• Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
National Film & Television School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Glasgow Featured Masters Courses
United Kingdom ×
0 miles
Computer Science×

Masters Degrees in Networks & Communications, United Kingdom

We have 137 Masters Degrees in Networks & Communications, United Kingdom

  • Computer Science×
  • Networks & Communications×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 137
Order by 
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. Read more
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills needed for careers in some of the most dynamic fields in communication networks.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks, High Performance Networks and Photonics research groups within the Smart Internet Lab. The groups conduct pioneering research in a number of key areas, including network architectures, cross-layer interaction, high-speed optical communications and advanced wireless access.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks will focus on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks will focus on networks for cloud computing, cloud-based networking, grid-computing and e-science. There is a further networking unit: Networked Systems and Applications, which provides a top-down study of networking system support for distributed applications, from classical web and email to telemetry for the Internet of Things.

The programme is accredited by the Institution of Engineering and Technology until 2018, one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:

Semester One (40 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (80 credits)
-Data centre networking
-Advanced networks
-Broadband wireless communications
-Networked systems and applications
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Project (60 credits)
You will carry out a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future communication networks and signal processing. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
The Mobile and High Speed Telecommunication Networks course is designed to provide you with in-depth knowledge of modern high-speed telecommunication systems and to enhance your professional development in the rapidly expanding field of personal communications. Read more
The Mobile and High Speed Telecommunication Networks course is designed to provide you with in-depth knowledge of modern high-speed telecommunication systems and to enhance your professional development in the rapidly expanding field of personal communications.

This course has two main components: 2G - 4G mobile communications, and fixed high-speed and multi-service networks. Emphasis is given to developing essential industrial and commercial skills. The project is a major element of the course and gives you the opportunity to enhance your career prospects by acquiring in-depth knowledge of a key aspect of telecommunications technology.

Why choose this course?

You will be taught industrially relevant techniques using some of the same tools and software used by the communications industry. Our telecommunications laboratories are equipped for the design, testing and analysis of mobile wireless and optical networks using industry standard tools such Asset, Ranopt, OptSim, OpNet and Matlab. You will have the opportunity to analyse real data from operational 2G and 3G networks and to design 3G and LTE networks.

Our networking laboratories are equipped with modern Cisco routers, switches and security devices to enable design construction and testing of complete high bandwidth secure, wired and wireless networks. You will have the opportunity to put the skills you have gained into practice if you choose to undertake our 1 year optional placement. The universal nature of the technical skills developed in our programmes means our courses are of equal relevance to both new graduates and those with many years of industrial experience.

This course in detail

MSc in Mobile and High Speed Telecommunication Networks has a modular course-unit design providing you with maximum flexibility and choice. To qualify for a master’s degree, you must pass modules amounting to 180 credits. This comprises six taught modules (20 credits each) plus your dissertation (60 credits).

The MSc in Mobile and High Speed Telecommunication Networks with placement enables you to work in industry for a year in the middle of your course to give valuable workplace experience. Placements are not guaranteed, but the departments dedicated placement team will help with the process of finding and applying for placements. To qualify for a master’s degree with placement, you must pass modules amounting to 180 credits plus the zero credit placement module. This comprises six taught modules (20 credits each) plus your dissertation (60 credits).

The Postgraduate Diploma in Mobile and High Speed Telecommunication Networks allows you to concentrate on the taught part of the degree and is ideal for people working in the communications industry who wish to brush up their skills. To qualify for a Postgraduate Diploma, you must pass modules amounting to 120 credits. This comprises six taught modules (20 credits each). In some cases, it may be possible for a student on a Postgraduate Diploma to do 3 taught modules (20 credits each) plus your dissertation (60 credits).

The Postgraduate Certificate in Mobile and High Speed Telecommunication Networks allows you to concentrate on the taught part of the degree and is ideal for people working in the communications industry who wish to learn a specific area in this rapidly changing discipline. To qualify for a Postgraduate Certificate, you must pass modules amounting to 60 credits. This comprises three taught modules (20 credits each).

