• Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Durham University Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Aberdeen University Featured Masters Courses
USA ×
0 miles
Chemistry×

Masters Degrees in Chemistry, USA

We have 14 Masters Degrees in Chemistry, USA

  • Chemistry×
  • USA ×
  • clear all
Showing 1 to 14 of 14
Order by 
The master of science degree in chemistry is offered on a full- or part-time basis. The program is designed to fill the needs of the traditional student or the practicing chemist who is employed full time and wishes to pursue a graduate degree on a part-time basis. Read more

Program overview

The master of science degree in chemistry is offered on a full- or part-time basis. The program is designed to fill the needs of the traditional student or the practicing chemist who is employed full time and wishes to pursue a graduate degree on a part-time basis. The School of Chemistry and Materials Science has research- and teaching-oriented faculty, as well as excellent equipment and facilities that enable full-time graduate students to carry on a program of independent study and develop the ability to attack scientific problems at the fundamental level. The research can result in either a thesis or a project report.Through course work and research activities, the program strives to increase the breadth and depth of the student’s background in chemistry. Students develop the ability to attack scientific problems with minimal supervision.

Plan of study

The program offers two options: a thesis option and a project option. Concentrations are available in organic chemistry, analytical chemistry, inorganic chemistry, physical chemistry, polymer chemistry, materials science, and biochemistry. Customized concentrations are available to accommodate specific student interests and needs relating to graduate study in chemistry. Each student, together with an adviser, chooses courses to create a customized curriculum that best meets their interests, needs, and career aspirations. Each student's curriculum is subject to the approval of the director of the graduate program. A deliberate effort is made to strengthen any areas of weakness indicated by the student’s undergraduate records and the placement examinations. The MS degree consists of the following requirements:

1. A minimum of 30 semester credit hours beyond the bachelor’s degree.
Courses in chemistry consist of core and focus area courses. Core courses are designed to increase a student’s breadth of chemical knowledge, while focus area courses increase depth. Core courses include four semester credit hours in Graduate Chemistry Seminar (CHEM-771, 772, 773, 774) and one credit hour in Chemistry Writing (CHEM-670). Focus area courses are chosen to address the student’s career goals and any undergraduate deficiencies in chemistry. Focus area courses must be at the graduate level and are chosen in consultation between the student and graduate adviser. Focus area courses outside of chemistry are acceptable provided they are approved by the student’s graduate adviser.

2. Research
Ten semester credit hours of research are required with the thesis option. For students who opt for the project option, four semester hours of project research are required.

3. Capstone
Students enrolled in the thesis option are expected to complete an independent research thesis and pass an oral defense. Typically, all requirements are met within two years. Students enrolled in the project option have numerous ways of satisfying the capstone requirement for their project. These include but are not limited to conference presentations, papers, journal articles, patents, and seminars.

Curriculum

Thesis and project options for the Chemistry MS degree differ in course sequence, see website for details.

Other admission requirements

-Submit official transcripts (in English) for all previously completed undergraduate or graduate course work.
-Submit scores from the Graduate Record Exam (GRE). It is recommended that candidates also submit scores from the chemistry GRE.
-Submit two letters of reference.
-Complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). International English Language Testing System (IELTS) scores will be accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 6.5. For additional information about the IELTS, please visit http://www.ielts.org. This requirement may be waived for students submitting transcripts from American universities, or those at which the language of instruction is English. Foreign students with English language deficiencies may be required to take the Michigan Test of English Language Proficiency, given by the RIT English Language Center. If a student’s score is below standard, additional course work may be recommended. Successful completion of this work is a requirement of the program. This may mean that the student will need additional time and financial resources to complete the degree program.
-As a supplement to the normal application process, it is strongly recommended that students visit RIT.

Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
The Chemistry Department offers students the opportunity to study in the traditional areas of analytical, inorganic, organic, and physical chemistry as well as in the growing cross-disciplinary areas such as bioanalytical, bioinorganic, bioorganic and biophysical chemistry; electrochemistry; environmental chemistry; and materials chemistry. Read more
The Chemistry Department offers students the opportunity to study in the traditional areas of analytical, inorganic, organic, and physical chemistry as well as in the growing cross-disciplinary areas such as bioanalytical, bioinorganic, bioorganic and biophysical chemistry; electrochemistry; environmental chemistry; and materials chemistry.
Students work closely with their faculty mentor, but have wide opportunities to interact with faculty in other disciplines including geology, physics, materials/mechanical engineering and biology.
The Chemistry Department has several research facilities which include Spectroscopy, Chromatography, LCQ Mass Spec, Laser Spectroscopy, X-Ray, and Thermal. Additionally Binghamton University hosts several research centers, which included the Institute for Materials Research and the Center for Advanced Sensors and Environmental Systems (CASE), where students in the chemistry programs conduct interdisciplinary research.
Recent doctoral graduates have gone on to post doctoral appointments at Cornell University, an associate professorship at at Russell Sage College, and appointments and fellowships at the National Institute of Health, Atotech, Warner Babcock Institute for Green Chemistry, and Masinde Muliro University of Science and Technology.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores: For international applicants: To be competitive, a minimum combined (verbal + quantitative) GRE General Test score of 1200 is recommended (equivalent to a score of 310 on the new system)
- GRE Subject Test in Chemistry requested

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
----Chemistry applicant minimum TOEFL scores:
*80 on the Internet-based exam
*To be competitive, a score of 90 is recommended
*550 on the paper exam
*To be competitive, a score of 577 is recommended
----Chemistry applicant minimum IELTS score:
*6.5, with no band below 5.0
----Chemistry applicant minimum PTE Academic score:
*53
*To be competitive, a score of 61 is recommended

Read less
USF’s Master of Science in Chemistry is designed for graduate students seeking a research-based degree with personalized direction from research advisers and training from experienced full-time faculty. Read more
USF’s Master of Science in Chemistry is designed for graduate students seeking a research-based degree with personalized direction from research advisers and training from experienced full-time faculty. Hands-on training opportunities prepare our students for a future in professional research and development, further studies in a PhD program or health-related professional programs, and teaching positions at the high school and community college level.

Full-Tuition Merit Scholarships

Students admitted to the program are funded, including a full graduate scholarship, and most earn a salary earned through teaching or research assistantships.

Research Areas

Students are accepted into specific research groups and immediately join a research project supervised by their assigned research adviser, with whom they develop a program of directed scientific research. To qualify for admission to the program, you must be interested in pursuing research in one of the following areas:

Analytical Chemistry: Lawrence Margerum & Ryan West
Biochemistry: Megan Bolitho & Janet Yang
Inorganic Chemistry: Lawrence Margerum
Medicinal Chemistry: Jie Jack Li
Organic Chemistry: Megan Bolitho & Jie Jack Li
Physical Chemistry: Giovanni Meloni & Ryan West

Read less
IUP’s new two-year interdisciplinary graduate degree prepares you for an emerging trend in the job market. A combination of science coursework and professional skills courses in management, marketing, and communications will advance your career to new heights. Read more
IUP’s new two-year interdisciplinary graduate degree prepares you for an emerging trend in the job market. A combination of science coursework and professional skills courses in management, marketing, and communications will advance your career to new heights.

Following completion of science proficiency courses, you’ll take professional development courses designed to augment your scientific knowledge with communication, business, and management skills to better prepare you to meet the technology challenges of a company.

The PSM internship allows you to gain hands-on industry experience and lets you earn your degree while working full time. The internship gives you experience in managing the breakthroughs created by your company’s research teams. You’ll interact with scientific researchers and business managers, especially in the marketing, finance, and legal departments.

The PSM in Applied and Industrial Chemistry provides the skill set necessary for linking scientific operations with management decisions and marketing strategies.

The PSM degree will prepare you to:
-Master non-science subjects in business, communications, and information technology.
-Interact with scientific researchers and business managers through your internship, especially in the marketing, finance, and legal departments.
-Access a wide assortment of modern instrumentation for research and to fulfill IUP coursework requirements.

