• University of Derby Online Learning Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Vlerick Business School Featured Masters Courses
Teesside University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
United Kingdom ×
0 miles
Mathematics×

Masters Degrees in Pure Mathematics, United Kingdom

We have 25 Masters Degrees in Pure Mathematics, United Kingdom

  • Mathematics×
  • Pure Mathematics×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 25
Order by 
The MSc Pure Mathematics offers a modern research-oriented taught course, providing students with a broader and deeper understanding of several core areas of pure mathematics that are of strong current interest and with a solid foundation for a career in research in pure mathematics. Read more

Overview

The MSc Pure Mathematics offers a modern research-oriented taught course, providing students with a broader and deeper understanding of several core areas of pure mathematics that are of strong current interest and with a solid foundation for a career in research in pure mathematics. The programme covers a wide range of topics in algebra, analysis and number theory.

The course is informed by the research interests of the members of the Division of Pure Mathematics

Key facts:

- The School of Mathematical Sciences is one of the largest and strongest mathematics departments in the UK, with over 60 full-time academic staff

- In the latest independent Research Assessment Exercise, the school ranked eighth in the UK in terms of research power across the three subject areas within the School of Mathematical Sciences (pure mathematics, applied mathematics, statistics and operational research)

- The University of Nottingham is ranked in the top 1% of all universities worldwide.

Modules

Advanced Linear Analysis

Algebraic Geometry

Algebraic Number Theory

Combinatorial Group Theory

Complex Analysis

Further Topics in Analysis

Further Topics in Rings and Modules

Pure Mathematics Dissertation

English language requirements for international students

IELTS: 6.0 (with no less than 5.5 in any element)

Further information



Read less
This course, commonly referred to as Part III, is a one-year taught Master's course in mathematics. Read more
This course, commonly referred to as Part III, is a one-year taught Master's course in mathematics. It is an excellent preparation for mathematical research and it is also a valuable course in mathematics and in its applications for those who want further training before taking posts in industry, teaching, or research establishments.

Students admitted from outside Cambridge to Part III study towards the Master of Advanced Study (MASt). Students continuing from the Cambridge Tripos for a fourth year, study towards the Master of Mathematics (MMath). The requirements and course structure for Part III are the same for all students irrespective of whether they are studying for the MASt or MMath degree.

There are over 200 Part III (MASt and MMath) students each year; almost all are in their fourth or fifth year of university studies. There are normally about 80 courses, covering an extensive range of pure mathematics, probability, statistics and the mathematics of operational research, applied mathematics and theoretical physics. They are designed to cover those advanced parts of the subjects that are not normally covered in a first degree course, but which are an indispensable preliminary to independent study and research. Students have a wide choice of the combination of courses that they offer, though naturally they tend to select groups of cognate courses. Normally classes are provided as back-up to lecture courses.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/mapmaspmm

Course detail

The structure of Part III is such that students prepare between six and nine lecture courses for examination. These lecture courses may be selected from the wide range offered by both Mathematics Departments. As an alternative to one lecture course, an essay may be submitted. Examinations usually begin in late May, and are scheduled in morning and afternoon sessions, over a period of about two weeks. Two or three hours are allocated per paper, depending on the subject. Details of the courses for the current academic year are available on the Faculty of Mathematics website. Details for subsequent years are expected to be broadly similar, although not identical.

Most courses in the Part III are self-contained. Students may freely mix courses offered by the two Mathematics Departments. Courses are worth either two or three credit units depending on whether they last for 16 or 24 lectures respectively. Candidates for Part III may offer a maximum of 19 credit units for examination. In the past it has been recommended that candidates offer between 17 and 19 units. An essay (should a candidate choose to submit one) counts for 3 credit units. Part III is graded Distinction, Merit, Pass or Fail. A Merit or above is the equivalent of a First Class in other Parts of the Mathematical Tripos.

Learning Outcomes

After completing Part III, students will be expected to have:

- Studied advanced material in the mathematical sciences to a level not normally covered in a first degree;
- Further developed the capacity for independent study of mathematics and problem solving at a higher level;
- Undertaken (in most cases) an extended essay normally chosen from a list covering a wide range of topics.

Students are also expected to have acquired general transferable skills relevant to mathematics as outlined in the Faculty Transferable Skills Statement http://www.maths.cam.ac.uk/undergrad/course/transferable_skills.pdf .

