• Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Birmingham City University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
United Kingdom ×
0 miles
Engineering×

Masters Degrees in Robotics & Cybernetics, United Kingdom

We have 46 Masters Degrees in Robotics & Cybernetics, United Kingdom

  • Engineering×
  • Robotics & Cybernetics×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 46
Order by 
This theoretical and practical. MSc Engineering (Cybernetics and Communications). course combines computer science, electronic engineering, mechanical engineering and management to enable greater understanding of cybernetics and communications. Read more

This theoretical and practical MSc Engineering (Cybernetics and Communications) course combines computer science, electronic engineering, mechanical engineering and management to enable greater understanding of cybernetics and communications.

An innovative and distinctive feature of the course is the cross-disciplinary group design project, which provides a challenging, simulated environment in which to work as a member of a team. The project will encourage you to develop your imagination, creativity and innovation in design solutions. You will also build on your leadership, team building and communication skills, all of which are attractive to potential employers.

Modules

  • Mobile networks
  • Robotics and cybernetics
  • Wireless communications
  • Group design project
  • Research methods
  • Major project
  • Global business management
  • Entrepreneurial leadership and project management
  • Software engineering 1

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.



Read less
In the near future robotic and other autonomous systems will be present in virtually every industry, with their global impact estimated to reach $6.5 trillion per year by 2025 (McKinsey). Read more
In the near future robotic and other autonomous systems will be present in virtually every industry, with their global impact estimated to reach $6.5 trillion per year by 2025 (McKinsey). As new markets turn to robotics for the next step in their evolution, the need for qualified robotic engineers has never been greater.

Why Study MSc Robotics at Middlesex University?
Our hands-on masters degree in Robotics blends practice with theory to equip students with the skills, knowledge and experience they need for a career as a robotics engineer. The postgraduate degree includes significant time working in laboratories under the supervision of our expert teaching staff, many of whom have worked in robotics since the early days of the technology.

Over the duration of the course you will gain experience working with industry-standard equipment in our cutting-edge labs and workshops. You will also benefit from our close to links to leading industry organisations, be encouraged to enter national robotics competitions and supported to undertake industry work placements during the masters.

Course highlights:
Learn in specialist facilities, which includes a wide range of robots, a £250,000 3D printer and Festo didactic automation training systems
Undertake a major study project in the area you wish to specialise in
Contribute to the wide range of robotics research being carried out in the school
Course leader Professor Martin Smith is one of the UK's leading robotics experts and was a judge on BBC Two's Robot Wars for six years.

Read less
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. Read more
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. You will gain experience in an exciting wide range of topics, providing you hands-on experience. You will learn about the development of embedded control systems for robots, intelligent algorithms and their application to robotics, communications and systems programming, all with a focus on the practical implementation, both in hardware and simulation. The MSc culminates in a large group project focussed on collective robotic systems, ranging from ground-based units to flying robots. You will have the opportunity to work in a state of the art, dedicated, robotics laboratory for some of your modules and your final project, see the York Robotics Laboratory website for more details on the lab.

The MSc is intended for students who want to learn about robotic and autonomous systems for employment in related industries, or who are seeking a route into a PhD.

The broad aims of the course are to provide:
-A thorough grounding in the use of scientific and engineering techniques as applied to intelligent robotic systems
-A detailed knowledge of the development and deployment of intelligent robotic systems
-A detailed knowledge of the latest developments in intelligent robotics and an ability to reflect critically on those developments
-A detailed understanding of engineering collective robotic systems with emergent behaviours
-Experience of undertaking a substantial group project, on a subject related to research in autonomous robotic systems

Group Project

The aim of this substantial group project is to immerse the students in a life-like scenario of a group of engineers developing a large scale collective robotic system. The project will involve the design, construction and implementation of the control of a heterogeneous collective robotic system, providing students with practical experience of project management and team skills. The system will include both software (such as individual and collective robotic control, low-level programming) and hardware (such as hardware design or customisation) components. The project will culminate in the design and realisation of a collective robotic system that will undergo various test scenarios in the robotics laboratory.