We also offer a Postgraduate Certificate Mobile and High Speed Telecommunication Networks Research Project.

In Semester 1 you can choose from the following modules:
-Research and Scholarship Methods (compulsory for MSc)
-Digital Mobile Communications (alternative compulsory for MSc and PGDip)
-Digital Communications (alternative compulsory for MSc)
-Network Principles (alternative compulsory for MSc)

In Semester 2 you can choose from the following modules:
-Advanced Mobile Communications (compulsory for MSc and PGDip)
-High Speed Mobile Communications (compulsory for MSc and PGDip)
-Optical and Broadband Networks (alternative compulsory for MSc)
-Multiservice Networks (alternative compulsory for MSc)

As courses are reviewed regularly, the list of taught modules you choose from may vary from the list here.

Students undertaking an MSc with placement will do a 1 year placement in industry. The placement will be undertaken after the taught component and before doing the dissertation.

Students studying for an MSc will also take:
-MSc Dissertation (completed over summer)

Teaching and learning

The taught modules include lectures, seminars, library and internet research, and practical design and experimentation. Assessments include coursework exercises, presentations, essays and examinations (maximum 50% for taught modules).

Teaching staff include experienced academic staff and recent recruits from the telecommunications industry. Visiting speakers give you relevant and up-to-date developments from within the industry.

Laboratory facilities include the latest industry standard tools for mobile and wireless network analysis and software modelling facilities to enable network design.

Careers and professional development

Our MSc students come from all over the world and follow careers in many countries after their graduation. They are engaged in activities such as 3G network design, WiMax and LTE roll-out, handset compliance, DVB-H planning, communications software development and university lecturing. Many of them have commented on how the course content and training enabled their careers to flourish.

Read less
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. Read more
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. It provides an excellent opportunity to acquire the skills needed for a career in the most dynamic fields in optical communications.

This programme builds on the internationally-recognised research strengths of the Photonics and High Performance Networks research groups within the Smart Internet Lab. Optical fibre communications form the backbone of all land-based communications and is the only viable means to support today's global information systems. Research at Bristol is contributing to the ever-increasing requirement for bandwidth and flexibility through research into optical switching technology, wavelength conversion, high-speed modulation, data regeneration and novel semiconductor lasers.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks focuses on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks focuses on networks for cloud computing, cloud-based networking, grid computing and e-science.

The group at Bristol is a world leader in the new field of quantum photonics, with key successes in developing photonic crystal fibre light sources, quantum secured optical communications and novel quantum gate technologies.

The programme is accredited by Institute of Engineering and Technology until 2018, one of only a handful of accredited programmes in the UK.

Programme structure

Your programme will cover the following core subjects:

Semester one (50 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles
-Optoelectronic devices and systems

Semester two (70 credits)
-Advanced optoelectronic devices
-Data centre networking
-Advanced networks
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Research project (60 credits)
A substantial research project is initiated during the second teaching block and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future optical communication systems, along with associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
Businesses today are heavily reliant on computer networks in their daily operations. It is important to ensure that such networks are well designed, optimised, secured and tested for maximum uptime and ease of management. Read more
Businesses today are heavily reliant on computer networks in their daily operations. It is important to ensure that such networks are well designed, optimised, secured and tested for maximum uptime and ease of management. There are excellent opportunities for network engineers with such skills and experience.

The MSc in Computer Networks with Communications aims to produce postgraduates with an advanced understanding of computer networks with hands-on experience of the planning, implementation and maintenance of such systems. The course aims to prepare a student with specialist knowledge and skillset in key areas such as network design, storage area networks, optical networking, network simulation, network redundancy and reliability. Students will be able to review commonly used network simulators, commercial and academic, their common and specific purposes and architectures. The course will enable the student to apply a holistic understanding of networks and their applications in solving real world problems. It will also enables them to develop the ability to critically evaluate and integrate devices and components used for high speed fibre optical communication system, develop the ability to model the behaviour of modern day network systems to design and critically evaluate such systems at all levels of the OSI model.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Computer Networks Suite of Courses

The MSc in Computer Networks has three distinct pathways:
-Security
-Communications
-Cloud Technologies

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Networks MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. Read more
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. This one-year programme offers six-month taught modules covering a wide range of subjects from fundamental information and communications technology (ICT) to contemporary developments in wireless and mobile industry. It also includes a six-month individual project with opportunities of participating in the project provided by industry. This programme is suitable for those who want to develop the knowledge and skills needed for a successful career in these specific and related areas.

