• Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University of Leeds Featured Masters Courses
University of Warwick Featured Masters Courses
Staffordshire University Featured Masters Courses
Ulster University Featured Masters Courses
United Kingdom ×
0 miles
Geology×

Masters Degrees in Mining Geology, United Kingdom

We have 13 Masters Degrees in Mining Geology, United Kingdom

  • Geology×
  • Mining Geology×
  • United Kingdom ×
  • clear all
Showing 1 to 13 of 13
Order by 
The internationally recognised. Camborne School of Mines. is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business. Read more

The internationally recognised Camborne School of Mines is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

Course aims

The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry

• Establishing networks with industry professionals and across specialisms

• Opportunity to view world class mines during the mine study tour

• A value chain view of the mining industry

• Industry focused using real world case studies and examples

• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.

Programme structure

This programme provides a robust understanding of the complete mining life cycle, from exploration and development to extraction and processing methods to waste management and mine closure. It is an excellent programme for new entrants into the mining business as a fast-track career induction.

Modules

The following are examples of the modules you might expect to study;

• Module 1 - Discovery: Introduction to the Mining Value Chain; Introduction to Geology, Rock Properties and Ore Forming Processes; Mineral Exploration; The Mining Business and Mineral Economics.

• Module 2 - Design: Deposit Evaluation and Resource Estimation; Introduction to Mining Methods and Mine Method Selection; Mine Planning and Mine Construction and Pre-production Decision Making

• Module 3 - Recovery: Principles of Surface Mining Operations; Principles of Underground Mining Operations; Mineral Processing; Mine Waste Management and Mineral Products

• Module 4 - Impacts: Environmental and Social Impacts of Mining; Economic Impacts of Mining (downstream and side stream investment); Mine Closure and Remediation and Corporate and Social Responsibility and the License to Operate

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for up to date information http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/pgcert-mining-professional/#Programme-structure



Read less
This full time 12 month intensive programme. is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more

This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include;

  • Research Project and Dissertation;
  • Resource Estimation;
  • Ore Deposit Geology and Industrial Minerals;
  • Techniques in Mining Geology ;
  • Excavation and Geomechanics ;
  • Economics, Processing & Environment

Optional modules

Some examples of the optional modules are;

  • Advanced Techniques for Mineral Analysis
  • Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.



Read less
The internationally recognised. Camborne School of Mines. offers a. Mining Professional Programme. , comprising of a suite of courses for international mining staff giving an insight into every part of the mining business. Read more

The internationally recognised Camborne School of Mines offers a Mining Professional Programme, comprising of a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

Course aims

The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry

• Establishing networks with industry professionals and across specialisms

• Opportunity to view world class mines during the mine study tour

• A value chain view of the mining industry

• Industry focused using real world case studies and examples

• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.



Read less
Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction. Read more

Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction.

This MSc will equip students with specialist, essential knowledge and skills that are required when exploring and evaluating new mineral deposits around the world. As major orebodies are exhausted, the search for viable deposits in more complex geological terrains and in remote regions has intensified, creating a need for trained geologists able to carry out mineral exploration in varied environments.

The collection, interpretation and reporting of geoscientific data is the major focus of this course; based around a robust understanding of current theories for orebody genesis, exploration techniques and the application of industry-leading software. You will have the opportunity to gain experience in acquiring, synthesising and critically evaluating data from a range of remote sensing, geophysical, geochemical and drill hole sources. The programme provides pathways to careers in the national and international exploration and mining sectors as well as important transferable skills used in the broader geotechnical, site investigation and environmental industries.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Research project and dissertation;
  • Ore deposit geology and industrial minerals;
  • Economics, processing and environment;
  • GIS and remote sensing;
  • Site investigation including near surface geophysics;
  • Advanced geoscientific computing and data management;
  • Exploration targeting;
  • Exploration and mining geology.

Assessment method

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation.

Fieldwork

On this MSc programme you will receive a great deal of practical experience of working within the minerals industry. The programme aims to produce high-quality graduates who can enjoy high employment rates and easy transition into further PhD study. Emphasis remains on applied teaching and research relevant to careers in the earth resources and renewables sectors. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

You will spend a significant proportion of your time in the field during the autumn term. Over the Easter period you are required to participate in an international field trip to visit mines and exploration projects in Scandinavia. This trip will prepare you to undertake typical greenfields and brownfields exploration work, including boulder tracing, stream sediment sampling and glacial till investigations, and link the results back to exploration targeting and existing operating mines.

Research areas

From May to September you will undertake a major research project, usually in association with a mining/exploration company, and present a dissertation. Recent projects have been carried out in West Africa, Canada and Europe.