The project preparation will begin towards the end of the Autumn term when groups will be develop a Quality Assurance manual, that will prepare the students to establish effective group policies, procedures and roles for group members, introducing the Quality Assurance processes applied to medium to large projects in industry. The group will be given a scenario and begin establishing requirements and develop outline designs.

In the Summer term, the project will get under way. Groups of 4-6 students will be formed, assigned a target system to design, and provided with a budget. In this term, the students will prepare a design document that will be followed for the remainder of the project. Detailed system specifications will be established and initial prototypes developed. You will make full use of the Robotics Laboratory and spend the vast majority of your time working on robotic systems and attempting to develop an innovative solution to the problem given. Full technical support is available in the laboratory.

A final presentation of each group is done in September where live demos of the system developed have to be provided. This is combined with a group presentation on the work undertaken and contributions made by each individual. Group documentation is submitted along with an individual report.

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more

Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to deliver this MRes, which uniquely covers the whole spectrum of potential RAS areas and application.

About this degree

The programme teaches students the essentials of robotic and computational tools for robotics and autonomous systems. The key aim of the principal project thesis is to cultivate a deep understanding of robotics research, with a particular focus on a specific research topic in robotics and autonomous systems.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (15 credits), two to three optional modules (30 to 45 credits), up to two elective modules (30 credits), and a dissertation/report (105 credits).

Core modules

  • Robotic Systems Engineering (15 credits)

Optional modules

Students must choose a minimum of 30 and a maximum of 45 credits from Optional modules. Students must also choose a minimum of 15 and a maximum of 30 credits from Electives. 

  • Robotic Control Theory and Systems (15 credits)
  • Robotic Sensing, Manipulation and Interaction (15 credits)
  • Robotic Vision and Navigation (15 credits)

Please note: the availability and delivery of modules may vary, based on your selected options.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning

Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercices.

Further information on modules and degree structure is available on the department website: Robotics MRes

Funding

Scholarships relevant to this department are displayed below.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Robotics is a growing field encompassing many technologies with tremendous opportunities for research and development both in industry and in academia, and with diverse applications across different industrial sectors spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MRes programme will will have project-focused experience and knowledge in robotics and the underpinning computational and analytical fundamentals. These skills will position graduates to be well placed to undertake PhD studies or industrial research and development in robotics and computational research specific to robotics but translational across different analytical disciplines, or applied fields that will be influenced by new robotic technologies and capabilities.

Employability

The MRes will develop skills widely relevant to a career in engineering industries and analytical problem-solving occupations. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in high demand globally.

Why study this degree at UCL?

UCL scored highest among UK universities for the quality of research in Computer Science and Informatics in the Research Excellence Framework (REF2014).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.



Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more

Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

About this degree

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two to four optional modules (30 to 60 credits), up to two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules

  • Robotic Control Theory and Systems (15 credits)
  • Robotic Sensing, Manipulation and Interaction (15 credits)
  • Robotic Systems Engineering (15 credits)
  • Robotic Vision and Navigation (15 credits)

Optional modules

Students will need to choose a minimum of 30 and a maximum of 60 credits from the optional modules.

  • Acquisition and Processing of 3D Geometry (15 credits)
  • Artificial Intelligence and Neural Computing (15 credits)
  • Image Processing (15 credits)
  • Inverse Problems in Imaging (15 credits)
  • Mathematical Methods, Algorithmics and Implementations (15 credits)
  • Numerical Optimisation (15 credits)
  • Research Methods and Reading (15 credits)
  • Terrestrial Data Acquisition (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

Students can also choose up to two elective MSc modules from across UCL Computer Science, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 12,000 words.

Teaching and learning

Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Further information on modules and degree structure is available on the department website: Robotics and Computation MSc

Funding

Four MSc Scholarships, worth £4000 each, are made available by the Department of Computer Science to UK/EU offer holders with a record of excellent academic achievement. The closing date will be in June 2018. For more information, please see the department pages.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability

This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.