The delivery of the programme is fully supported by the dedicated facilities in the Electronic Engineering Department and across the University, such as teaching and computing laboratories, and the involvement of experienced member of staff. Our research facilities in the Adaptive Communications and Networks Research Group and Wireless Network Laboratory are also available for use on MSc projects. To ensure its continuing relevance the programme is monitored by an industrial steering committee which includes representatives from major employers.

About the MSc in Wireless Communications and Networking:
-Prepares students for an intellectually challenging career as a qualified engineer.
-Provides students with a thorough grounding in the principles and the requisite specialist knowledge and skills to develop, manage and adapt current systems.
-An industrial advisory group (Steering Committee) reviews the programme on a continual basis.
-Guest lecturers presented by acknowledged experts from industry and academic institutions.
-An active alumni group on LinkedIn.
-Free student membership of the IET.

Modules

This MSc integrates a taught component of nine modules plus a major project and a project preparation module, constituting in total 180 credits. Taught modules and examinations/assessments are completed during six months, October to March. After successful completion students may then progress to the six month individual research project during April to October. The project is either undertaken in an industrial laboratory or at the University, often with guidance and direction from industrial partners. The module titles are:
-Mobile Data Networks (EE4016)
-Realtime Communication Networks (EE4017)
-Information Theory and Coding and Traffic Theory (EE401A)
-Digital Transmission (EE401B)
-Broadband Wireless Networks (EE4027)
-Pervasive and Mobile communication networks (EE4028)
-Radio Systems and Personal Communications Networks (EE402B)
-Internetworking (EE403B)
-Introductory Programming (EE404B)

Dissertation Stage
-MSc Project (EE4006)
-Project Preperation (EE4019)

Read less
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
Increasingly, computer networks cannot be considered without the important issue of security; without secure networks, businesses, commerce and communications would all fail. Read more
Increasingly, computer networks cannot be considered without the important issue of security; without secure networks, businesses, commerce and communications would all fail. This course addresses the need for modern computer network professionals.

You cover topics such as current and future internet protocols, programming networked services and securing these systems. We offer a strong practical element through laboratory programmes in software engineering and in computer networking; laboratory work in security includes unique environments where the techniques of the attackers can be observed and stopped using specialist security tools.

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Specialist staff researching computer networks include Professor Mohammed Ghanbari, Dr Nigel Newton, Professor Stuart Walker, and Professor Klaus McDonald-Maier.

More broadly, our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Graduates of our degree in this area have found work in a variety of networking roles and companies including, network management for companies, Internet service providers and developers for security products both in the UK and overseas.

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Electronic Data Systems
-Pfizer Pharmaceuticals
-Bank of Mexico
-Visa International
-Hyperknowledge (Cambridge)
-Hellenic Air Force
-ICSS (Beijing)
-United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-MSc Project and Dissertation
-Computer Security
-IP Networking and Applications
-Networking Principles
-Networks Laboratory
-Professional Practice and Research Methodology
-Programming in Python
-Cloud Technologies and Systems (optional)
-Data Science and Decision Making (optional)
-Converged Networks and Services (optional)
-Creating and Growing a New Business Venture (optional)
-Mobile Communications (optional)
-Advanced Transport Networks (optional)
-Network Security and Cryptographic Principles (optional)

Read less
Our graduates work in major telecommunications companies around the world. We have run this course for over 25 years and, in that time, educated over a thousand communications specialists. Read more
Our graduates work in major telecommunications companies around the world. We have run this course for over 25 years and, in that time, educated over a thousand communications specialists.

