• Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
King’s College London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Swansea University Featured Masters Courses
United Kingdom ×
0 miles
Physics×

Masters Degrees in Space Science, United Kingdom

We have 10 Masters Degrees in Space Science, United Kingdom

  • Physics×
  • Space Science×
  • United Kingdom ×
  • clear all
Showing 1 to 10 of 10
Order by 
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. Read more
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. The programme aims to provide a broad understanding of all aspects of space science together with specialised training in research methods, directly applicable to a career in academia, the public and private sectors.

Degree information

The Space Science pathway is focussed on scientific research applications of space technology; it aims to equip participants with a sound knowledge of the physical principles essential to sustain careers in space research and related fields. Students develop a thorough understanding of the fundamentals of:

a range of space science fields
spacecraft, space science instrumentation, the space environment, space operations and space project management
Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), three optional modules (45 credits), a group project (15 credits), and a research project (60 credits).

Core modules
-Space Data Systems and Processing
-Space Instrumentation and Applications
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Group Project

Optional modules
-Planetary Atmospheres
-Solar Physics
-High Energy Astrophysics
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security

Dissertation/report
All MSc students undertake an independent research project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examination, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for further research degrees and/or careers in space research or the space industry. First destinations of recent graduates include:
-University of Lancaster: PhD Solar Physics
-Irongate Archaeological Project: IT Specialist
-UCL: PhD Space Climate Physics

Why study this degree at UCL?

UCL’s Space & Climate Physics Department, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space, as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in academic circles and beyond.

Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field… Read more
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

Degree information

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:
-Spacecraft, satellite communications, the space environment, space operations and space project management.
-The electromagnetics of optical and microwave transmission, and of communication systems modelling.
-A range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Communications Systems Modelling Type
-Group Project

Optional modules - at least one module from the following:
-Spacecraft Design – Electronic Sub-systems
-Mechanical Design of Spacecraft
-Antennas and Propagation
-Radar Systems
-Space-based Communication Systems

At least one module from:
-Space Instrumentation and Applications
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security
-Space Data Systems and Processing

Dissertation/report
All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

First destinations of recent graduates include:
-ONERA: Research Engineer
-Hispassat: Telecommunications Engineer
-Detica: Engineer
-Equinox Consulting: Financial Consultant
-Murex: Financial Consultant
-Risk Management Solutions: Risk Analyst
-Defence Science and Technology Laboratory: Analyst
-School of Electronics & Computer Science IT-Innovation: Research Engineer
-EADS Astrium Ltd: Engineer
-Thales Space: Engineer

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.

Read less
This postgraduate qualification is designed for those with an academic or professional interest in space science and the technology that underpins this discipline. Read more
This postgraduate qualification is designed for those with an academic or professional interest in space science and the technology that underpins this discipline. It equips students with the skills to carry out scientific investigations using space-based instrumentation, both individually and as a team. Students learn how to use a programming language in support of space science applications and develop other skills that are relevant to further research or employment in the space sector. The qualification also requires students to conduct an in-depth research project on a topic in space science or space technology.

Key features of the course

•Develops skills in conducting science in the space environment through the use of robotic experiments
•Explores current debates in space and planetary sciences using data from space missions
•Develops technical and professional skills according to individual needs and interests
•Culminates with an in-depth individual research project in space science or space technology.

This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see our fees and funding webpage.

Modules

To gain this qualification, you need 180 credits as follows:

60 credits from the compulsory module:

• Space science (S818) NEW

Plus

30 credits from List A: Optional modules

• Managing technological innovation (T848)
• Project management (M815)
• Strategic capabilities for technological innovation (T849)

Plus

30 credits from List B: Optional modules

• Finite element analysis: basic principles and applications (T804)
• Manufacture materials design (T805)
• Software development (M813)
• Software engineering (M814)

a 60-credit compulsory module:

Compulsory module

The MSc project module for MSc in Space Science and Technology (SXS810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. You should apply for credit transfer as soon as possible, before you register for your first module. For more details and an application form, visit our Credit Transfer website.

Read less
Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications. Read more

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Space Engineering aims to provide a high-level postgraduate qualification relating to the design of space missions using satellites. Study is taken to a high level, in both theory and practice, in the specialist areas of space physics, mechanics, orbits, and space-propulsion systems, as well as the system and electronic design of space vehicles.

This is a multi-disciplinary programme, and projects are often closely associated with ongoing space projects carried out by Surrey Satellite Technology, plc.

This is a large local company that builds satellites commercially and carries out industrially-sponsored research. Graduates from this programme are in demand in the UK and European Space Industries.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This interdisciplinary MSc offers a wide programme of study related to the physics of planetary and space environments, including planetary interiors, atmospheres… Read more
This interdisciplinary MSc offers a wide programme of study related to the physics of planetary and space environments, including planetary interiors, atmospheres and magnetospheres; the impact of the space environment on human physiology; and research project work which provides potential opportunity to work with established planetary researchers at UCL and Birkbeck, some of whom are involved in active or planned space missions.

Degree information

Students develop insights into the techniques used in current projects, and gain in-depth experience of a particular specialised research area through project work as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits.