Format

Courses are delivered predominantly by either 16 or 24 hours of formal lectures, supported by additional examples classes. As an alternative to one lecture course, an essay may be submitted. There is also the possibility of taking a reading course for examination. There are normally additional non-examinable courses taught each year.

Essay supervision and support for lectures by means of examples classes is approximately 30 hours per year.

Formal examinable lectures and non-examinable lectures total approximately 184 hours per year, of which on average 112 hours are for examinable courses.

Some statistics courses may involve practical data analysis sessions.

There is an opportunity to participate in the Part III seminar series, either by giving a talk or through attendance. This is encouraged but does not contribute to the formal assessment.

Twice a year students have an individual meeting with a member of academic staff to discuss their progress in Part III. Students offering an essay as part of their degree may meet their essay supervisor up to three times during the academic year.

Assessment

Candidates may substitute an essay for one lecture course. The essay counts for 3 credit units.

Lecture courses are assessed by formal examination. Courses are worth either two or three credit units depending on whether they are 16 or 24 hours in length respectively. A 16 hour course is assessed by a 2 hour examination and a 24 hour course, a 3 hour examination. Candidates for Part III may offer a maximum of 19 credit units for examination. In the past it has been recommended that candidates offer between 17 and 19 units.

Continuing

MASt students wishing to apply for the PhD must apply via the Graduate Admissions Office for readmission by the relevant deadline. Applicants will be considered on a case by case basis and offer of a place will usually include an academic condition on their Part III result.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
This one year taught postgraduate programme leads to the degree of MSc in Pure Mathematics and Mathematical Logic. Read more
This one year taught postgraduate programme leads to the degree of MSc in Pure Mathematics and Mathematical Logic. The programme is suitable not only for students who wish to improve their background knowledge prior to applying to undertake a PhD by research, but also for students who wish to enhance their knowledge of postgraduate-level abstract mathematics.

The MSc comprises of the taught component, running from the start of the academic year in September until the end of the second semester in late Spring, followed by the dissertation component running from May until September.

During the taught component of the course, you will normally take five units together with a written project. You may choose exclusively pure topics, exclusively logic topics, or, a mixture of both. The project is normally an expository account of a piece of mathematics and you will write this under the guidance of a supervisor. The taught component comprises of conventional lectures supported by examples classes, project work and independent learning via reading material.

After successfully completing the taught component, you will prepare a dissertation on an advanced topic in pure mathematics or mathematical logic, normally of current or recent research interest, chosen in consultation with your supervisor.

You can also take the programme part-time, over a period of two years. There is some flexibility in the precise arrangements for this programme, but you would normally attend two lecture courses each semester for three semesters before commencing work on your dissertation.

Aims

The aims of the programme are to provide training in a range of topics related to pure mathematics and mathematical logic, to encourage a sophisticated and critical approach to mathematics, and to prepare students who have the ability and desire to follow careers as professional mathematicians and logicians in industry or research.

Coursework and assessment

The taught component is assessed by coursework, project work and by written examination. The written exams take place at the end of January (for the first semester course units) and the end of May (for the second semester course units). The dissertation component is assessed by the quality and competence of the written dissertation.

The Postgraduate Diploma and Postgraduate Certificate exist as exit awards for students who do not pass at MSc level.

Course unit details

The taught courses cover material related to the research interests of the academic staff. Topics covered in lectured course units normally include: set theory, group theory, dynamical systems and ergodic theory, measure theory, functional analysis, algebraic topology, Godel's theorems, hyperbolic geometry, Lie algebras, analytic number theory, Galois theory, predicate logic, computation and complexity, and other topics relevant to current mathematics.

Read less
Why choose this course?. This course provides you with a sound general knowledge of advanced mathematics through study in several pure and applied areas of the subject, including Statistics and Operational Research. Read more

Why choose this course?

This course provides you with a sound general knowledge of advanced mathematics through study in several pure and applied areas of the subject, including Statistics and Operational Research. A wide choice of topics is available for your dissertation, taken under the supervision of a member of the academic staff.

If you wish to enter employment within the field of Mathematics then this course will enhance your career prospects by promoting a professional attitude to Mathematics. Mathematicians are warmly welcomed in industry, business and commerce for their analytical ability and logical approach to problem solving. The course is particularly suitable if you are planning a career in teaching Mathematics or are already a qualified teacher seeking to enhance your promotion prospects.

