the underlying physics of phenomena beyond the Earth, and on the development of the technologies, instruments, data analysis, and modeling techniques that will enable the next major strides in the field. The program's multidisciplinary emphasis sets it apart from conventional astrophysics graduate programs at traditional research universities.

Plan of study

The MS program comprises a minimum of 32 credit hours of study. The curriculum consists of four core courses, two to four elective courses, two semesters of graduate seminar, and a research project culminating in a thesis.

Master's thesis

Typically following the first year, but sometimes initiated during the first year for well-prepared students, candidates begin a research project under the guidance of a faculty research adviser. A thesis committee is appointed by the program director and consists of the student's adviser and at least two additional members, one of whom must be a faculty member in the astrophysical sciences and technology program. The final examination of the thesis consists of a public oral presentation by the student, followed by questions from the audience. The thesis committee privately question the candidate following the presentation. The committee caucuses immediately following the examination and thereafter notifies the candidate and the program director of the results.

Curriculum

Astrophysical sciences and technology, MS degree, typical course sequence:
First Year
-Astronomical Observational Techniques and Instrumentation
-Astrophysical Dynamics
-Introduction to Relativity and Gravitation
-Graduate Seminar I, II
-Radiative Processes for Astrophysical Sciences
Choose one of the following:
-Mathematical Methods for the Astrophysical Sciences
-Statistical Methods for Astrophysics
-Stellar Structure and Atmospheres
Second Year
-Galactic Astrophysics
-Research and Thesis
-Extragalactic Astrophysics

See website for more details.

Other admission requirements

-Have a minimum undergraduate GPA of 3.2/4.0 in course work in mathematical, science, engineering, or computer subject areas.
-Submit official transcripts (in English) for all previously completed undergraduate and graduate course work.
-Submit two letters of recommendation.
-Submit scores from the Graduate Record Exam (GRE), and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). A minimum score of 550 (paper-based) or 79 (Internet-based) is required. International English Language Testing System (IELTS) scores will be accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 6.5. For additional information about the IELTS, please visit http://www.ielts.org.
-For candidates lacking adequate academic preparation or for those who hold a bachelor's degree in an area other than those listed above, bridge and foundation course work may be necessary prior to full admission.

Additional information

MS to Ph.D. transfer:
Students making good progress in their course work and research project may be permitted, by program approval, to attempt the Ph.D. Qualifying Examination. Upon successfully passing the exam, students may choose to transfer to the Ph.D. program rather than pursue a terminal master of science degree. This is contingent on the availability of an adviser and research funding.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X