Starting from the concept of a signal, we cover the fundamentals of how signals are acquired, processed and transmitted over a wide range of media — electronic, optical and radio. Our laboratory work shows how these principles are put into practice and your software development skills are improved through a series of lectures, exercises and assignments.

Building on this, we explore a number of state-of-the-art topics in detail, including:
-Modern digital transmission systems
-Wireless communication systems
-Computer security and cryptography
-Complex electronic circuits
-Networked systems

Our School is a community of scholars leading the way in technological research and development. Today’s telecommunications engineers are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top engineers, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

We have been one of the leading electronics departments in the country throughout our history, and in recent years, our prolific research staff have contributed to some major breakthroughs.

We invented the world's first telephone-based system for deaf people to communicate with each other in 1981, with cameras and display devices that were able to work within the limited telephone bandwidth. Our academics have also invented a streamlined protocol system for worldwide high speed optical communications.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:
-Elitecore Technologies Ltd
-Juniper Networks
-Cisco Systems
-Incendio Technologies

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

MSc Advanced Communications Systems
-Theory of Signals and Systems
-Digital Communications
-Networking Principles
-Mobile Communications
-Communications Laboratory
-Mathematical Research Techniques Using Matlab
-MSc Project and Dissertation
-Professional Practice and Research Methodology
-Converged Networks and Services (optional)
-Creating and Growing a New Business Venture (optional)
-Data Science and Decision Making (optional)
-Electronic System Design & Integration
-Network Security and Cryptographic Principles
-Computer Security

Read less
Today there are high level tools easily available to perform sophisticated attacks on computer and network systems. As a result computer network security is a very important consideration in every organisation using computer networks. Read more
Today there are high level tools easily available to perform sophisticated attacks on computer and network systems. As a result computer network security is a very important consideration in every organisation using computer networks. Without proper implementation, businesses could suffer financial losses. There are excellent opportunities in this area with excellent rewards. At present there are skills shortages globally in some areas of security which is an indicator of the demand for highly skilled security professionals.

The MSc in Computer Networks with Security aims to produce postgraduates with an advanced understanding of modern networks with the integrated need of security. The course aims to prepare the student with specialist knowledge and skillset in key areas such as threat analysis, network security systems, cryptography, cybersecurity, penetration testing, wireless security and information security. Students will develop skills to critically evaluate the threats and vulnerabilities of network systems and to implement and integrate security strategies. They will also be able to develop the ability to critically evaluate and implement principles and practices used in modern day cryptography used to secure data and communication in computer network systems. There will be an opportunity to explore current security tools used in penetration testing and get hands on experience at configuring enterprise level security appliances such as firewalls, intrusion detection systems and VPNs.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting). Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Computer Networks Suite of Courses

The MSc in Computer Networks has three distinct pathways:
-Security
-Communications
-Cloud Technologies

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately on each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Networks MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure. Read more

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

Read about the experience of a previous student on this course, Paulo Valente Klaine.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Communication Systems reflects the importance and ubiquity of mobile telephony and mobile data communications throughout the world.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology together with the principles, algorithms and protocols that underpin Internet-based mobile backbone networks.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, the Internet of Things, network management, and satellite communications.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Research.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This master’s course is great if you want to become an expert in computer security and networks. Whether you want to continue in your computer science studies or turn your industry experience into qualifications, this is the ideal course for you. Read more
This master’s course is great if you want to become an expert in computer security and networks. Whether you want to continue in your computer science studies or turn your industry experience into qualifications, this is the ideal course for you.

Course details

Employers are crying out for security and network experts in all areas. You study a combination of modules, from Systems Administration and Security through to Mobile Systems and Communications, making sure you have the right skills for business. You gain a good understanding of planning and managing large development projects when studying our E-Commerce Management and Master’s Project modules – both will enhance your employability and career prospects even further.

We offer you the opportunity to complete a six-month internship within industry before completing your master’s project. Internships are optional and competitive but if interested we work with you to find an appropriate industry match and prepare you for interview. There is also the potential for you to go on to study for a PhD in a specialist area.