Examples of recent mineral exploration research projects

  • A Geochemical Assessment of the Exploration Potential for Alkalic (Cu-Au) and Calc-Alkalic (Cu ± Mo ± Au) Porphyries within the Quesnel Terrane, British Columbia, Canada
  • Using stream sediment geochemistry to aid polymetallic-Sn-W exploration targeting in the Vosges Mountains, France
  • Petrographic investigations into the potential for REE-pegmatite and orogenic gold deposits, Sierra Leone
  • A Remote Sensing Study into the mineral potential of the Taimyr Peninsula, Arctic Russia
  • Gold and REE exploration in the Birimian Greenstone Belt, Ivory Coast


Read less
Join us for our. Master Open Day. to find out more about our courses. The only applied structural geology Masters in the UK. Read more

Join us for our Master Open Day to find out more about our courses.

The only applied structural geology Masters in the UK. Providing you with advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD).

You’ll gain a skillset combining advanced structural techniques and interpreting seismic data, an understanding of structural systems in time and space, and an appreciation of both the geological and geophysical constraints of seismic interpretation and model building.

This will enable you to use a combination of structural and geophysical techniques to solve geological problems. As a capable seismic interpreter you’ll be able to contribute in an industry role from day one.

Our teaching is research led, with direct links to active applied research. You’ll be taught by a range of research and industry experts, as well as through industry-led workshops. Strong industry links are a feature of this course.

Course highlights:

  • The only applied structural geology Masters in the UK, offering you a route to both industry or a PhD.
  • Unlike other petroleum/ ore geoscience courses in the UK, which only provide you with broad training in all aspects of petroleum and ore geology. At Leeds, apply your skills, tools, and knowledge in structural geology and tectonics to exploration settings, datasets, and problems.
  • A key focus of this Masters is on understanding structural evolution in various settings and the use of 3D and 4D thinking in geological contexts. Skills that are essential for your employment in industry.
  • Gain an international standard of Masters qualification in 12 months rather than 24. We deliver focused, advanced teaching linked to a research project (in contrast to the more research-oriented US Masters).
  • Undertake free fieldwork in the UK and EU that is directly linked to your classroom learning.
  • Choose from hydrocarbon and mining module options, depending on your interests.
  • Access high-spec computing facilities and industry-standard software.
  • Produce an industry or research focused dissertation in your final year.

Fieldwork

The following fieldwork to the UK and overseas is free, and forms an integral part of the course. It is directly linked to learning outcomes in the classroom.

  • An introductory field day to Ingleton, North Yorkshire.
  • A 6-day trip to the South West of England. Consider both extensional and compressional tectonics, basin-scale to fault to reservoir scale deformation, fault seal analysis, kinematic and geometric fault evolution, restorations, and 3D fault analysis.
  • A 12-day trip to the Central Spanish Pyrenees. This trip serves as a summary trip where you will pull together elements from the entire course. Consider regional scale orogenic deformation through to basin scale to fracture scale. And the influence of sediment-structure interaction in basin evolution, and tie outcrop scale observations with seismic examples.


Read less
Mining is an fascinating, global industry that is essential to societal progression. It provides the materials for production and is a leading industry in terms of technological innovation. Read more

Mining is an fascinating, global industry that is essential to societal progression. It provides the materials for production and is a leading industry in terms of technological innovation. This MSc is ideal for engineering and geologists already in employment that are looking for skills and knowledge enhancement. In addition, it is also suitable for geology and engineering graduates that wish to specialise in the following areas: mine, general management and excavation (geotechnics and tunnelling).

Students will learn specialist analytical, design and management skills that are relevant to industry. In addition, this programme also has excellent links with both the local and international minerals industry, which is reflected in its mix of UK and international students, and project-work is often centered around a company or business.

This programme is taught by the internationally established and world-class Camborne School of Mines (CSM), a combined mining school and geoscience department. This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Visit the Accreditation tab for further information.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Project and Dissertation;
  • Excavation and Geomechanics;
  • Health and Safety in the Extractive Industry;
  • Economics, Processing & Environment
  • Project Management

Optional modules

Some examples of the optional modules are;

  • Surface Excavation Design;
  • Resource Estimation;
  • Tunnelling and Underground Excavation;
  • Production and Cost Estimation;
  • Mine Planning and Design;
  • Geomechanics Computer Modelling for Excavation Design
  • Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. For up to date information please see the website.

