• Loughborough University London Featured Masters Courses
  • Arden University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Loughborough University Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
FindA University Ltd Featured Masters Courses
United Kingdom ×
0 miles
Engineering×

Masters Degrees in Maritime Engineering, United Kingdom

  • Engineering×
  • Maritime Engineering×
  • United Kingdom ×
  • clear all
Showing 1 to 15 of 25
Order by 
This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to design and conduct structural and hydrodynamic analyses for offshore engineering of fixed and floating structures. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to design and conduct structural and hydrodynamic analyses for offshore engineering of fixed and floating structures. It will provide students with an understanding of maritime robotics for oceanography, offshore exploitation, and disaster response. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Marine Law and Management; Marine Safety and Environmental Engineering; Offshore Engineering and Analysis; Marine Structures in Fluids; Maritime Robotics

Optional modules: further module options are available

Read less
This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in marine engineering systems on board ships, and offshore platforms that facilitate their functional capability. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in marine engineering systems on board ships, and offshore platforms that facilitate their functional capability. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Advanced Sensors and Condition Monitoring; Marine Law and Management; Marine Engineering; Advanced Control Design; Advanced Electrical Systems; Marine Safety and Environmental Engineering

Optional module: further modules options are available

Read less
This Marine and Offshore Engineering Masters at Liverpool John Moores University is closely aligned with its leading marine research institute. Read more
This Marine and Offshore Engineering Masters at Liverpool John Moores University is closely aligned with its leading marine research institute. A long history of high quality teaching in this Masters subject contributes highly qualified graduates to a global growing industry.

•Complete this masters degree in one year (full time)
•Accredited by the Institution of Engineering and Technology (IET), this programme meets Chartered Engineer requirements
•The Liverpool Maritime Academy is an international centre of excellence in maritime education and professional training and education
•The programme has close industry links and is widely recognised by employers as meeting the requirements needed to succeed in the industry

This MSc degree programme will provide you with the engineering skills and techniques that you need to work as a specialist in the marine and offshore engineering field.

You will learn skills and techniques that will help you to make an immediate contribution to a company's capability and operation, and to progress into senior management positions.

This programme capitalises on the demand for highly qualified postgraduates and maintains LJMU’s longstanding reputation for meeting the needs of the maritime industry. The programme focuses on:
•safety analysis
•design engineering
•structural analysis
•maritime law and insurance
•quality systems
•alternative energy systems

LJMU’s expanding and internationally acclaimed marine and offshore engineering research underpins the programme, ensuring the curriculum reflects contemporary practice and thinking within the sector.

The course combines substantial marine modules with mechanical engineering options to produce a bespoke skills learning set. Our highly qualified and respected academic team combine specialist knowledge with relevant industrial experience.

This combination of academic and professional expertise helps ensure that graduates are well equipped to meet the opportunities and challenges of this exciting sector.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Maritime and offshore safety analysis
Offshore engineering
Marine design engineering
Research skills
MSc project
Advanced materials
Finite element analysis
Computational fluid dynamics
Operations research
Alternative energy systems
Project management
Engineering design using Solidworks
Engineering analysis using Solidworks
Modelling with Matlab and Simulink
Programming for engineering
LabVIEW

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.


Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
This MSc programme is suitable for engineering, mathematics, and physical sciences graduates, and focuses on computational techniques, their applications in predictions of fluid behaviour, and its interactions with structure. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates, and focuses on computational techniques, their applications in predictions of fluid behaviour, and its interactions with structure. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Applications of Computational Fluid Dynamics; Advances in Ship Resistance and Propulsion; Marine Hydrodynamics; Marine Safety and Environmental Engineering

Optional modules: further module options are available

Read less
This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering. Marine engineering involves the systems and equipment onboard marine vehicles including. Read more

Why this course?

This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering.

Marine engineering involves the systems and equipment onboard marine vehicles including:
- design
- construction
- installation
- support

There’s a particular emphasis on propulsion and control systems.

High efficiency and low environmental impact of marine engines are the key factors in assuring economical operation and environmental protection in maritime transportation. This has important implications for both economic success and environmental impact.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/marineengineering/

You’ll study

The programme consists of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It'll give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by a survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of the aspects learned from other modules within a specific topic. This'll be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are, or are to be (2014), recognised professionally by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years, students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in the form of formal lectures supported with tutorials and laboratory experiments.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is exam assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70% exam marks.

Careers

As a graduate you’ll be prepared for a wide range of challenging and rewarding careers in the marine and related industries.

These include:
- marine engineering machinery & system design
- surveying
- technical superintendence
- project management
- safety management
- support services
- classification societies
- consultancy services

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The Marine Engineering MSc is concerned with the design, analysis and operation of machinery and systems for merchant and naval ships and submarines. Read more
The Marine Engineering MSc is concerned with the design, analysis and operation of machinery and systems for merchant and naval ships and submarines. The programme covers a wide range of engineering subjects relevant to the development and procurement of marine engineering, and the programme features two parallel mechanical and electrical streams.

