• University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
University of Reading Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
United Kingdom ×
0 miles
Physics×

Masters Degrees in Quantum Mechanics, United Kingdom

We have 17 Masters Degrees in Quantum Mechanics, United Kingdom

  • Physics×
  • Quantum Mechanics×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 17
Order by 
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

Degree information

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research project with a dissertation/report (60 credits).

Core modules
-Advanced Quantum Theory
-Atom and Photon Physics
-Quantum Communication and Computation
-Research Case Studies for Quantum Technologies
-Transferable Skills in Research Case Studies for Quantum Technologies

Optional modules - students choose three of the following optional modules:
-Advanced Photonic Devices
-Introduction to Cryptography
-Nanoelectronic Devices
-Nanoscale Processing for Advanced Devices
-Optical Transmission and Networks
-Order and Excitations in Condensed Matter
-Physics and Optics of Nano-Structures
-Research Computing with C++
-Research Software Engineering with Python

Dissertation/report
All students undertake an independent research project (experimental or theoretical) related to quantum technologies, which culminates in a presentation and a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability
Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.

Read less
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area. Read more
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area.

This course is for you if you’re interested in the wonders of quantum physics and have a desire to exploit its full power. We cover:
-Ion-trap quantum processors
-Ion-photon interfaces for the projected quantum internet
-Quantum simulators
-Superconducting quantum circuits
-Devices for quantum-enhanced metrology

How will I study?

Assessment is split equally between the project and modules.

Your project culminates in a dissertation (with a contribution from a research talk). The modules are assessed by problem sets, with either open-notes tests or unseen examinations. You’ll attend research seminars and contribute to your group’s discussions of the latest journal papers.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

This course may be attractive to you if you aim to:
-Go on to doctoral study (theory or experiment)
-Work in a high-technology company exploiting cutting-edge technologies related to our research (this could involve development of quantum information technology, high-precision measurements and quantum metrology, and photonics/optical communications)
-Work in business/data analysis, research, computer programming, software development, or teaching

Read less
This is a one year advanced taught course. The aim of this course is to bring students in 12 months to the frontier of elementary particle theory. Read more

This is a one year advanced taught course. The aim of this course is to bring students in 12 months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure

The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of four weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either eight lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules

  • Introductory Field Theory
  • Group Theory
  • Standard Model
  • General Relativity
  • Quantum Electrodynamics
  • Quantum Field Theory
  • Conformal Field Theory
  • Supersymmetry
  • Anomalies
  • Strong Interaction Physics
  • Cosmology
  • Superstrings and D-branes
  • Non-Perturbative Physics
  • Euclidean Field Theory
  • Flavour Physics and Effective Field Theory
  • Neutrinos and Astroparticle Physics
  • 2d Quantum Field Theory.

Optional Modules available in previous years included:

  • Differential Geometry for Physicists
  • Boundaries and Defects in Integrable Field Theory
  • Computing for Physicists.

Course Learning and Teaching

This is a full-year degree course, starting early October and finishing in the middle of the subsequent September. The aim of the course is to bring students to the frontier of research in elementary particle theory.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics.

The lectures begin with a general survey of particle physics and introductory courses on quantum field theory and group theory. These lead on to more specialised topics, amongst others in string theory, cosmology, supersymmetry and more detailed aspects of the standard model.

The main group of lectures is given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. Most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term they are supported by weekly tutorials. In addition lecturers also set a number of homework assignments which give the student a chance to test his or her understanding of the material.

There are additional optional lectures in the third term. These introduce advanced topics and are intended as preparation for research in these areas.

The dissertation must be submitted by mid-September, the end of the twelve month course period.



Read less
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. Read more
his is a one year advanced taught course. The aim of this course is to bring students in twelve months to the frontier of elementary particle theory. This course is intended for students who have already obtained a good first degree in either physics or mathematics, including in the latter case courses in quantum mechanics and relativity.

The course consists of three modules: the first two are the Michaelmas and Epiphany graduate lecture courses, which are assessed by examinations in January and March. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics. The dissertation must be submitted by September 15th, the end of the twelve month course period.