What happens on the course?

Research Methods and professional Skills

Mathematical Modelling

Introduction to Cybermetrics

Statistics

Advanced Topics in Mathematics

Discrete Mathematics

Why Wolverhampton?

The Mathematics department includes a team of researchers in the field of Introduction to Cybermetrics, led by a professor who has been recognised as a leading international authority on the subject and who achieved a very high rating in the latest Research Assessment Exercise.

We pride ourselves on the academic support and guidance given by our friendly and approachable staff. Students have shown their appreciation for this by the exceptionally high ratings they have given us in the National Student Survey in recent years.

Career Path

Students will have developed advanced technical skills within the field of Mathematics together with an ability to critically analyse and evaluate complex problems. These skills should equip students to enter careers in Mathematics in a variety of roles.

There is a shortage of Mathematics-related skills both nationally and regionally, and in particular there is a recognised severe shortage of qualified Mathematics teachers. Hence the Mathematics qualification that this course offers will make its graduates highly employable.

Excellent career opportunities will also be open in operational research, statistics, information analysis, financial advising, actuarial work and accountancy.

What skills will you gain?

You will be able to demonstrate a full understanding, knowledge and experience of complex and specialised areas of mathematics; Select and apply appropriate techniques to the analysis, design and synthesis of solutions to problems which require mathematics for their resolution.

Within this course, you will apply knowledge of mathematics with particular reference to its applications in other subject areas (e.g. mathematical education, analysis and modelling of business and finance, computing and scientific systems).

You will be able to demonstrate originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in mathematics.

Conduct research into current mathematical literature; review, analyse and evaluate findings in a professional manner.

This course will enable you to deal with complex issues both systematically and creatively, making sound judgements in the absence of complete data, and communicating conclusions clearly to specialist and non-specialist audiences.

Join us on Social Media

Faculty of Science and Engineering on Facebook

https://www.facebook.com/wlvsae/

Faculty of Science and Engineering on Twitter

https://twitter.com/WLVsci_eng



Read less
This programme involves both taught classes in Pure Mathematics and a substantial MRes thesis which accounts for almost two-thirds of the total degree. Read more
This programme involves both taught classes in Pure Mathematics and a substantial MRes thesis which accounts for almost two-thirds of the total degree. The minimum period of registration is 12 months.

The MRes is an ideal preparation for entry into the PhD programme at Birmingham or at any other UK university. Indeed, the MRes programme can be used as the first phase of our fast track PhD programme. This is an excellent option for well-qualified mathematics students who do not have all the necessary mathematical background to start immediately on a PhD in their area of choice. In the fast track programme the MRes thesis is extended over a further period of two years into a PhD thesis.

Each MRes student is assigned a project supervisor who will act as director and mentor in the preparation of the MRes thesis. This gives each student the opportunity to work one-to-one with mathematicians who are international experts in their fields.

In addition to the assessed elements of the course, students are expected to play a full part in the research life of the School. The School has an active seminar programme, and organises international conferences in all areas of mathematics.

About the School of Mathematics

The School of Mathematics is one of seven schools in the College of Engineering and Physical Sciences. The school is situated in the Watson Building on the main Edgbaston campus of the University of Birmingham. There are about 50 academic staff, 15 research staff, 10 support staff, 60 postgraduate students and 600 undergraduate students.
At the School of Mathematics we take the personal development and careers planning of our students very seriously. Jointly with the University of Birmingham's Careers Network we have developed a structured programme to support maths students with their career planning from when they arrive to when they graduate and beyond.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Pure Mathematics at Doctoral level offers the opportunity investigate the purely abstract, theoretical areas of mathematical discovery at the highest level. Read more
Pure Mathematics at Doctoral level offers the opportunity investigate the purely abstract, theoretical areas of mathematical discovery at the highest level.

The School of Mathematics and Physics offers the opportunity to work alongside specialists within the field in a vibrant community,
sharing ideas and experiences.

Postgraduate research in pure mathematics covers the areas of lie algebras and group theory. Training is provided through individual supervision of research and by advanced seminars. As a research student, you can benefit from a comprehensive programme of training designed to develop your research skills and methodologies.