The programme consists of a choice of three core modules (45 credits), three optional modules (45 credits), a research essay (30 credits) and a dissertation (60 credits). A Postgraduate Diploma consisting of three core modules (45 credits), three optional modules (45 credits) and a research essay (30 credits); full-time nine months is offered.

Optional modules 1 (15 credits each) - students choose three from:
-Deep Earth and Planetary Modelling
-Earth and Planetary Materials
-Planetary Atmospheres
-Space Plasma and Magnetospheric Physics
-Remote Sensing and Planetary Surfaces
-Physics of Exoplanets

Optional modules 2 (15 credits each) - students choose three from the following:
-Earth and Planetary System Science
-Melting and Volcanism
-Solar Physics
-Astronomical Spectroscopy
-Physics of the Earth
-Space Medicine and Extreme Environment Physiology
-Comets, Asteroids and Meteorites
-Advanced Topics in Planetary Science

Alternatively students may also choose a fourth module from the Optional modules 1 list and two from the Optional modules 2 list above.

Dissertation/report
All students submit a critical research essay and MSc students undertake an independent research project which culminates in a substantial dissertation and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, practical classes, computer-based teaching, fieldwork, and tutorials. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Careers

Physics-based careers embrace a broad band of areas, e.g. information technology, engineering, finance, research and development, medicine, nanotechnology and photonics. Graduates of MSc programmes at UCL go on to a variety of careers as research associates, postdoctoral fellows, consultants, and systems test engineers.

Top career destinations for this degree:
-Chartered Surveyor, Dunphys
-PhD in Planetary Science, The Open University (OU)

Employability
An MSc qualification from UCL is highly regarded by employers. Students engage in a variety of learning activities, including undertaking their own research projects, which encourages the development of problem-solving skills, technical and quantitative analysis, independent critical thinking and good scientific practice. In addition, teamwork, vision and enthusiasm make physics graduates highly desirable members in all dynamic companies.

Why study this degree at UCL?

UCL Physics & Astronomy is among the leading departments in the UK for graduate study. The curriculum of the Planetary Science MSc draws on a variety of other academic departments within UCL including Space & Climate Physics (Mullard Space Science Laboratory), Earth Sciences, Cell & Developmental Biology and Birkbeck's Department of Earth and Planetary Sciences. The programme thus has a strong interdisciplinary flavour, in line with the ethos of the Centre for Planetary Sciences at UCL/Birkbeck.

The combination of taught courses, tutorials and project work allows prospective students to study a wide variety of topics related to planetary and space environments, such as: planetary interiors, atmospheres and magnetospheres; the impact of the space environment on human physiology and life; and the application of current knowledge to investigations of extrasolar planets, i.e. worlds in other stellar systems.

Read less
This qualification explores some of contemporary science's most pressing issues and develops a wide range of skills associated with postgraduate study. Read more
This qualification explores some of contemporary science's most pressing issues and develops a wide range of skills associated with postgraduate study. The MSc includes taught modules and a compulsory final project module which gives you the opportunity to explore a topic in further depth, and undertake a substantial piece of independent research.

Key features of the course

•Flexible study routes to suit your professional needs and interests
•Options include Earth Science, Brain and Behavioural Science and Medicinal Chemistry
•Develops critical, analytical and research skills, boosting your career or preparing you for further studies at doctoral level.

This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see our fees and funding web page.

Modules

If you are new to postgraduate level study we recommend that you take Developing research skills in science (S825) as your first module. You should study the project module last.

To gain this qualification, you need 180 credits as follows:

120 credits of optional modules from List A:

List A: Optional modules

• Developing research skills in science (S825)
• Molecules in medicine (S807)
• Earth science: a systems approach (S808)
• Concept to clinic (S827)
• Introduction to mental health science (S826)
• Space science (S818)

Or 90 credits from List A plus 30 credits from List B:

List B: Optional modules

• Capacities for managing development (T878)
• Making environmental decisions (T891)
• Managing for sustainability (T867)
• Project management (M815)
• The critical researcher: educational technology in practice (H819)
• The networked practitioner (H818)

plus

The following 60 credit compulsory module:

• MSc project module (S810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. Please note that credit transfer is not available for the MSc project module (S810). You should apply for credit transfer as soon as possible, before you register for your first module. For more details and an application form, visit our Credit Transfer website.

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/212/physics

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Study support

- Postgraduate resources

The University has good facilities for modern research in physical sciences. Among the major instrumentation and techniques available on the campus are NMR spectrometers (including solutions at 600 MHz), several infrared and uvvisible spectrometers, a Raman spectrometer, two powder X-ray diffractometers, X-ray fluorescence, atomic absorption in flame and graphite furnace mode, gel-permeation chromatography, gaschromatography, analytical and preparative highperformance liquid chromatography (including GC-MS and HPLC-MS), mass spectrometry (electrospray and MALDI), scanning electron microscopy and EDX, various microscopes (including hot-stage), differential scanning calorimetry and thermal gravimetric analysis, dionex analysis of anions and automated CHN analysis. For planetary science impact studies, there is a two-stage light gas gun.