Read less
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Read more
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Gain current, advanced theoretical and practical knowledge from our world-leading experts in intelligent and interactive robotics. You’ll graduate ready for a future in the fast-moving world of personal and service robotics and with the skills to further your research to PhD level.

Key features

-Immerse yourself in an individual research project and learn how to communicate your motivation, methodology, and conclusions through a formal dissertation and summary paper.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.
-The taught elements of this programme are also delivered to students on Year 1 of the MSc Robotics Technology programme.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build advanced theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll learn how to search, critically appraise and identify relevant research literature. You’ll also gain expertise in project management and personal effectiveness whilst immersing yourself in a substantial and innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-PROJ510 MRes Project

Optional modules
-ROCO503 Sensors and Actuators
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Taking BEng (Hons) Robotics to the next level, this MEng course digs deeper into the robotic technologies that are shaping today and tomorrow. Read more
Taking BEng (Hons) Robotics to the next level, this MEng course digs deeper into the robotic technologies that are shaping today and tomorrow. Providing an extra year of insight and training, your learning will be informed by robotics research pushing boundaries worldwide led by our very own teaching staff. You’ll build technical and managerial skills that you can put into practice daily, through a final group project that will set your course for success when you graduate.

You will experience learning that meets the highest standard academic requirements set by The Institution of Engineering and Technology (IET). You will draw on unique opportunities to engage in world-class robotics research, and in a variety of activities. You’ll capitalise on the opportunity to take a work placement in your second or third year, putting your robotics skills into action in the real world. You will take the fastest route to Chartered Engineer status.

Key features

-Benefit from outstanding teaching: in the 2016 National Student Survey 93 per cent of our final year students said that “The course is intellectually stimulating”.*
-Immerse yourself in a degree accredited by the Institution for Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer (CEng).
-Keep pace with the fast-moving world of robotics, on a course that cuts a path through the latest research across technologies and disciplines.
-Take the fastest route to Chartered Engineer status.
-Experience learning that meets the highest standard academic requirements set by The Institution of Engineering and Technology (IET).
-Undertake a major robotics design and implementation in your final project, showcasing your technical and managerial skills. Develop your technical content, legal and business skills as well as team working and project planning.
-Capitalise on the opportunity to take a work placement in your second or third year, putting your robotics skills into action in the real world.
-Rise to the challenge as part of the Plymouth Humanoids team, battling it out in a variety of international robot competitions.
-Develop professional writing skills as well as strengthening your technical design skills.
-Refine your professional project management skills, with dedicated professional support from staff across the entire final year on every different aspect of your project.
-Work alongside internationally-renowned staff in a leading service and cognitive robotics research environment.
-Draw on unique opportunities to engage in world-class robotics research, and in a variety of activities (for example, in the humanoid robot football, Federation of International Robot-soccer Association (FIRA) competition).

Course details

Year 1
In your first year you'll learn through doing, developing your knowledge and practical problem solving skills in our dedicated robotics and communications laboratories. From analogue and digital electronics to engineering mathematics, you'll build up the essential foundations of robotics. Group project work will also help you develop your communication skills and you'll learn structured design procedures for hardware and software all brought together in an integrating robotics project.

Core modules
-ELEC143 Embedded Software in Context
-BPIE112 Stage 1 Electrical/Robotics Placement Preparation
-ELEC141 Analogue Electronics
-ELEC142 Digital Electronics
-ELEC144 Electrical Principles and Machines
-MATH187 Engineering Mathematics

Optional modules
-ELEC137PP Electronic Design and Build
-ROCO103PP Robot Design and Build

Year 2
Throughout your second year, you'll develop a greater understanding of underlying engineering principles and circuit design methods. Again there's an emphasis on team-work, with the opportunity to do both group and individual presentations of your projects. You'll use industrial standard software tools for design and simulation, data monitoring and control, all valuable preparation for your final year individual project or for a placement year.