A team of academics will offer advice and support on publishing your work in international journals and presenting at global conferences. You may also have an opportunity to engage in international collaborations during your study.

Research Areas, Projects & Topics

Research Areas:
-Algebra
-Group Theory

For information about the School’s research activity please visit: http://www.lincoln.ac.uk/home/smp/research/

How You Study

You can benefit from specialist computational facilities, training programmes to enhance your research skills and support from dedicated academic supervisors. You will be supported and encouraged to submit papers to international scientific journals, present your findings at conferences and share knowledge with colleagues across the University.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic.

Career and Personal Development

Pure Mathematics students have the opportunity to develop the problem solving skills that may lead to careers in academia, research or industry. 

Read less
The MSc in Mathematics is a one-year taught programme run by the School of Mathematics and Statistics. This programme is particularly suited for those seeking a career in academic mathematical research or a mathematics-related career in the private sector. Read more

The MSc in Mathematics is a one-year taught programme run by the School of Mathematics and Statistics. This programme is particularly suited for those seeking a career in academic mathematical research or a mathematics-related career in the private sector.

Highlights

  • The programme provides a wide range of advanced module choices across the School of Mathematics and Statistics.
  • Students have the possibility of enrolling into an independent study module or into Professional Skills for Mathematical Scientists, in which you self-study an advanced topic under guidance.

Teaching format

The programme consists of two semesters of taught courses followed by a dissertation (15,000 words) over the summer months. Most modules for the MSc in Mathematics are traditional semester-long lecture courses with end of semester exams, but some modules have a large element of continuous assessment. Class sizes range from 10 to 60 students, depending on the module.

The School of Mathematics and Statistics is well equipped with computing facilities (including a large parallel computing cluster) and an on-site library.

Further particulars regarding curriculum development.

Modules

For an MSc in Mathematics, students take at least 90 credits at 5000-level Mathematics and Statistics modules. The remaining 30 credits can be taken from the School's 3000-level and 4000-level modules. At least 90 credits of the total of 120 credits of the taught part should be Pure Mathematics or Applied Mathematics modules.

The modules in this programme have varying methods of delivery and assessment. For more details of each module, including weekly contact hours, teaching methods and assessment, please see the latest module catalogue which is for the 2017–2018 academic year; some elements may be subject to change for 2018 entry.



Read less
Studying Mathematics at postgraduate level gives you a chance to begin your own research, develop your own creativity and be part of a long tradition of people investigating analytic, geometric and algebraic ideas. Read more
Studying Mathematics at postgraduate level gives you a chance to begin your own research, develop your own creativity and be part of a long tradition of people investigating analytic, geometric and algebraic ideas.

You would be joining a vibrant research community of almost 100 postgraduate and postdoctoral researchers and academic staff. You have the opportunity to engage with a very wide range of research topics within a well-established system of support and training, with a high level of contact between staff and research students.

A very active research seminar programme further enhances the Mathematics research experience.

Visit the website https://www.kent.ac.uk/courses/postgraduate/149/mathematics

About the School of Mathematics, Statistics and Actuarial Science (SMSAS):

The School has a strong reputation for world-class research as indicated by our results in the latest Research Assessment Exercise (RAE). Postgraduate students develop analytical, communication and research skills. Developing computational skills and applying them to mathematical problems forms a significant part of the postgraduate training in the School.

The Mathematics Group at Kent ranked highly in the most recent RAE. With 100% of the Applied Mathematics Group submitted, all research outputs were judged to be of international quality and 12.5% was rated 4*. For the Pure Mathematics Group, a large proportion of the outputs demonstrated international excellence.

The Mathematics Group also has an excellent track record of winning research grants from the Engineering and Physical Sciences Research Council (EPSRC), the Royal Society, the EU, the London Mathematical Society and the Leverhulme Trust.

Study support

- Postgraduate resources

The University’s Templeman Library houses a comprehensive collection of books and research periodicals. Online access to a wide variety of journals is available through services such as ScienceDirect and SpringerLink. The School has licences for major numerical and computer algebra software packages. Postgraduates are provided with computers in shared offices in the School. The School has two dedicated terminal rooms for taught postgraduate students to use for lectures and self-study.