Course Structure
The main group of lectures are given in the first two terms of the academic year (Michaelmas and Epiphany). This part of the lecture course is assessed by examinations. In each term there are two teaching periods of 4 weeks, with a week's break in the middle of the term in which students will be able to revise the material. most courses are either 8 lectures or 16 lectures in length. There are 14 lectures/week in the Michaelmas term and 14 lectures/week in Epiphany term.

Core Modules
- Introductory Field Theory
- Group Theory
- Standard Model
- General Relativity
- Quantum Electrodynamics
- Quantum Field Theory
- Conformal Field Theory
- Supersymmetry
- Anomalies
- Strong Interaction Physics
- Cosmology
- Superstrings and D-branes
- Non-Perturbative Physics
- Euclidean Field Theory
- Flavour Physics and Effective Field Theory
- Neutrinos and Astroparticle Physics
- 2d Quantum Field Theory
- Optional Modules
- Differential Geometry for Physicists
- Boundaries and Defects in Integrable Field Theory
- Computing for Physicists.

For further information on this course, please visit the Centre for Particle Theory website (http://www.cpt.dur.ac.uk/GraduateStudies)

Read less
This course aims to bring you, in 12 months, to a position where you can embark with confidence on a wide range of careers, including taking a PhD in Mathematics or related disciplines. Read more

This course aims to bring you, in 12 months, to a position where you can embark with confidence on a wide range of careers, including taking a PhD in Mathematics or related disciplines. There is a wide range of taught modules on offer, and you will also produce a dissertation on a topic of current research interest taken from your choice of a wide range of subjects offered.

Course structure and overview

  • Six taught modules in October-May
  • A dissertation in June-September.

Modules: Six of available options

In previous years, optional modules available included:

Modules in Pure Mathematics:

  •  Algebraic Topology IV
  •  Analysis III and IV
  •  Codes and Cryptography III
  •  Differential Geometry III
  •  Galois Theory III
  •  Representation Theory III and IV
  •  Riemannian Geometry IV
  •  Topology III
  •  Topics in Algebra and Geometry IV

Modules in Probability and Statistics:

  •  Bayesian Statistics III and IV 
  •  Mathematical Finance III and IV
  •  Decision Theory III
  •  Operations Research III
  •  Statistical Methods III
  • Stochastic Processes III and IV

Modules in Applications of Mathematics:

  •  Advanced Quantum Theory IV
  •  Continuum Mechanics III and IV
  •  Dynamical Systems III
  •  General Relativity IV
  •  Mathematical Biology III 
  •  Partial Differential Equations III and IV
  •  Quantum Information III
  •  Quantum Mechanics III
  •  Solitons III and IV

Course Learning and Teaching

This is a full-year degree course, starting early October and finishing in the middle of the subsequent September. The aim of the course is to give the students a wide mathematical background allowing them to either proceed to PhD or to apply the gained knowledge in industry.

The course consists of three modules: the first two are the Michaelmas and Epiphany lecture courses covering variety of topics in pure and applied mathematics and statistics. The third module is a dissertation on a topic of current research, prepared under the guidance of a supervisor with expertise in the area. We offer a wide variety of possible dissertation topics.

The main group of lectures is given in the first two terms of the academic year (Michaelmas and Epiphany), there are also two revision lectures in the third term (Easter). This part of the course is assessed by examinations. Students choose 6 modules, each module has 2 lectures per week and one fortnightly problems class. There are 10 teaching weeks in the Michaelmas term and 9 teaching weeks in Epiphany term. In addition lecturers also set a number of homework assignments which give the student a chance to test their understanding of the material.

The dissertation must be submitted by mid-September, the end of the twelve month course period 



Read less
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy. Read more
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy.

We supervise MPhil students whose interests match the expertise we have in our four main research themes.

Condensed matter and nanoscale physics

We research electronic, optical, structural and magnetic properties of novel solid-state materials, particularly novel semi-conductor structures and nanostructured materials such as nanocrystals and nanowires. Theoretical studies use quantum mechanical approaches and involve massively parallel supercomputing.

Our development of new approaches to quantum modelling is changing the size and complexity of systems that can be modelled. Experimental work takes place at synchrotron facilities in Europe and America and related work takes place with colleagues in the Emerging Technology and Materials (ETM) Group in the School of Electrical, Electronic and Computer Engineering.