Core modules
-MATH237 Engineering Mathematics and Statistics
-ROCO222 Introduction to Sensors and Actuators
-BPIE212 Stage 2 Electrical/Robotics Placement Preparation
-ROCO224 Introduction to Robotics
-ROCO218 Control Engineering
-ELEC240 Embedded Systems
-ELEC241 Real Time Systems

Optional placement year
Your optional work placement experience gives opportunities to put theory into practice, grow your understanding of robotics in the real world and showcase your growing expertise. We can help you find industrial placement opportunities in the UK, France, Germany or even Japan. Placements will complement your studies with on-the-ground experience and could lead to final year sponsorship. Many of our graduates are offered permanent jobs with their placement company.

Core modules
-BPIE332 Electrical Industrial Placement

Year 4
This is when your skills, expertise and know how come into their own. Through your individual project you'll consolidate your knowledge, explore and evaluate new technologies and showcase your potential. You'll demonstrate your communication skills in an oral and written presentation of your project. Refining the independent learning skills you've developed throughout the course, you'll build a proactive, imaginative and dynamic approach to learning, vital for your future robotics career.

Core modules
-ROCO318 Mobile and Humanoid Robots
-PROJ324 Individual Project
-ELEC351 Advanced Embedded Programming
-AINT308 Machine Vision and Behavioural Computing

Optional modules
-ELEC345 High Speed Communications
-AINT351 Machine Learning

Final year
The MEng includes additional technical modules and a large interdisciplinary design project. There is also the possibility of continuing your studies to MSc level in the same academic year.

Core modules
-ROCO503 Sensors and Actuators
-ROCO504 Advanced Robot Design
-PROJ515 MEng Project
-AINT512 Science and Technology of Human-Robot Interaction

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The world of robotics is exciting and fast paced – revolutionising the way we live, work and play. This course is for you if you’re a non-engineering graduate wishing to work for engineering companies. Read more
The world of robotics is exciting and fast paced – revolutionising the way we live, work and play.

This course is for you if you’re a non-engineering graduate wishing to work for engineering companies. This MSc will give you the skills needed to work for employers developing or applying:
-Devices or systems for robotics and automation
-Smart systems with autonomous capability
-Ubiquitous and wearable computing

You build on your individual responsibility, critical awareness and creative thinking, and examine issues such as:
-Project management, planning and scheduling
-Resourcing
-Documentation and communication

We also offer this MSc with an industrial placement year, making it a two-year course, or with a Masters industrial placement.

How will I study?

You’ll study an introduction to the course in the autumn term, with some tests and practical robotics projects. In the spring term you take taught modules.

Across the spring and summer terms you’ll work on your Masters Individual Project, either at the University or at a company.

Modules are assessed via:
-Hands-on projects
-Reports
-Essays
-Unseen examinations

The project is assessed by a report, presentation and dissertation.

MSc project

On our Masters courses, you’ll complete a substantial MSc project, which is often practical as well as theoretical. The project is designed for you to excel in your personal and professional development and to consolidate the material covered in your modules.

It demands individual responsibility and exposes you to issues of:
-Project management
-Resourcing
-Planning
-Scheduling
-Documentation and communication
-Critical awareness and creative thinking

In Engineering and Design, project assessment can include interim reports, presentations and a dissertation. Some projects are undertaken in groups and replicate the type of professional teamwork expected in industry. Topics are generated from the academic research and industrial collaborations in our Department, and a member of faculty supervises the project.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

An MSc in Robotics and Autonomous Systems could be your passport to a career in a wide range of established and rapidly developing areas that are changing our lives including:
-Smart technologies
-Driverless vehicles
-Vehicle design
-Renewable energies
-Film and television
-Car production
-Space or underwater exploration
-Commercialised agriculture
-Medical diagnosis
-Remote and minimally invasive surgery
-Crime prevention

Read less
The world of robotics is exciting and fast paced – revolutionising the way we live, work and play. This course is for you if you’re a non-engineering graduate wishing to work for engineering companies. Read more
The world of robotics is exciting and fast paced – revolutionising the way we live, work and play.

