• Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
University of Manchester Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Nottingham Trent University Featured Masters Courses
FindA University Ltd Featured Masters Courses
USA ×
0 miles
Engineering×

Masters Degrees in Electronic Engineering, USA

We have 6 Masters Degrees in Electronic Engineering, USA

  • Engineering×
  • Electronic Engineering×
  • USA ×
  • clear all
Showing 1 to 6 of 6
Order by 
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1. Read more
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1

The master of engineering in microelectronics manufacturing engineering provides a broad-based education for students who are interested in a career in the semiconductor industry and hold a bachelor’s degree in traditional engineering or other science disciplines.

Program outcomes

After completing the program, students will be able to:

- Design and understand a sequence of processing steps to fabricate a solid state device to meet a set of geometric, electrical, and/or processing parameters.

- Analyze experimental electrical data from a solid state device to extract performance parameters for comparison to modeling parameters used in the device design.

- Understand current lithographic materials, processes, and systems to meet imaging and/or device patterning requirements.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Perform in a microelectronic engineering environment, as evidenced by an internship.

- Appreciate the areas of specialty in the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

Plan of study

This 30 credit hour program is awarded upon the successful completion of six core courses, two elective courses, a research methods course, and an internship. Under certain circumstances, a student may be required to complete bridge courses totaling more than the minimum number of credits. Students complete courses in microelectronics, microlithography, and manufacturing.

Microelectronics

The microelectronics courses cover major aspects of integrated circuit manufacturing technology, such as oxidation, diffusion, ion implantation, chemical vapor deposition, metalization, plasma etching, etc. These courses emphasize modeling and simulation techniques as well as hands-on laboratory verification of these processes. Students use special software tools for these processes. In the laboratory, students design and fabricate silicon MOS integrated circuits, learn how to utilize semiconductor processing equipment, develop and create a process, and manufacture and test their own integrated circuits.

Microlithography

The microlithography courses are advanced courses in the chemistry, physics, and processing involved in microlithography. Optical lithography will be studied through diffraction, Fourier, and image-assessment techniques. Scalar diffraction models will be utilized to simulate aerial image formation and influences of imaging parameters. Positive and negative resist systems as well as processes for IC application will be studied. Advanced topics will include chemically amplified resists; multiple-layer resist systems; phase-shift masks; and electron beam, X-ray, and deep UV lithography. Laboratory exercises include projection-system design, resist-materials characterization, process optimization, and electron-beam lithography.

Manufacturing

The manufacturing courses include topics such as scheduling, work-in-progress tracking, costing, inventory control, capital budgeting, productivity measures, and personnel management. Concepts of quality and statistical process control are introduced. The laboratory for this course is a student-run factory functioning within the department. Important issues such as measurement of yield, defect density, wafer mapping, control charts, and other manufacturing measurement tools are examined in lectures and through laboratory work. Computer-integrated manufacturing also is studied in detail. Process modeling, simulation, direct control, computer networking, database systems, linking application programs, facility monitoring, expert systems applications for diagnosis and training, and robotics are supported by laboratory experiences in the integrated circuit factory. The program is also offered online for engineers employed in the semiconductor industry.

Internship

The program requires students to complete an internship. This requirement provides a structured and supervised work experience that enables students to gain job-related skills that assist them in achieving their desired career goals.

Students with prior engineering-related job experience may submit a request for internship waiver with the program director. A letter from the appropriate authority substantiating the student’s job responsibility, duration, and performance quality would be required.

For students who are not working in the semiconductor industry while enrolled in this program, the internship may be completed at RIT. It involves an investigation or study of a subject or process directly related to microelectronic engineering under the supervision of a faculty adviser. An internship may be taken any time after the completion of the first semester, and may be designed in a number of ways. At the conclusion of the internship, submission of a final internship report to the faculty adviser and program director is required.