What you study

You study the concepts, principles and theories of computer networks and security, informed by current research and professional practice. For example, building and managing a secure and effective commercial web presence requires much more than coding expertise – it requires a sound combination of commercial acumen, technical understanding and effective operations management. Our lecturers have significant research and industry experience and are well placed to develop your skills and knowledge in this field.

Modules
-Computer and Network Security
-e-Commerce Management
-Master’s Project: Computer Security and Networks
-Mobile Systems and Communications
-Network Service Management
-Research Methods for Computing
-Systems Administration and Security

Modules offered may vary.

Teaching

You learn about concepts and methods primarily through keynote lectures and tutorials using case studies and examples. Lectures include presentations from guest speakers from industry. Critical reflection is key to successful problem solving and essential to the creative process. You develop your own reflective practice at an advanced level, then test and assess your solutions against criteria that you develop in the light of your research. For example, in Mobile Systems and Communications and Network Service Management you research an agreed area, based on the topics introduced during lectures, and prepare a report on this.

Assessment takes a variety of forms including:
-Designing and developing business solutions
-Presentations
-Peer reviews
-Reports

We typically give on-going feedback during lectures and tutorials and assessment feedback using online methods.

Read less
The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field. Read more
The Internet Engineering MSc is a broad programme encompassing all the fundamental components of the Internet. Graduates acquire the skills necessary to design, manage and maintain the networks that will build the Future Internet, placing them in a prime position at the forefront of this rapidly changing field.

Degree information

Students develop an understanding of the evolving networks and applications using the internet protocol. Particular attention is given to the convergence of telecommunications and data networks into 'all IP'-carrier grade networks. The programme offers specialisms including fundamental network design, applications and services, and security and network management.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a dissertation (60 credits).

Core modules
-Introduction to Telecommunications Networks
-Mobile Communications Systems
-Software for Network and Services Design
-Internet of Things
-Introduction to IP Networks
-Professional Development Module: Transferable Skills (not credit bearing)

Optional modules
-Communications System Modelling
-Network and Services Management
-Telecommunications Business Environment
-Optical Transmission and Networks
-Network Planning and Operations
-Wireless Communications Principles

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through a combination of formal lectures, guest lectures, tutorials, seminars, laboratory and workshop sessions and project work. Assessment is through unseen written examination, coursework, design exercises and the research project.

Careers

In the next 15 years, all of the facets of our life will be "online". Our health (bio-sensors, health records), entertainment (games, 3D TV, Virtual Reality), security (children GPS tracking, CCTV) and other social interactions will use fascinating internet applications that are only now being envisaged. Our graduates will be in a prime position at the forefront of this revolution by having in-depth knowledge of all of its components.

Recent graduates have gone on to become graduate engineers, R&D engineers and network services engineers at companies including France Telecom, BT, Huawei, Cisco, Motorola and PwC.

Top career destinations for this degree:
-Network Engineer, Ocado Ltd
-Research Degree: Computer Science, University College London (UCL)
-IT Development Officer, China Unicoms
-IT Network Development Engineer, BSkyB
-Software Engineer, Air Watch

Employability
The Internet Engineering MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies but also carry out extensive practical assignments in several related areas.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

This MSc offers a wide variety of modules that include the physical layer (optical, wireless), the Internet layer (routing, congestion control, traffic engineering), the application layer (codecs, security) and the "business layer" (regulation, business opportunities).

Lectures are delivered by world-class researchers in all these fields with regular lectures from the main industrial leaders in the telecommunications industry.

Read less
Cloud computing is a technical and social reality today, it represents a dramatic shift in the design of systems capable of providing vast amounts of computing services and storage space. Read more
Cloud computing is a technical and social reality today, it represents a dramatic shift in the design of systems capable of providing vast amounts of computing services and storage space. It is also a business reality today as an increasing number of organisations are adopting this paradigm since it increases efficiency, helps improve cash flow and offers many more services and benefits. The rapid shift in IT towards cloud computing is creating a worldwide skills gap. Our MSc course in Cloud technologies and its applications will be taught with respect to their design, architecture and implementation, as well as the use of tools which are used to model the behaviour of cloud based systems.