Biophysics

Our research in biophysics explores the structure and function of cells with the aim of creating artificial life and building machines based on biological parts. Projects include protocell development and the construction of a cyborg robot. An understanding of biological physics is needed that uses techniques including single molecule manipulation, atomic force microscopy and scanning tunnelling microscopy.

Astrophysics

Galaxies and the interstellar medium, the source of the galactic magnetic field and its influence on the structure of the galaxy form the focus of our research in astrophysics. There is also interest in cosmology, particularly the early universe and its origin in the big bang.

Ultrafast optics

Our research focuses on coherent optical control of atomic collisions in ultracold gases by femtosecond laser light for studies of problems in fundamental physics, such as the measurement of time dependence of the fundamental constants of nature. We also research metrological protocols for characterisation of broadband light, specifically those relating to foundational aspects of quantum mechanics and its application.

Read less
This programme reflects and benefits from the strong research activities of the Department of Mathematics. The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups. Read more

This programme reflects and benefits from the strong research activities of the Department of Mathematics.

The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups:

  • Mathematics of Life and Social Sciences
  • Dynamical Systems and Partial Differential Equations
  • Fields, Strings and Geometry
  • Fluids, Meteorology and Symmetry

During the first two semesters you will take a range of taught modules from an extensive list of options, followed by an extended research project conducted over the summer under the supervision of a member of the department, culminating in the writing of a dissertation.

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Careers

Mathematics is not only central to science, technology and finance-related fields, but the logical insight, analytical skills and intellectual discipline gained from a mathematical education are highly sought after in a broad range of other areas such as law, business and management.

There is also a strong demand for new mathematics teachers to meet the ongoing shortage in schools. 

As well as being designed to meet the needs of future employers, our MSc programme also provides a solid foundation from which to pursue further research in mathematics or one of the many areas to which mathematical ideas and techniques are applied.

Educational aims of the programme

  • To provide graduates with a strong background in advanced mathematical theory and its applications to the solution of real problems
  • To develop students understanding of core areas in advanced mathematics including standard tools for the solution of real life applied mathematical problems
  • To develop the skill of formulating a mathematical problem from a purely verbal description
  • To develop the skill of writing a sophisticated mathematical report and, additionally, in presenting the results in the form of an oral presentation
  • To lay a foundation for carrying out mathematical research leading to a research degree and/or a career as a professional mathematician in an academic or non-academic setting

Programme learning outcomes

Knowledge and understanding

  • Knowledge of the core theory and methods of advanced pure and applied mathematics and how to apply that theory to real life problems
  • An in-depth study of a specific problem arising in a research context

Intellectual / cognitive skills

  • Ability to demonstrate knowledge of key techniques in advanced mathematics and to apply those techniques in problem solving
  • Ability to formulate a mathematical description of a problem that may be described only verbally
  • An understanding of possible shortcomings of mathematical descriptions of reality
  • An ability to use software such as MATLAB and IT facilities more generally including research databases such as MathSciNet and Web of Knowledge

Professional practical skills

  • Fluency in advanced mathematical theory
  • The ability to interpret the results of the application of that theory
  • An awareness of any weaknesses in the assumptions being made and of possible shortcomings with model predictions
  • The skill of writing an extended and sophisticated mathematical report and of verbally summarising its content to specialist and/or non-specialist audiences

Key / transferable skills

  • Ability to reason logically and creatively
  • Effective oral presentation skills
  • Written report writing skills
  • Skills in independent learning
  • Time management
  • Use of information and technology

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This MSc is for you if you’re a graduate from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to cosmology. Read more
This MSc is for you if you’re a graduate from an applied mathematics- or physics-based degree and wish to learn how to apply your knowledge to cosmology.

It is one of only two MScs in this subject area in the UK. Our emphasis is on observational and theoretical cosmology in the pre- and post-recombination universe.

How will I study?

Teaching is through:
-Lectures
-Exercise classes
-Seminars
-Personal supervision

You’re assessed by coursework and unseen examination. Assessment for the project is an oral presentation and a dissertation of up to 20,000 words. You’ll contribute to our weekly informal seminars and are encouraged to attend research seminars.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Faculty

Our research focuses on extragalactic astrophysics and cosmology.

Careers

Most of our graduates have gone on to study for a research degree in a closely related field.

Read less
This course is for you if you’re interested in exploring the fields of atomic, molecular and optical physics as well as experimental particle physics. Read more
This course is for you if you’re interested in exploring the fields of atomic, molecular and optical physics as well as experimental particle physics.