- Interdisciplinary approach

Much of the School’s work is interdisciplinary and we have successful collaborative projects with members of the Schools of Biosciences, Computing and Engineering and Digital Arts at Kent, as well as an extensive network of international collaborations.

- National and international links

The School is a leading partner in the South East Physics Network (SEPnet), a consortium of seven universities in the south-east, acting together to promote physics in the region through national and international channels. The School benefits through the £12.5 million of funding from the Higher Education Funding Council for England (HEFCE), creating new facilities and resources to enable us to expand our research portfolio.

The School’s research is well supported by contracts and grants and we have numerous collaborations with groups in universities around the world. We have particularly strong links with universities in Germany, France, Italy and the USA. UK links include King’s College, London and St Bartholomew’s Hospital, London. Our industrial partners include British Aerospace, New York Eye and Ear Infirmary, and Ophthalmic Technology Inc, Canada. The universe is explored through collaborations with NASA, ESO and ESA scientists.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Nature; Science; Astrophysical Journal; Journal of Polymer Science; Journal of Materials Chemistry; and Applied Optics.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This MSc is for you if you’re a graduate from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to cosmology. Read more
This MSc is for you if you’re a graduate from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to cosmology.

It is one of only two MScs in this subject area in the UK. Our emphasis is on observational and theoretical cosmology in the pre- and post-recombination universe.

How will I study?

Teaching is through:
-Lectures
-Exercise classes
-Seminars
-Personal supervision

You’re assessed by coursework and unseen examination. Assessment for the project is an oral presentation and a dissertation of up to 20,000 words. You’ll contribute to our weekly informal seminars and are encouraged to attend research seminars.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Faculty

Our research focuses on extragalactic astrophysics and cosmology.

Careers

Most of our graduates have gone on to study for a research degree in a closely related field.

Read less
The taught component of the MSc and PGDip courses runs for six months and encompasses a range of teaching methods. lectures, computational and practical workshops, laboratory work, seminars, project based learning, independent learning and team working activities. Read more
The taught component of the MSc and PGDip courses runs for six months and encompasses a range of teaching methods: lectures, computational and practical workshops, laboratory work, seminars, project based learning, independent learning and team working activities.

Seminars and course material delivered by industrial partners and experts in the space sector will be a key element of the programme. International collaborators with honorary positions at the University of Leicester will provide assistance in delivering the taught component of the course.

The project based component of the MSc course spans six months. During the project phase students will have the opportunity to interact with mentors and project supervisors from academia and industry. These individuals will be expert practitioners in the fields which they supervise.

Assessment methods will include examinations, continuous assessment and assessment by course work. Additional assessment methods are currently under development.

Read less
This Postgraduate Certificate is designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the space domain. Read more
This Postgraduate Certificate is designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the space domain.

Degree information

Students will develop a powerful set of skills and knowledge about space systems and gain awareness and understanding of the economic and organisational context within which space sytems are developed including the limitations these can impose. Depending on the modules chosen, students may focus more on business, project management, reliability or design aspects.

Students undertake modules to the value of 60 credits.

The programme consists of four taught modules of 15 credits each.

Core modules
Students must take Space Systems (15 credits) and either three from the list below or two from the list below and one optional module.
- Business Environment
- Lifecycle Management
- Risk, Reliability and Resilience
- Systems Thinking and Engineering Management

Optional modules
- Delivering Complex Projects
- Project Management* (leading to Association for Project Management examination)
- Systems Design
- Technology Strategy
* Delivered in association with UCL School of Management

Teaching and learning
The programme consists of four taught modules, each of which is delivered as a five-day block week consisting of a blend of interactive lectures, small-group exercises and presentations, case studies and workshop activity. Formative feedback is given to students throughout the modules. Modules are formally assessed through coursework to be completed a few weeks after the module, and for some modules there is also a short test or a 1.5 hour written examination.

Further information on modules and degree structure is available on the department website: http://www.ucl.ac.uk/syseng/pg-taught/sem

[[Careers]

Students who have studied this subject have found employment in aerospace, defence, communications, rail, construction, engineering, IT, management consultancy and many other areas.

Employability
Systems engineering is a highly sought-after expertise, particularly in engineering and technology-based organisations.

The programme's industrial advisory board ensures that the subjects students learn about cover the key issues faced by industry.

Why study this degree at UCL?

The programme combines interactive lectures, group exercises and case studies to reinforce key points. Lecturers are experts in the field, many of whom have engaged in the practice of systems engineering in industry, and all of whom oversee research across a broad range of subjects relating to systems engineering, project management and technology management.

Students with this degree will gain the skills, knowledege and confidence to further their careers. They will be able to build their professional contacts with like-minded individuals from different organisations.

On completion of the 60-credit programme, students may choose to apply to transfer their credit towards a 120-credit Postgraduate Diploma or a 180-credit MSc in Systems Engineering Management.

Accreditation
The MSc in Systems Engineering Management (which students may choose to go on to study on successful completion of this Postgraduate Certificate) is accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X