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

For the award of the Masters (MSc), you must pass four modules and complete a project and dissertation. To obtain a Postgraduate Diploma (PgDip), you must pass two modules and a project with dissertation.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less
Join us for our. Master Open Day. to find out more about our courses. Please note. From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. Read more

Join us for our Master Open Day to find out more about our courses.

Please note: From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. However, you can still submit an application for review. If you meet the usual entry requirements, we will hold your application until we can assess whether further places can be offered. This will likely be the end of July-early August 2017 when we can be more confident of numbers. Please contact our if you have any questions.

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields appropriate to civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work.

Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites.

They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change.

Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

  • Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
  • The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society.
  • Complete a 4 month individual dissertation project often involving organisations outside the University such as consulting engineers, civil engineering contractors and the British Geological Survey.
  • The School's £23m building gives you access to world-class research, teaching and laboratory facilities, many of which will be available to you throughout your studies.

Benefit from our strong connections with industry:

  • We have been training Engineering Geologists over 50 years and maintain links with alumni who can be found in many companies across the globe.
  • Industry colleagues contribute to the taught programme and an Industry Advisory Board informs the content of this course.

Accreditation

When you choose a degree with accredited status, you can be assured that the teaching is of the highest standard. The quality and relevance of our teaching has been recognised by an independent body of academics and industrialists through our Geological Society of London Professional Accreditation.

If you have an appropriate degree, our Geological Society accreditation will reduce the amount of experience required for you to reach Chartered Geologist (CGeol) status, an important career step in Geoscience.

Our designation as a “Technical MSc” through Engineering Council means that if you have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree, the degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng). In addition the degree is also an accredited European Engineering degree. 



Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. Read more

Geotechnics provides insight into geological engineering design work and highlights complications that can arise from engineering production. For example, they can predict and measure damage caused by natural disasters, and innovate ways to reduce and prevent future issues through the construction of structure such as dams. Our developing world needs safe and stable space, as our infrastructures expand onto new land and those who work in the line of work will ensure that this can happen effectively.

Upon graduation, you will have the skills to undertake professional employment in the civil, environmental, engineering geology, geotechnical engineering and mining-related industries. It also provides specialist knowledge in tunnel, surface and underground excavation design, and applied hydrogeology and risk assessment.

This programme is taught by the internationally established and world-class Camborne School of Mines (CSM), a combined mining school and geoscience department. It is taught over two semesters and individual projects are undertaken throughout the summer, often as industrial placements. The programme is suitable for geology and engineering graduates wishing to specialise in applied geotechnics

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Project and Dissertation;
  • Excavation and Geomechanics;
  • Health and Safety in the Extractive Industry
  • Project Management

Optional modules

Some examples of the optional modules are;

  • Resource Estimation;
  • Economics, Processing & Environment;
  • Hydrogeology;
  • Surface Excavation Design;
  • Tunnelling and Underground Excavation;
  • Production and Cost Estimation;
  • Mine Planning and Design;
  • Geomechanics Computer Modelling for Excavation Design
  • Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

The project is undertaken from June to September, after the second semester examinations. You are encouraged to undertake projects directly linked with industry, which may result in industrial placements for the project period. The projects are normally design-based and allow further specialisation in a topic that is of particular interest to you. This could involve the use of state-of-the-art engineering design software, risk and hazard analysis and other analytical techniques.



Read less
Surveying roles encompasses all activities concerned with measuring and recording information about the world that surrounds us. A surveyor can work in many different environments for a variety of reasons; building, residential, commercial, environmental and quantity. Read more

Surveying roles encompasses all activities concerned with measuring and recording information about the world that surrounds us. A surveyor can work in many different environments for a variety of reasons; building, residential, commercial, environmental and quantity. The roots of surveying trace back ancient Egyptian history, and its practice has been fundamental to the progression of human-kind. Today, surveying holds just as much relevance, yet the demand has drastically increased due to an enhanced interest in developing and managing the physical world.

This programme is taught by the internationally renowned Camborne School of Mines (CSM), a combined world-class mining school and geoscience department. With accreditation from both the Royal Institute of Chartered Surveyors and the Chartered Institute of Civil Engineering Surveyors, this MSc is recognised by professional associations around the world.

Whilst there are other MSc programmes available with the word surveying in their title, there is no other comparable programme in the UK. Content covered in this programme is very unique as aside from covering the fundamentals of surveying, it delves into geomatics, minerals and environmental topics, equipping students with distinctive practical and specialist skills. This varied programme means that upon graduation, our students are not limited to surveying careers in the built environment, and as a result they are recognised and pursued by industry for their diverse knowledge and skills. If you are interested in finding out more, feel free to chat to the Programme Director, Neill Wood or get in touch and pay us a visit.