This course is for you if you’re a non-engineering graduate wishing to work for engineering companies. This MSc will give you the skills needed to work for employers developing or applying:
-Devices or systems for robotics and automation
-Smart systems with autonomous capability
-Ubiquitous and wearable computing

You build on your individual responsibility, critical awareness and creative thinking, and examine issues such as:
-Project management, planning and scheduling
-Resourcing
-Documentation and communication

We also offer this MSc without a placement or with a Masters industrial placement.

How will I study?

You’ll study an introduction to the course in the autumn term, with some tests and practical robotics projects. In the spring term, you take taught modules.

Across the spring and summer terms, you’ll work on your Masters Individual Project, either at the University or at a company.

For your placement, you work in an industrial setting for at least 40 weeks, making your MSc a two-year course (full time). We help you seek and apply for your placement.

Modules are assessed via:
-Hands-on projects
-Reports
-Essays
-Unseen examinations

The project is assessed by a report, presentation and dissertation.

MSc project

On our Masters courses, you’ll complete a substantial MSc project, which is often practical as well as theoretical. The project is designed for you to excel in your personal and professional development and to consolidate the material covered in your modules.

It demands individual responsibility and exposes you to issues of:
-Project management
-Resourcing
-Planning
-Scheduling
-Documentation and communication
-Critical awareness and creative thinking

In Engineering and Design, project assessment can include interim reports, presentations and a dissertation. Some projects are undertaken in groups and replicate the type of professional teamwork expected in industry. Topics are generated from the academic research and industrial collaborations in our Department, and a member of faculty supervises the project.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

An MSc in Robotics and Autonomous Systems could be your passport to a career in a wide range of established and rapidly developing areas that are changing our lives including:
-Smart technologies
-Driverless vehicles
-Vehicle design
-Renewable energies
-Film and television
-Car production
-Space or underwater exploration
-Commercialised agriculture
-Medical diagnosis
-Remote and minimally invasive surgery
-Crime prevention

Read less
The world of robotics is exciting and fast paced – revolutionising the way we live, work and play. This course is for you if you’re a non-engineering graduate wishing to work for engineering companies. Read more
The world of robotics is exciting and fast paced – revolutionising the way we live, work and play.

This course is for you if you’re a non-engineering graduate wishing to work for engineering companies. This MSc will give you the skills needed to work for employers developing or applying:
-Devices or systems for robotics and automation
-Smart systems with autonomous capability
-Ubiquitous and wearable computing

You build on your individual responsibility, critical awareness and creative thinking, and examine issues such as:
-Project management, planning and scheduling
-Resourcing
-Documentation and communication

We also offer this MSc with an industrial placement year, making it a two-year course, or without a placement.

How will I study?

You’ll study an introduction to the course in the autumn term, with some tests and practical robotics projects. In the spring term you take taught modules.

Across the spring and summer terms you’ll work on your Masters Individual Project, either at the University or at a company.

For your Masters placement, you work in an industrial setting for at least 12 weeks. We help you seek and apply for your placement.

Modules are assessed via:
-Hands-on projects
-Reports
-Essays
-Unseen examinations

The project is assessed by a report, presentation and dissertation.

MSc project

On our Masters courses, you’ll complete a substantial MSc project, which is often practical as well as theoretical. The project is designed for you to excel in your personal and professional development and to consolidate the material covered in your modules.

It demands individual responsibility and exposes you to issues of:
-Project management
-Resourcing
-Planning
-Scheduling
-Documentation and communication
-Critical awareness and creative thinking

In Engineering and Design, project assessment can include interim reports, presentations and a dissertation. Some projects are undertaken in groups and replicate the type of professional teamwork expected in industry. Topics are generated from the academic research and industrial collaborations in our Department, and a member of faculty supervises the project.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

An MSc in Robotics and Autonomous Systems could be your passport to a career in a wide range of established and rapidly developing areas that are changing our lives including:
-Smart technologies
-Driverless vehicles
-Vehicle design
-Renewable energies
-Film and television
-Car production
-Space or underwater exploration
-Commercialised agriculture
-Medical diagnosis
-Remote and minimally invasive surgery
-Crime prevention

Read less
IN BRIEF. Gain a firm grounding in control engineering and intelligent systems concepts. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence. Read more

IN BRIEF:

  • Gain a firm grounding in control engineering and intelligent systems concepts
  • This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence
  • Projects supported by internationally-leading research
  • Part-time study option
  • International students can apply

COURSE SUMMARY

This course is for students who already have a strong engineering background and wish to specialise in robotics and automation. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence.