The MSc in Computer Networks with Cloud Technologies aims to produce postgraduates with an advanced understanding of Cloud based systems and their planning, implementation and maintenance. The course aims to prepare a student with specialist knowledge and skillset in key areas such as cloud architecture, modelling tools, virtualisation, distributed systems, cloud services and management. Students will be able to develop technical solutions and strategies for cloud systems’ management and operations. They will also be able to develop the ability to critically evaluate and analyse the associated architectures, management protocols and associated policies for cloud based systems. The course aims to provide experience in the design and implementation of distributed systems and to build applications in the cloud using platforms and toolkits such as Google App Engine, VMware Cloud Foundry, Microsoft Windows Azure, CloudSim, CloudBees, GigaSpaces.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Computer Networks Suite of Courses

The MSc in Computer Networks has three distinct pathways:
-Security
-Communications
-Cloud Technologies

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Networks MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
Our MSc Data Networks and Security course will provide opportunities for you to engage in the design and implementation of secured and optimized communication network solutions, including SDN (Software Defined Networks and wireless technologies. Read more
Our MSc Data Networks and Security course will provide opportunities for you to engage in the design and implementation of secured and optimized communication network solutions, including SDN (Software Defined Networks and wireless technologies.

This will be achieved by industry-led, research-informed, practice-based teaching and learning. Using industry-standard resources, you will apply the skills and knowledge gained to real-life project scenarios across industry, commerce and public sector.

The programme of study will include areas such as requirements capture, network design, evaluation, securing and optimisation, ranging from hardware configuration to protocol analysis and software definition. The programme will include research and scholarly activity in order to incorporate the latest thinking into the proposed solution.

What's covered in the course?

On this course, you will learn to:
-Critically evaluate and apply knowledge of advanced routing principles.
-Evaluate and apply advanced routing protocols for specific networking solutions.
-Evaluate a variety of routing techniques for a given network environment.
-Critically evaluate routing policy requirements for a network.
-Design and implement ethernet-based LANs. Ensuring security within the given environment.
-Apply mathematical analysis to use VLSM efficiently.
-Apply security considerations to the design and management of networks.
-Design/plan and implement LAN/WAN solutions which require switched hybrid.
-Critically assess SDN solutions in both the industry and research domains.
-Design an SDN-based network for a given system, identifying appropriate components and network structure.
-Implement an appropriate SDN controller to manage device configuration, and any other relevant network policies within an SDN network.
-Select, plan and implement an appropriate testing strategy to validate security requirements against a threat model.
-Critically evaluate the requirements for penetration testing, ethical hacking and effectively communicate security audit results to a variety of audiences.
-Design and conduct security assessment experiments to expose security vulnerabilities and to interpret, analyse and critically evaluate the resulting data to recommend remedial actions.
-Critically appraise the role of security testing within the wider context of continuous security improvements to the information assurance processes within the organisation.

Why choose us?

-The Centre for Cloud Computing houses the Cisco Networking Academy, which has an international reputation for delivering high-quality teaching, training and support acrossEurope, the Middle East and Africa.
-In six purpose-built rooms, the Centre also houses £500,000 of computer networking and communications equipment, together with more than £200,000 of web-based equipment and bookable resources.
-The course provides opportunities for you to engage in advanced studies using problem-based learning and flipped curricula strategies. You will work in groups and on your own to deliver solutions to industry-related problems and scenarios.
-The unique combination of employer-led, research-informed technical knowledge and practical experience on industry-standard resources makes our graduates more employable and sought after.
-The course encourages critical thinking and problem solving, giving you the opportunities for research.

Course in depth

All the modules are practice-based and learning is carried out in the labs. Each 20-credit module will have two hours contact, and you are expected to undertake approximately six additional hours of learning, research and assessment preparation for each module.