Read less
There are two options within our master’s program, both of which lead to the MS degree. the thesis option, and the coursework option. Read more
There are two options within our master’s program, both of which lead to the MS degree: the thesis option, and the coursework option.

Plan I (Thesis Option)

The Plan I master’s degree requires a minimum of 30 credit hours — 24 hours of coursework and 6 hours of thesis research (CH 699).

Four lecture courses (12 credit hours) are required for this degree option. At least two of these courses must be in the student’s major area, and at least one must be outside the major area.

In addition to formal coursework, students will generally register for 10 hours of advanced research technique courses in their major area. Students will also take at least 6 hours of thesis research (CH 699).

Students will present a research seminar in their second year prior to the oral defense of their thesis. Students will register for the seminar course (CH 586) in the semester that they give their seminar.

Each student will meet with their thesis committee in the first semester of their third semester (September of the second year for students starting in the fall semester) to present an initial research review (IRR). In the IRR, the student will describe the progress made on the thesis project to his or her committee. The student will also discuss the work remaining to complete the thesis research.

Upon completing their research, the student will prepare a thesis according to the UA Graduate School’s guidelines. The thesis should be distributed to the thesis committee two weeks prior to the oral defense.

The student’s research advisor and thesis committee will read the thesis and meet to hear an oral defense of the thesis. The oral defense will serve as the comprehensive exam for the MS degree.

Plan II (Coursework Option)

The Plan II option requires a minimum of 30 credit hours of coursework.

Six lecture courses (18 hours) are required. Four of these courses will be in the student’s major, and two will be outside the major area of study.

The remaining 12 hours of the program will be made up of the seminar course (CH 586) and research techniques courses in the student’s major area.

Each student in this program will present a seminar on a literature topic not related to his or her research during their second year in the program. This seminar will serve as the comprehensive exam for the Plan II master’s degree.

Students completing a terminal Plan II master’s must have either completed the IRR research review, or hold a short final defense with their graduate committee. The student will complete a short written document and discuss their research with their committee.

Read less
Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. Read more

Program overview

Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. The curriculum, leading to a master of science degree in color science, educates students using a broad interdisciplinary approach. This is the only graduate program in the country devoted to this discipline and it is designed for students whose undergraduate majors are in physics, chemistry, imaging science, computer science, electrical engineering, experimental psychology, physiology, or any discipline pertaining to the quantitative description of color. Graduates are in high demand and have accepted industrial positions in electronic imaging, color instrumentation, colorant formulation, and basic and applied research. Companies that have hired graduates include Apple Inc., Benjamin Moore, Canon Corp., Dolby Laboratories, Eastman Kodak Co., Hallmark, Hewlett Packard Corp., Microsoft Corp., Pantone, Qualcomm Inc., Ricoh Innovations Inc., Samsung, and Xerox Corp.

The color science degree provides graduate-level study in both theory and practical application. The program gives students a broad exposure to the field of color and affords them the unique opportunity of specializing in an area appropriate for their background and interest. This objective will be accomplished through the program’s core courses, selection of electives, and completion of a thesis or graduate project.The program revolves around the activities of the Munsell Color Science Laboratory within the College of Science. The Munsell Laboratory is the pre-eminent academic laboratory in the country devoted to color science. Research is currently under way in color appearance models, lighting, image-quality, color-tolerance psychophysics, spectral-based image capture, archiving, reproduction of artwork, color management, computer graphics; and material appearance. The Munsell Laboratory has many contacts that provide students with summer and full-time job opportunities across the United States and abroad.

Plan of study

Students must earn 30 semester credit hours as a graduate student to earn the master of science degree. For full-time students, the program requires three to four semesters of study. Part-time students generally require two to four years of study. The curriculum is a combination of required courses in color science, elective courses appropriate for the candidate’s background, and either a research thesis or graduate project. Students require approval of the program director if they wish to complete a graduate project, rather than a research thesis, at the conclusion of their degree.