You will gain a firm grounding in control engineering and intelligent systems concepts, along with the ability to comprehend and fully specify integrated automation systems embodying intelligence, robotic and automation hardware and software, and virtual reality (VR)/simulation technologies.

The course also provides a suitable background for research in advanced autonomous systems with reference to robotics.

TEACHING

You will be taught via a series of lectures and workshops with many of the modules taught via extensive hands-on practical lab-based sessions.

Practical experience includes the use of robotics platforms to produce a software system using the MATLAB toolboxes or the C programming language or to produce a finished hardware/software based mobile robotics system.

ASSESSMENT

70% coursework and 30% examination.

FACILITIES

There are dedicated labs and facilities for Robotics and Automation students, including: Industrial robots, flexi-picker, manipulators (Hitachi, KUKA) humanoid robots plus many mobile robots. Plus dedicated computing facilities

And if you do your MSc Project with an aerospace company, as many of our students do, then you will also have access to their facilities.

EMPLOYABILITY

Graduates from this course can expect to find employment in a range of industries. Robotics and automation are continuously developing topics that present many career opportunities in areas such as robotic design, control systems integration and design, factory automation, engineering management and research.

LINKS WITH INDUSTRY

Many of our students work on final year projects in conjunction with aeronautical companies associated with the University.

FURTHER STUDY

Many of our students go on to further study at the Centre for Advanced Robotics which is very closely linked with this course.



Read less
About the course. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation

our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise

modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options

full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory

have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects

artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

First semester

• Research Methods

• Artificial Intelligence Programming

• Mobile Robots

• Fuzzy Logic

Second semester

• Artificial Neural Networks

• Computational Intelligence Optimisation (CIO)

• Applied Computational Intelligence

• Data Mining, Techniques and Applications

(Intelligence Systems only)

• Intelligent Mobile Robots (Intelligent Systems

and Robotics only)

Third semester

• Individual Project

We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

To find out more

To learn more about this course and DMU, visit our website:

Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:

http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students

http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx



Read less
About the course. Mechatronics MSc at DMU is one of the longest established specialist courses of its kind in the UK. Read more

About the course

Mechatronics MSc at DMU is one of the longest established specialist courses of its kind in the UK. The Mechatronics MSc is accredited by the Institution of Engineering and Technology (IET), and focuses on enabling you to become proficient in communicating across a range of different disciplines, and delivering optimised engineering solutions using an integrated multidisciplinary mechatronics approach. You will be exposed to a broad range of engineering disciplines, learn to solve multidisciplinary mechatronics problems and develop the skills to apply a mechatronic approach to the solution of technical problems. All course content is relevant to modern day practise as our research informs our teaching, ensuring the course content covers current industry topics and issues. You also have the option to undertake a year-long work placement as part of this course, gaining valuable experience to apply for and enhance your practical and professional skills further.

Reasons to Study

• Accredited by the Institution of Engineering and Technology (IET)

ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Graduate employability

Mechatronic engineers are in high demand as more industries seek to apply advances across a range of engineering disciplines

• Enjoy access to state-of-the-art facilities

including dedicated mechanical, electrical and electronic laboratories especially suited for mechatronics, as well as an for the manufacture of student designs

• Industry placement opportunity

you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Work with leading research groups

you will be offered opportunities to work on projects with research groups within the faculty, including the Centre for Advanced Manufacturing Processes and Mechatronics, that are engaged in high-class, research and industrial collaboration and consultancy

• Course content relevant to modern day practice

our research informs our teaching, ensuring the course content covers current industry topics and issues

• Excellent graduate prospects

graduates enjoy exciting career opportunities in a range of fields such as robotics and automation, manufacturing, aerospace, material processing, energy and power.