Assessment is carried out through presentations (both group and individual), timed tests and exams, written reports, research activity and publication of findings, and practical-based time assessments.

At the start of the course, there will be a three-week, full-time induction tool kit, comprising of a review of CCNA and associated technologies.

The course also provides the base knowledge for students to undertake the CCNA certification, and with an additional boot camp to undertake the individual CCNP certification exams.

Modules
-Information Security 20 credits
-Software Defined Network Engineering 20 credits
-Advanced Networking Systems 20 credits
-Network Management 20 credits
-Advanced Ethical Hacking 20 credits
-Research Methods 20 credits
-Project and placement 60 credits

Enhancing your employability skills

The University is eager to recognise students have made the effort to gain industry experience and stand out from the typical graduate. Thus, we offer a range of options for you to get extra awards and recognition for your work in industry.

We also have our Graduate+ programme, an extracurricular awards framework that is designed to augment the subject-based skills that you’ve developed throughout the programme with broader employability attributes, which will enhance your employability options upon graduating.

Read less
The programme is to educate our students in the design, implementation and troubleshooting of Computer Networks and high performance cluster computing scenarios. Read more
The programme is to educate our students in the design, implementation and troubleshooting of Computer Networks and high performance cluster computing scenarios. The programme includes material required for the Cisco Certified Network Professional (CCNP) qualification, and students can work towards this internationally recognised qualification alongside their MSc degree.

Course Overview

This programme aims to provide in-depth knowledge and skills in the specialist area of networking. It has been developed in response to the need for personnel equipped with the skills needed to design, implement and troubleshoot an enterprise computer network infrastructure

The course is designed primarily for science and technology graduates who have some prior knowledge of computing and/or networking and who wish to specialise in computer networking.

The School is a Cisco Academy, an Academy Support Centre and an Instructor Training Centre. The School has been delivering Cisco Networking Academy programme since 1999. The Master’s programme is blended with Cisco Certified Network Professional (CCNP) curriculum. Cisco is the world’s leading network device manufacturer and the CCNP is a prominent professional qualification in the networking industry.

Modules

Part 1:
-Emerging Network Technologies(20 credits)
-Implementing IP Routing (20 credits)
-IP Switched Networks (20 credits)
-Leadership and Management (20 credits)
-Network Security (20 credits)
-Research Methods and Data Analysis (20 credits)

Part 2:
-Major Project (60 credits)

Key Features

The Internet has now become part of our day-to-day life and is growing rapidly even during recessions. An expanding mobile communications backbone (as evinced by the number of smartphones being projected to rise from 500 million in 2011 to 2 billion by 2015) has led to greatly increased mobile internet traffic.

To take advantage of this opportunity, companies will require staff who are skilled in network design, implementation, administration, management and analysis. Students on this programme will also be given an opportunity to study towards industrial qualifications such as Cisco Certified Network Associate (CCNA) and Cisco Certified Network Professionals (CCNP).

Assessment

Student works are assessed through combination of coursework, lab-based practical exams and written examinations. The final mark for some modules may include one or more pieces of course work set and completed during the module. Project work is assessed by a written report and oral presentation. Part 2 requires the student to research and prepare an individual project/dissertation of a substantial nature.

University students who are unable to successfully complete all aspects of the Part 1 may be eligible for a Postgraduate Diploman (120 credits) or Postgraduate Certificate (60 credits).

Career Opportunities

The programme emphasises four key themes within Computer Networking: routing and switching, emerging network technologies, network design, and security. Graduates will undertake a range of tasks associated with networking in organisations, and will be capable developing sophisticated solutions to networking problems. It is anticipated that graduates in the field of computer networks would be able to find employment in a number of different areas, including routing and switching, network design, VoIP, and security.

It is expected that graduates would seek positions such as:
-Network Administrators
-Network Associates
-Network Engineers
-Senior Network Engineers
-Network Support Engineers
-Security Engineers
-Systems Engineers
-Network Specialists
-Network Analysts

Read less

Show 10 15 30 per page



Cookie Policy    X