Read less
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology. The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. Read more
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology

The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. New services offered through the internet, mobility offered by wireless technology, and extreme capacity offered by fiber optics, as well as the evolution of policy and regulation, are shaping the telecommunication network of the future. The MS in telecommunications engineering technology focuses on developing the advanced level of skill and knowledge needed by future leaders in the industry. The program is designed for individuals who seek advancement into managerial roles in the dynamic telecommunications environment.

Plan of study

The program requires 33 semester credit hours of study and includes eight core courses that introduce essential fundamental concepts and skills. Each student is required to complete a comprehensive exam or, with faculty approval, a capstone project or a master’s thesis. The remaining credits consist of technical electives or other approved graduate courses.

Comprehensive Exam/Project/Thesis options

All students are required to complete a comprehensive exam at the conclusion of their course work. The comprehensive exam focuses on knowledge of the core competencies, theory and foundation principles, and application of this knowledge to a variety of scenarios. Students who wish to complete a graduate project or thesis under the supervision of a faculty adviser (in place of the comprehensive exam) must have the approval of the faculty and the graduate program director.

Additional information

- Transfer credit

A limited number of credit hours may be transferred from an accredited institution to the program. Please consult the department chair for more information.

- Other approved electives

All students may take three credit hours of graduate elective course work from other graduate programs subject to the approval of the graduate program director. Students often choose to include courses from Saunders College of Business, B. Thomas Golisano College of Computing and Information Sciences, or Kate Gleason College of Engineering. The number of elective credits depends on which completion strategy faculty have approved for the student, the student's choice of thesis, project, or comprehensive exam option.

- Research and cooperative education

Students have the opportunity to apply for research projects or a cooperative education experience. While not a requirement of the program, these opportunities increase the value of the program and the marketability of its graduates.

International Students

International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). Minimum scores of 570 (paper-based), or 88-89 (Internet-based) are required. Applicants with a lower TOEFL score may be admitted conditionally and may be required to take a prescribed program in English and a reduced program course load. International applicants from universities outside the United States must submit scores from the Graduate Record Examination (GRE).

Read less
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0. Read more
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0

The objective of the master of science degree in microelectronic engineering is to provide an opportunity for students to perform graduate-level research as they prepare for entry into either the semiconductor industry or a doctoral program. The degree requires strong preparation in the area of microelectronics and requires a thesis.

Program outcomes

- Understand the fundamental scientific principles governing solid-state devices and their incorporation into modern integrated circuits.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Develop in-depth knowledge in existing or emerging areas of the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

- Apply microelectronic processing techniques to the creation/investigation of new process/device structures.

- Communicate technical material effectively through oral presentations, written reports, and publications.

Plan of study

The MS degree is awarded upon the successful completion of a minimum of 33 semester credit hours, including a 6 credit hour thesis.

The program consists of eight core courses, two graduate electives, 3 credits of graduate seminar and a thesis. The curriculum is designed for students who do not have an undergraduate degree in microelectronic engineering. Students who have an undergraduate degree in microelectronic engineering develop a custom course of study with their graduate adviser.

- Thesis

A thesis is undertaken once the student has completed approximately 20 semester credit hours of study. Planning for the thesis, however, should begin as early as possible. Generally, full-time students should complete their degree requirements, including thesis defense, within two years (four academic semesters and one summer term).

Curriculum

- First Year

Microelectronic Fabrication
Lithographic Materials and Processes
Thin Films
Microelectronics Research Methods
Microelectronic Man.
VLS Process Modeling
Graduate Elective*
Microelectronics Research Methods

- Second Year

Graduate Elective*
MS Thesis
Microelectronics Research Methods

* With adviser approval.
Physical Modeling of Semiconductor Devices

Read less
See the department website - http://www.cis.rit.edu/graduate-programs/master-science. The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Read more
See the department website - http://www.cis.rit.edu/graduate-programs/master-science

The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Formal course work includes consideration of the physical properties of radiation-sensitive materials and processes, the applications of physical and geometrical optics to electro-optical systems, the mathematical evaluation of image forming systems, digital image processing, and the statistical characterization of noise and system performance. Technical electives may be selected from courses offered in imaging science, color science, engineering, computer science, science, and mathematics. Both thesis and project options are available. In general, full-time students are required to pursue the thesis option, with the project option targeted to part-time and online students who can demonstrate that they have sufficient practical experience through their professional activities.