How will I study?

You’ll learn through lectures, workshops and personal supervision. Your time is split equally between the project and modules. Your project culminates in a dissertation (with a contribution from a research talk).

The modules are assessed by problem sets, with either open-notes tests or unseen examinations. You’ll attend research seminars and contribute to your group’s discussions of the latest journal papers.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

Our graduates go on to take research degrees, or take up employment in a range of industries in roles such as:
-Business/data analysis
-Computer programming
-Software development
-Teaching
-Research and teaching technical support

Read less
Explore modern experimental and theoretical particle physics. This course – delivered by our expert faculty – gives you a sound footing for further studies in this field. Read more
Explore modern experimental and theoretical particle physics.

This course – delivered by our expert faculty – gives you a sound footing for further studies in this field. You can take this MSc in an experimental or theoretical mode.

How will I study?

You’ll learn through lectures, seminars and personal supervision. Assessment is split equally between the project and modules. Your project culminates in a dissertation (with a contribution from a research talk).

The modules are assessed by problem sets, with either open-notes tests or unseen examinations. You’ll attend research seminars and contribute to your group’s discussions of the latest journal papers.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

Our graduates go on to doctoral study (theoretical or experimental), or take up employment in a range of industries in fields such as:
-Business/data analysis
-Computer programming
-Software development
-Teaching
-Research and teaching technical support

Read less
Recent theoretical and experimental advances mean that we are now able to exert an extraordinary degree of control over individual quantum systems and to prepare and manipulate groups of interacting quantum systems deterministically. Read more
Recent theoretical and experimental advances mean that we are now able to exert an extraordinary degree of control over individual quantum systems and to prepare and manipulate groups of interacting quantum systems deterministically.

Bringing these techniques to bear upon both fundamental physics and a new swathe of technologies dependent on strange quantum phenomena defines the emerging field of controlled quantum dynamics.

Read less
Our MSc Theoretical Physics programme will provide you with exposure to a very wide range of world-leading teaching and research skills. Read more

Our MSc Theoretical Physics programme will provide you with exposure to a very wide range of world-leading teaching and research skills. As well as the wide range of modules offered by the Department of Mathematics, many optional modules are available from across the University of London, subject to approval. King's will offer you a unique module in 'General Research Techniques' which will prepare you for life as a research scientist. You will also undertake an extended research project supervised by one of our academic staff.

Key benefits

  • This intensive programme covers basic topics in theoretical and mathematical physics such as general relativity and quantum field theory, and leads to advanced topics such as string theory, supersymmetry and integrable quantum field theory.
  • Intimate class environment with small class sizes (typically fewer than 30 students per module) allows good student-lecturer interactions.
  • A full 12-month course with a three-month supervised summer project to give a real introduction to research.

Description

This programme covers topics like string theory, quantum field theory, supersymmetry, general relativity, and conformal and integrable field theory. Students gain a coherent, comprehensive introduction to the building blocks of modern theoretical physics. Students study at least eight taught modules and develop individual projects in areas of current research. The programme ideally prepares students for active research.

Course purpose

The MSc Theoretical Physics programme provides experience of research in rapidly developing areas of theoretical and mathematical physics and related disciplines. The programme provides experience of the planning, administration, execution and dissemination of research, and will equip you with the background knowledge and transferable and generic skills required to become an effective researcher.

Course format and assessment

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

Each module in your degree is worth a number of credits: you are expected to spend approximately 10 hours of effort for each credit (so for a typical module of 15 credits this means 150 hours of effort). These hours cover every aspect of the module: lectures, tutorials, labs (if any), independent study based on lecture notes, tutorial preparation and extension, lab preparation and extension, coursework preparation and submission, examination revision and preparation, and examinations. 

Assessment

Assessment methods will depend on the modules selected. The primary method of assessment for this course is written examination. You may also be assessed by class tests, essays, assessment reports and oral presentations.



Read less
The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Read more

The Graduate Diploma is designed for graduates whose first degree may be inappropriate for direct entry to an MSc in Physics at a UK university. Though it may be taken as a free-standing qualification, most students take this programme as a pathway to the MSc. This pathway forms the first year of a two-year programme with successful students (gaining a merit or distinction) progressing onto the MSc Physics in second year.