Modules

First semester (September to January)

• Electromechanics

• Mechatronic Systems - Engineering and Design

• Engineering Business Environment and Energy Studies

• Programming and Software Engineering

Second semester (February to May)

• Machine Vision, Robotics and Flexible Automation

• Engineering Systems: Dynamics and Control

• Microprocessor Applications and Digital Signal Processing

• Research Methods

Individual Project (Stage three)

This research can be industrially-based or linked to an industrial partner, attached to one of the mechatronic-related research teams within the faculty or in other collaborating institutions. The research project should be in an area relevant to Mechatronics, where clear evidence of the ability to solve a real multidisciplinary problem is demonstrated. The project assessment involves a formal presentation, production of a technical paper and a thesis.

Optional placement

We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and assessment

Teaching is delivered through a variety of methods including lectures, tutorials and laboratories. You will be expected to undertake self-directed study.

Contact and learning hours

For taught sessions you will attend eight modules with a total of 48 hours (four hours per week for 12 weeks each), with eight hours per module per week of average additional self-directed study. For the individual project you normally will spend 13 weeks working five days (eight hours per day) a week to complete it, and have one hour per week contact time with your supervisor.

Academic expertise

Research is carried out by the Mechatronics Research Centre, which holds a considerable number of UK and EU research project grants and has collaborative research links with more than 100 national and international organisations. The group is internationally regarded and specialises in machine design, control and simulation, fluid power systems and motion control.

As part of your studies, you will be offered opportunities to work on projects with research groups within the faculty that are engaged in high-class, leading-edge research and industrial collaboration and consultancy.

During the project element of the course, the Intelligent Machines and Automation Systems (IMAS) Research Laboratory provides access to dedicated research facilities

To find out more

To learn more about this course and DMU, visit our website:

Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:

http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students

http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx



Read less
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Read more
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Gain advanced theoretical and practical knowledge from our world-leading experts in interactive and intelligent robotics, and graduate ready to pursue an exciting career in anything from home automation to deep sea or space exploration. You’ll also have the opportunity to gain invaluable industry experience and cultivate professional contacts on an integral work placement.

Key features

-Enhance your employability and grow your professional network with an optional integral work placement. You can choose to work in the UK, or overseas in countries including France, Germany or Japan.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Become a professional in your field – this programme is accredited by the Institution of Engineering and Technology (IET).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll investigate user interaction and intelligent decision-making and immerse yourself in an innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-ROCO503 Sensors and Actuators
-BPIE500 Masters Stage 1 Placement Preparation
-PROJ509 MSc Project
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Optional modules
-BPIE502 Electrical/Robotics Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The European Masters in Computer Vision and Robotics (VIBOT) is a collaboration between the three leading European institutions, the Universitat de Girona (Spain), the Université de Bourgogne (France) and Heriot-Watt University (Scotland). Read more

The European Masters in Computer Vision and Robotics (VIBOT) is a collaboration between the three leading European institutions, the Universitat de Girona (Spain), the Université de Bourgogne (France) and Heriot-Watt University (Scotland). It aims to meet the needs of industry for quality control and automation of industrial processes, and those in the field of health with the increasing importance of medical imagery in all its forms.

In recent years, the amount of digital information to be stored, processed and distributed has grown dramatically. The generalisation of the use of digital images, in video surveillance, biomedical and e-health systems, and remote sensing, create new, pressing challenges, and automated management tools are key to enable the organisation, mining and processing of these important knowledge resources.

The key subject areas are computer vision and robotics. Research in these areas are dynamic and relevant to a wide range of sectors, such as the car industry, the agro-alimentary field or the domain of health, with the active development of e-Health solutions. The course is over two years, students spend the first semester in France, the second in Spain and the third in Scotland. The fourth semester is reserved for Masters thesis.



Read less

Show 10 15 30 per page



Cookie Policy    X