Faculty within the Center for Imaging Science supervise thesis research in areas of the physical properties of radiation-sensitive materials and processes, digital image processing, remote sensing, nanoimaging, electro-optical instrumentation, vision, medical imaging, color imaging systems, and astronomical imaging. Interdisciplinary efforts are possible with other colleges across the university.

The program can be completed on a full- or a part-time basis. Some courses are available online, specifically in the areas of color science, remote sensing, medical imaging, and digital image processing.

Plan of study

All students must earn 30 credit hours as a graduate student. The curriculum is a combination of required core courses in imaging science, elective courses appropriate for the candidate’s background and interests, and either a research thesis or graduate paper/project. Students must enroll in either the research thesis or graduate paper/project option at the beginning of their studies.

Core courses

Students are required to complete the following core courses: Fourier Methods for Imaging (IMGS-616), Image Processing and Computer Vision (IMGS-682), Optics for Imaging (IMGS-633), and either Radiometry (IMGS-619) or The Human Visual System (IMGS-620).

Speciality track courses

Students choose two courses from a variety of tracks such as: digital image processing, medical imaging, electro-optical imaging systems, remote sensing, color imaging, optics, hard copy materials and processes, and nanoimaging. Tracks may be created for students interested in pursuing additional fields of study.

Research thesis option

The research thesis is based on experimental evidence obtained by the student in an appropriate field, as arranged between the student and their adviser. The minimum number of thesis credits required is four and may be fulfilled by experiments in the university’s laboratories. In some cases, the requirement may be fulfilled by work done in other laboratories or the student's place of employment, under the following conditions:

1. The results must be fully publishable.

2. The student’s adviser must be approved by the graduate program coordinator.

3. The thesis must be based on independent, original work, as it would be if the work were done in the university’s laboratories.

A student’s thesis committee is composed of a minimum of three people: the student’s adviser and two additional members who hold at least a master's dgeree in a field relevant to the student’s research. Two committee members must be from the graduate faculty of the center.

Graduate paper/project option

Students with demonstrated practical or research experience, approved by the graduate program coordinator, may choose the graduate project option (3 credit hours). This option takes the form of a systems project course. The graduate paper is normally performed during the final semester of study. Both part- and full-time students may choose this option, with the approval of the graduate program coordinator.

Admission requirements

To be considered for admission to the MS in imaging science, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution (undergraduate studies should include the following: mathematics, through calculus and including differential equations; and a full year of calculus-based physics, including modern physics. It is assumed that students can write a common computer program),

- Submit a one- to two-page statement of educational objectives,

- Submit official transcripts (in English) of all previously completed undergraduate or graduate course work,

- Submit letters of recommendation from individuals familiar with the applicant’s academic or research capabilities,

- Submit scores from the Graduate Record Exam (GRE) (requirement may be waived for those not seeking funding from the Center for Imaging Science), and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 600 (paper-based) or 100 (Internet-based) are required. Students may also submit scores from the International English Language Testing System. The minimum IELTS score is 7.0. International students who are interested in applying for a teaching or research assistantship are advised to obtain as high a TOEFL or IELTS score as possible. These applicants also are encouraged to take the Test of Spoken English in order to be considered for financial assistance.

Applicants seeking financial assistance from the center must have all application documents submitted to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Additional information

- Bridge courses

Applicants who lack adequate preparation may be required to complete bridge courses in mathematics or physics before matriculating with graduate status.

- Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X