- Support

The School has a well-established system of support and training, with a high level of contact between staff and research students. There are two weekly seminar series: The Mathematics Colloquium at Kent attracts international speakers discussing recent advances in their subject; the Friday seminar series features in-house speakers and visitors talking about their latest work. These are supplemented by weekly discussion groups. The School is a member of the EPSRC-funded London Taught Course Centre for PhD students in the mathematical sciences, and students can participate in the courses and workshops offered by the Centre. The School offers conference grants to enable research students to present their work at national and international conferences.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Advances in Mathematics; Algebra and Representation Theory; Journal of Physics A; Journal of Symbolic Computations; Journal of Topology and Analysis. Details of recently published books can be found within the staff research interests section.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Careers

A postgraduate degree in Mathematics is a flexible and valuable qualification that gives you a competitive advantage in a wide range of mathematically oriented careers. Our programmes enable you to develop the skills and capabilities that employers are looking for including problem-solving, independent thought, report-writing, project management, leadership skills, teamworking and good communication.

Many of our graduates have gone on to work in international organisations, the financial sector, and business. Others have found postgraduate research places at Kent and other universities.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The School of Mathematics and Physics offers the opportunity to work alongside academics in a vibrant community, sharing ideas and experiences. Read more
The School of Mathematics and Physics offers the opportunity to work alongside academics in a vibrant community, sharing ideas and experiences.

Postgraduate research in pure mathematics covers the areas of lie algebras and group theory. Training is provided through individual supervision of research and by advanced seminars. As a research student, you can benefit from a comprehensive programme of training designed to develop your research skills and methodologies.

A team of academics will offer advice and support in publishing your work in international journals and presenting at global conferences. You may also have the opportunity to engage in international collaborations during your study.

Research Areas, Projects & Topics

Main Research Areas:
-Algebra
-Group Theory

For information about the School’s research activity please visit: http://www.lincoln.ac.uk/home/smp/research/

How You Study

You can benefit from training programmes designed to enhance your research skills and support from dedicated academic supervisors. All our research students are encouraged to submit papers to international scientific journals, present their findings at conferences in the UK and overseas, and share knowledge with colleagues across the University.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

The MSc by Research involves writing a Master's thesis under the supervision of a member of academic staff on a topic to be agreed with your supervisor. The MSc by Research is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic.

Career and Personal Development

Pure Mathematics students have the opportunity to develop the problem solving skills that may lead to careers in academia, research or industry.

Read less
This programme reflects and benefits from the strong research activities of the Department of Mathematics. The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups. Read more

This programme reflects and benefits from the strong research activities of the Department of Mathematics.

The taught modules and dissertation topics are closely aligned with the interests of the Department’s four research groups:

  • Mathematics of Life and Social Sciences
  • Dynamical Systems and Partial Differential Equations
  • Fields, Strings and Geometry
  • Fluids, Meteorology and Symmetry

During the first two semesters you will take a range of taught modules from an extensive list of options, followed by an extended research project conducted over the summer under the supervision of a member of the department, culminating in the writing of a dissertation.

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Careers

Mathematics is not only central to science, technology and finance-related fields, but the logical insight, analytical skills and intellectual discipline gained from a mathematical education are highly sought after in a broad range of other areas such as law, business and management.

There is also a strong demand for new mathematics teachers to meet the ongoing shortage in schools. 

As well as being designed to meet the needs of future employers, our MSc programme also provides a solid foundation from which to pursue further research in mathematics or one of the many areas to which mathematical ideas and techniques are applied.

Educational aims of the programme

  • To provide graduates with a strong background in advanced mathematical theory and its applications to the solution of real problems
  • To develop students understanding of core areas in advanced mathematics including standard tools for the solution of real life applied mathematical problems
  • To develop the skill of formulating a mathematical problem from a purely verbal description
  • To develop the skill of writing a sophisticated mathematical report and, additionally, in presenting the results in the form of an oral presentation
  • To lay a foundation for carrying out mathematical research leading to a research degree and/or a career as a professional mathematician in an academic or non-academic setting

Programme learning outcomes

Knowledge and understanding

  • Knowledge of the core theory and methods of advanced pure and applied mathematics and how to apply that theory to real life problems
  • An in-depth study of a specific problem arising in a research context