Professional accreditation

Chartered Institution of Civil Engineering Surveyors

Accredited as meeting the requirements of the Chartered Institution of Civil Engineering Surveyors.

Royal Institution of Chartered Surveyors

Accredited as meeting the requirements of the Royal Institution of Chartered Surveyors

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include;

  • Professional Development;
  • Health and Safety in the Extractive Industry;
  • Land Surveying;
  • Project Management;
  • Advanced Surveying;
  • Mine Wastes: Principles, Monitoring and Remediation;
  • GIS For Surveyors;
  • Law for Surveyors;
  • Land Management;
  • Project and Dissertation

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics. You will also be taught by leading industry practitioners.



Read less
Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Read more

Geotechnical engineering examines the engineering behaviour of earth materials and is relevant to all engineering and construction practices that are concerned with the ground on both a surface level and within it. Geotechnical engineers investigate the ground and measure the chemical properties, evaluate the stability of the area and design earthworks and structure foundations enabling projects to take place.

The programme is multi-disciplinary in nature, and provides students with the knowledge of rock engineering, site investigation, data capture and data analysis required to understand the issues facing engineers excavating increasingly ambitious and complex underground spaces. This course is relevant to students entering or working in a range of engineering careers within the construction, environmental and extractive industries.

Featured content draws upon the unique expertise of the Camborne School of Mines, with strengths in the areas of rock mechanics and underground excavation, as well as specialist knowledge of working in extreme conditions and with high-stress or difficult ground.

Delivered by staff with strong research interests directly related to the topics covered, modules involve a broad range of activities and teaching delivery methods. This includes workshops using the latest industry relevant computational tools, practical activities and group and individual exercises.

In support of this research-led teaching, key experts from the extractive and construction industry will provide topical insight to the state of the industry and clarify the context for the theory covered in the lectures.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and Dissertation;
  • Excavation and Geomechanics
  • Hydrogeology
  • GIS and Remote Sensing

Optional modules include;

  • Health and safety in the extractive industry
  • Project management
  • Surface extractive design
  • Mine planning design
  • Underground excavation design
  • Soil and water contamination
  • Underground construction
  • Site investigation including near surface geophysics

Learning and teaching

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less
Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Read more

Tunnelling, and the use of underground spaces, is an important aspect of the modern urban environment with developments of major underground infrastructure underpinning the changing needs of today’s society through transportation, storage and utilities. Safe and efficient design of these excavations is essential for optimisation and economic utilisation of underground space.

National and global construction industries and associated businesses are coming under considerable pressure to design, build and manage infrastructure in a resource efficient, sustainable and environment friendly manner. To deliver this, they require qualified engineers with a multi-disciplinary skillset and specialist expertise in tunnelling, underground excavation and underground space utilisation.

Camborne School of Mines is uniquely qualified in this area, being at once the UK’s most prestigious specialist mining school and part of a world ranking Russell Group University.

Reputational and networking benefits

A unique benefit studying at Camborne School of Mines is the community and relations you will gain both during, and after your studies. Camborne School of Mines has a world-class reputation and excellent alumni network, allowing our graduates to prosper in their respective fields in all corners of the globe:

I have worked in many places around the world and have yet to visit a country where I could not find at least one CSM graduate. In fact, there are normally several and they can often be found in influential positions.

Tim Henderson, CSM graduate and current Technical Director at Glencore

Graduate skills and destinations

In addition, a degree form Camborne School of Mines will teach the necessary technical skills and theoretical knowledge required, as well as additional complementary skills relating to communications, teamwork and problem solving. We have excellent rates of graduate employment, with many postgraduates working overseas.

Support and opportunities

The Career Zone (CAS) at our Cornwall Campus provides high-quality careers information and guidance to students of all disciplines. Our experienced careers team can give you individual support whilst you are at the University and after you have graduated.

Services include talks, confidential careers interviews and an extensive careers library of reference books, magazines and journals. A new computer suite is also available for accessing online careers information, vacancy services and specialist software on, for example, sources of funding for courses and worldwide volunteering.

The CAS can help you to identify attractive jobs, careers paths and employers and assist with your CV, interview technique and identifying work experience placements.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Project and dissertation
  • Excavation and geomechanics
  • Health and safety in the extractive industry
  • Project management
  • Underground construction
  • Underground excavation design

Optional modules can include;

  • Production and cost estimation
  • Mine planning and design
  • Working environment and ventilation
  • Mine automation

Teaching and assessment

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation. The taught part of the programme is structured into two semesters. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

A research- and practice-led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics.

Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X