Prerequisites: The foundation program

The color science program is designed for the candidate with an undergraduate degree in a scientific or other technical discipline. Candidates with adequate undergraduate work in related sciences start the program as matriculated graduate students. Candidates without adequate undergraduate work in related sciences must take foundation courses prior to matriculation into the graduate program. A written agreement between the candidate and the program coordinator will identify the required foundation courses. Foundation courses must be completed with an overall B average before a student can matriculate into the graduate program. A maximum of 9 graduate-level credit hours may be taken prior to matriculation into the graduate program. The foundation courses, representative of those often required, are as follows: one year of calculus, one year of college physics (with laboratory), one course in computer programming, one course in matrix algebra, one course in statistics, and one course in introductory psychology. Other science courses (with laboratory) might be substituted for physics.

Curriculum

Color science, MS degree, typical course sequence:
First Year
-Principles of Color Science
-Computational Vision Science
-Historical Research Perspectives
-Color Physics and Applications
-Modeling Visual Perception
-Research and Publication Methods
-Electives
Second Year
-Research
-Electives

Other admission requirements

-Submit scores from the Graduate Record Examination (GRE).
-Submit official transcripts (in English) for all previously completed undergraduate and graduate course work.
-Submit two professional recommendations.
-Complete an on-campus interview (when possible).
-Have an average GPA of 3.0 or higher.
-Have completed foundation course work with GPA of 3.0 or higher (if required), and complete a graduate application.
-International applicants who native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 94 (internet-based) are required. International English Language Testing System (IELTS) scores will be accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 7.0. For additional information about the IELTS, please visit http://www.ielts.org.

Additional information

Scholarships and assistantships:
Students seeking RIT-funded scholarships and assistantships should apply to the Color Science Ph.D. program (which is identical to the MS program in the first two years). Currently, assistantships are only available for qualified color science applicants to the Ph.D. program. Applicants seeking financial assistance from RIT must submit all application documents to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Read less
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences. Read more
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences.

About the Program

Modern pharmaceutical science encompasses a number of disciplines, including biochemistry, molecular biology, physiology, immunology, pharmacology, pharmaceutics, and medicinal chemistry. The field is unified by the search for novel drug targets and the development of new agents and formulations for the treatment biomedical disease. This includes cutting edge techniques to target drugs to sites of therapeutic action and to reduce adverse effects related to drug metabolism, lack of target selectivity, and pharmacogenetic differences within the human population. PhD’s in pharmaceutical science are well trained for drug discovery and development positions in academic labs, government (e.g., Food and Drug Administration), and the pharmaceutical or biotech industries.
Each student completes a core curriculum including foundation training in biochemistry, physiology, pharmacology and pharmaceutics designed to give students a basic understanding of the biomedical processes by which the body operates and the pharmaceutical agents and delivery systems available to interact with these systems. Electives studies offer the student the opportunity for specialization in more focused areas of interest, including receptor biology, molecular drug action, cell signaling, cancer research, pharmacokinetics, drug metabolism, and biotechnology. Communication, research design, professional skills and ethics are developed throughout the curriculum in complementary courses. Students become immersed in the philosophy of life-long learning and the importance of maintaining and updating their knowledge base as critical, independent thinkers and scientists. The faculty sees this integrated approach as one of the primary strengths of the program, combining cutting-edge molecular and biomedical breakthroughs with modern drug development, targeting and formulation. A broad range of biomedical and pharmaceutical research opportunities are available throughout the department. Focus areas of the Department with links to specific faculty interests are listed below:
Aging/Brain/Neuroprotection/Stroke
Blood Brain Barrier and Neurovascular
Cancer and Molecular Biology & Therapy
Cardiovascular Disease & Regulation
Drug Discovery and Formulation & Pharmacokinetics
Receptor Biology, Cell Signaling & Immunotherapy

Funding

Typically, students may complete a course of study for a Ph.D. degree within 4-5 years or a Masters degree in about half that time (2-2.5 years). Funding is available in the form of stipends ($23,000) from the Department/Graduate School and from individual faculty research resources. These stipends are awarded on a competitive basis to qualifying Ph.D. candidates. Currently, the Department has 43 funded graduate students.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X