Intellectual / cognitive skills

  • Ability to demonstrate knowledge of key techniques in advanced mathematics and to apply those techniques in problem solving
  • Ability to formulate a mathematical description of a problem that may be described only verbally
  • An understanding of possible shortcomings of mathematical descriptions of reality
  • An ability to use software such as MATLAB and IT facilities more generally including research databases such as MathSciNet and Web of Knowledge

Professional practical skills

  • Fluency in advanced mathematical theory
  • The ability to interpret the results of the application of that theory
  • An awareness of any weaknesses in the assumptions being made and of possible shortcomings with model predictions
  • The skill of writing an extended and sophisticated mathematical report and of verbally summarising its content to specialist and/or non-specialist audiences

Key / transferable skills

  • Ability to reason logically and creatively
  • Effective oral presentation skills
  • Written report writing skills
  • Skills in independent learning
  • Time management
  • Use of information and technology

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The MSc in Mathematics gives an in-depth training in advanced mathematics to students who have. already obtained a first degree with substantial mathematical content. Read more
The MSc in Mathematics gives an in-depth training in advanced mathematics to students who have
already obtained a first degree with substantial mathematical content. Students successfully completing the MSc will acquire specialist knowledge in their chosen areas of mathematics, and the MSc is an excellent preparation for those who are considering pursuing research in mathematics.

The main areas of mathematics that may be pursued within this MSc are pure mathematics (especially algebra and combinatorics), dynamical systems, probability and statistics, and astronomy. The MSc programme is very flexible, and in consultation with your academic adviser you may choose modules in different areas or specialise in one.

Programme outline
You will normally take eight modules in total, with one module typically comprising 24 hours of lectures and 12 hours of tutorials given during a twelve-week semester. In addition to the MSc modules offered at Queen Mary, you can also choose from an extremely wide range of advanced mathematics modules offered at other Colleges of the University of London. During the summer period, supervised by an academic member of staff, you are required to complete a dissertation, working largely independently in an advanced topic in mathematics or statistics.

For details of modules typically offered, see: http://www.maths.qmul.ac.uk/postgraduate/msc-maths-stats/modules

Read less
We invite MPhil proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. Read more
We invite MPhil proposals in any of our research areas. In Pure Mathematics our two main fields are functional analysis and geometric algebra. In Applied Mathematics our research is predominantly in fluid mechanics, astrophysics and cosmology.

As a research postgraduate in the School of Mathematics and Statistics you will be working under the supervision of an expert in your chosen field. To help you identify a topic and potential supervisor, we encourage you to find out more about our staff specialisms.

Research areas

Within each field of Pure Mathematics there are multiple subgroups. In analysis, one subgroup concentrates on operator theory and function theory, the other on Banach algebras, cohomology and modules. In algebra there are subgroups devoted to the study of infinite groups, and finite classical groups and their geometries

Our Applied Mathematics staff have research interests in:
-Fluid dynamics, including numerical modelling of quantum fluids (superfluid liquid Helium and Bose-Einstein condensates)
-Classical and astrophysical fluids (the Earth's core, planetary dynamos, accretion discs and galaxies)
-Cosmology, including the very early universe and quantum gravity

Research seminars and events

We run weekly research seminars in algebra and geometries, analysis, and applied mathematics, as well as postgraduate seminars led by students.

Specialist courses are offered through the MAGIC distance learning consortium, sponsored in part by the Engineering and Physical Sciences Research Council (EPSRC).

Partnerships and networks

We are part of:
-The North British Functional Analysis Seminar
-The North British Geometric Group Theory Seminar
-Algebra and Representation Theory in the North, funded by the London Mathematical Society and the Edinburgh Mathematical Society

With Durham University, we are part of the Joint Quantum Centre broadly dedicated to various aspects of quantum science.

Facilities

You will have access to online research facilities via your own desktop PC in a shared postgraduate work space. There is also a teaching cluster (of about 150 PCs) within the School.

As well as the library resources provided by the main Robinson Library, you will have access to the School's mathematics and statistics library and reading room.

Read less
Accurate and efficient scientific computations lie at the heart of most cross-discipline collaborations. It is key that such computations are performed in a stable, efficient manner and that the numerics converge to the true solutions, dynamics of the physics, chemistry or biology in the problem. Read more
Accurate and efficient scientific computations lie at the heart of most cross-discipline collaborations. It is key that such computations are performed in a stable, efficient manner and that the numerics converge to the true solutions, dynamics of the physics, chemistry or biology in the problem.