Key benefits

  • King's College London offers a unique environment for the taught postgraduate study of physics. Our size enables us to provide a welcoming environment in which all our students feel at home. The Physics Department has been built up to its current strength in the last few years, which has allowed us to design a bespoke research department focused in three areas.
  • Particle physics and cosmology is led by Professor John Ellis CBE FRS, who collaborates closely with CERN, and this group provides unique lecture courses, including "Astroparticle Cosmology" as well as "The Standard Model and beyond".
  • The Experimental Biophysics and Nanotechnology research group is a world-leading centre for nanophotonics, metamaterials and biological physics. Here you can study the state of the art in experimental nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".
  • Theory and Simulation of Condensed Matter is a group of theoreticians with a critical-mass expertise in many-body physics and highly-correlated quantum systems—magnetism and superconductivity, and world-leading research in condensed matter, particularly in biological and materials physics. The group is a founding member of the prestigious Thomas Young Centre (TYC), the London centre for the theory and simulation of materials.

Description

Students will undertake a total of 120 credits

Course purpose

For students with an undergraduate degree or equivalent who wish to have the experience of one year in a leading UK Physics Department, or who may not be immediately eligible for entry to a higher degree in the UK and who wish to upgrade their degree. If you successfully complete this programme with a Merit or Distinction we may consider you for the MSc programme.

Course format and assessment

The compulsory modules are assessed via coursework. The majority of the other optional modules avaiable are assessed by written examinations.

Career destinations

Many students go on to do a higher Physics degree, work in scientific research, teaching or work in the financial sector.



Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/212/physics

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Study support

- Postgraduate resources

The University has good facilities for modern research in physical sciences. Among the major instrumentation and techniques available on the campus are NMR spectrometers (including solutions at 600 MHz), several infrared and uvvisible spectrometers, a Raman spectrometer, two powder X-ray diffractometers, X-ray fluorescence, atomic absorption in flame and graphite furnace mode, gel-permeation chromatography, gaschromatography, analytical and preparative highperformance liquid chromatography (including GC-MS and HPLC-MS), mass spectrometry (electrospray and MALDI), scanning electron microscopy and EDX, various microscopes (including hot-stage), differential scanning calorimetry and thermal gravimetric analysis, dionex analysis of anions and automated CHN analysis. For planetary science impact studies, there is a two-stage light gas gun.

- Interdisciplinary approach

Much of the School’s work is interdisciplinary and we have successful collaborative projects with members of the Schools of Biosciences, Computing and Engineering and Digital Arts at Kent, as well as an extensive network of international collaborations.

- National and international links

The School is a leading partner in the South East Physics Network (SEPnet), a consortium of seven universities in the south-east, acting together to promote physics in the region through national and international channels. The School benefits through the £12.5 million of funding from the Higher Education Funding Council for England (HEFCE), creating new facilities and resources to enable us to expand our research portfolio.

The School’s research is well supported by contracts and grants and we have numerous collaborations with groups in universities around the world. We have particularly strong links with universities in Germany, France, Italy and the USA. UK links include King’s College, London and St Bartholomew’s Hospital, London. Our industrial partners include British Aerospace, New York Eye and Ear Infirmary, and Ophthalmic Technology Inc, Canada. The universe is explored through collaborations with NASA, ESO and ESA scientists.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Nature; Science; Astrophysical Journal; Journal of Polymer Science; Journal of Materials Chemistry; and Applied Optics.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology. Read more

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Nanotechnology at Surrey

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

Technical characteristics of the pathway

The Programme in Nanotechnology and Nanoelectronic Devicesaims to provide a high-quality qualification in the most important aspects of the nanotechnologies, with a particular emphasis on nanoelectronics and nanoelectronic devices.

After an introduction to the basic aspects of quantum physics and nano-engineering relevant to modern nanoelectronics, students can tailor their specific learning experience through study of device-oriented elective modules, as suits their career aspirations.

Key to the Programme is the cross-linking of current research themes in interdisciplinary areas such as photonics and biology, through the use of nanoelectronic devices as the interface at the nanoscale level.

The Programme has strong links to current research in the University's Advanced Technology Institute; this Institute includes academic staff from both the EE and the Physics Departments.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

Show 10 15 30 per page



Cookie Policy    X