The programme closely follows the structure of our Applied Mathematical Sciences MSc and will equip you with the skill to perform efficient accurate computer simulations in a wide variety of applied mathematics, physics, chemical and industrial problems.

The MSc, has at its core, fundamental courses in pure mathematics and students will be able to take options from both pure and applied mathematics.

Students will take a total of 8 courses, 4 in each of the 1st and 2nd Semesters followed by a 3-month Project in the summer. A typical distribution for this programme is as follows:

Core courses

Modelling and Tools;
Functional Analysis;
Partial Differential Equations;
Pure Mathematics (recommended).

Optional Courses

Mathematical Ecology;
Optimization;
Numerical Analysis of ODEs;
Applied Mathematics;
Dynamical Systems;
Stochastic Simulation;
Applied Linear Algebra;
Partial Differential Equations;
Numerical Analysis;
Bayesian Inference and Computational Methods;
Geometry.

Typical project subjects

Domain Decomposition;
Mathematical Modelling of Crime;
The Geometry of Point Particles;
Can we Trust Eigenvalues on a Computer?;
Braess Paradox;
The Ising Model: Exact and Numerical Results;
Banach Alegbras.

The final part of the MSc is an extended project in computational mathematics, giving the opportunity to investigate a topic in some depth guided by leading research academics from our 5-rated mathematics and statistics groups.

Read less
The Mathematics MSc is a wide-ranging course drawing on modules from pure mathematics and theoretical physics, with additional options to study elements of Financial Mathematics. Read more

The Mathematics MSc is a wide-ranging course drawing on modules from pure mathematics and theoretical physics, with additional options to study elements of Financial Mathematics. The course is suitable for graduates who wish to pursue an advanced mathematical study pathway with the intention of studying at a PhD level in a mathematical discipline later on.

Key benefits

  • Unrivalled facilities in central London with City of London's financial centre close by.
  • Flexible study course offering the opportunity to study part-time.
  • King’s is a member of the London Graduate School which provides advanced courses for students who wish to push beyond the MSc core syllabus.

Description

The Mathematics MSc programme offers you the choice to study either full or part-time, taking a combination of required and optional modules totalling 180 credits, including 60 credits that will come from a research project and dissertation. You will explore mathematical areas including Probability Analysis, Geometry, Number Theory and Theoretical Physics, and there are opportunities to explore a broad range of additional modules, allowing you the freedom to develop a study pathway that reflects your interests – see the course structure for full details of available modules.

If you are studying full-time, you will complete the course in one year, from September to September. If you are studying part-time, your programme will take two years to complete. You will study optional modules in your first year, and a further selection of optional modules and the 60-credit project and dissertation module in your second year.

King's is also a member of the University of London and by arrangement, you can enrol in optional modules at some institutions within the University of London, including University College London, Birkbeck, London School of Economics and Political Sciences and many others.

Course purpose

This programme is suitable for Mathematics graduates who wish to study more advanced mathematics. The programme ideally prepares students for PhD study in a mathematical discipline.

Course format and assessment

Teaching

We use lectures and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

You are expected to spend approximately 10 hours work per credit for each module you attend in your degree e.g. 150 hours work for a 15 credit module. These hours cover every aspect of the module: lectures, tutorials, independent study, course work and preparations for examinations.

During your work on the MSc Project you will have regular meetings with your project supervisor, but you are expected to spend the majority of your time in self-study to complete the project work.

Assessment

The primary method of assessment for this course is written examinations. You may also be assessed by essays, practical examination, oral presentation, reports, class tests and projects. The nature of assessment varies by module.

Career prospects

Many of our graduates take up full-time employment in various industries that require good mathematical/computer knowledge or that look for intelligent and creative people. Recent employers of our graduates include Barclays Bank, Kinetic Partners, Lloyds Banking Group and Sapient.



Read less
This course is offered full and part-time. The full-time course lasts one calendar year, October to September; the part-time course lasts two years. Read more
This course is offered full and part-time. The full-time course lasts one calendar year, October to September; the part-time course lasts two years.

The course includes a wide range of lecture modules in analysis, geometry and topology, algebra, number theory and combinatorics.

You also undertake a written project under the direction of a supervisor who is an expert in that field.

Read less

Show 10 15 30 per page



Cookie Policy    X