Degree information

The programme comprises study in analysis and design of propulsive systems and auxiliary equipment for the latest compliant marine vessel designs as well as the use of computers in advanced engineering analysis. Students develop an understanding of elements of engineering, alongside the skills necessary to apply their knowledge in a systematic and effective manner in a group ship design exercise and an individual project.

Students undertake modules to the value of 180 credits. The programme offers two parallel streams, mechanical and electrical.

The programme consists of four core modules (60 credits), two options (30 credits) a ship design exercise (45 credits) and an independent project (45 credits).

Core modules
-Advanced Computer Applications in Engineering
-Applied Thermodynamics and Turbomachinery
-Power Transmission and Auxiliary Machinery Systems
-Vibrations, Acoustics and Control

Optional modules
Either:
-Heat Transfer and Heat Systems (Mechanical Stream)
-Materials and Fatigue (Mechanical Stream)
OR
-Electrical Machines and Power Electronic Systems (Electrical Stream)
-Electrical Power Systems & Electrical Propulsion (Electrical Stream)

Dissertation/report
All students complete a ship design exercise, working on the design of a specific vessel, and undertake an independent research project which is either analytical or design, build and test in nature.

Teaching and learning
This dynamic programme is delivered through a combination of lectures, seminars, tutorials, coursework exercises and case studies. The taught courses are assessed through formal examination and coursework, the ship design exercise is assessed through a report and oral presentations, and the individual project is assessed through a report and presentation. Visits to the marine industry are also offered.

Careers

The Marine Engineering MSc has been accredited by the Institute of Marine Engineering, Science & Technology (IMarEST) and Institute of Engineering and Technology (IET) as meeting the further learning requirements, in full, for registration as a Chartered Engineer for a period of five years, from the 2012 student cohort intake onwards.There is currently a global shortage of well-qualified marine engineers and consequently the job prospects are good.

Top career destinations for this degree:
-PhD Marine Engineering, University College London (UCL)
-Lieutenant, Koninklijke Marine (Royal Netherlands Navy)
-Marine Engineer, Ministry of Defence (MoD)
-Propulsion and Gas Turbine Systems Manager, Government of Canada
-Safety Engineer, Ministry of Defence (MoD)

Employability
Delivered by leading researchers and academics from across UCL, students will have plenty of opportunities to network and keep abreast of emerging ideas. Collaborating with companies and bodies such as the Ministry of Defence and industry leaders such as BAE Systems and Rolls Royce is key to our success and we will encourage students to develop networks through the programme itself and through the department’s careers programme, which includes employer-led events and individual coaching. We are unique in having a close relationship with the UK MoD as well Commercial Shipping companies and students benefit through industrial lectures, ship design projects and individual projects. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Why study this degree at UCL?

Despite being part of a central city campus university, UCL Mechanical Engineering has excellent laboratories, including engine labs and a wave tank.

This MSc has been selected by the UK Ministry of Defence (MoD), Royal Navy, Canadian and other navies for the advanced training of their marine engineers. It also receives students from many other major maritime nations. Run in parallel with the Naval Architecture MSc, students from both programmes work together on a comprehensive and unique ship design exercise.

The department has an international reputation for excellence and is funded by numerous bodies including the Royal Society, the Leverhulme Trust, UK MoD, BAE Systems, US Naval Research (ONR).

Read less
This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in core naval architecture subject areas, with an in-depth study of engineering materials. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in core naval architecture subject areas, with an in-depth study of engineering materials. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

[Modules]]

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Microstructural Engineering for Transport Applications; Marine Law and Management; Failure of Materials and Components; Marine Safety and Environmental Engineering
Optional modules: further modules options are available

Read less
This MSc programme is suitable for engineering, mathematics, and physical sciences graduates. It covers the core subjects of naval architecture, and provides an in-depth knowledge of the design and analysis of marine craft and structures, within the marine environment. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates. It covers the core subjects of naval architecture, and provides an in-depth knowledge of the design and analysis of marine craft and structures, within the marine environment. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Marine Safety and Environmental Engineering; Marine Structures in Fluids; Advances in Ship Resistance and Propulsion; Marine Law and Management.

Optional modules: further module options are available

Read less
This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in the analysis, design and performance of yachts, small craft, and other high-performance vessels. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to specialise in the analysis, design and performance of yachts, small craft, and other high-performance vessels. Engineers from the world-renowned Wolfson Unit for Marine Technology and Industrial Aerodynamics contribute to the teaching of this programme. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Yacht and High Performance Craft; Marine Law and Management; Sailing Yacht and Power-craft Design; Marine Safety and Environmental Engineering

Optional modules: further module options are available

Read less
As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques. Read more

Why this course?

As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques.

This course is for graduates in naval architecture, offshore engineering, mechanical engineering and related disciplines who want to gain advanced knowledge of subsea systems, designs and installation. This includes systems and equipment such as:
- pipelines
- wellheads
- drilling rigs
- riser & mooring systems

See the website https://www.strath.ac.uk/courses/postgraduatetaught/subseapipelineengineering/

You’ll study

Your course will be made up of three components:
- Instructional modules
- Group project
- Individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are and will be (2014) professionally accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

The department of Naval Architecture, Ocean and Marine Engineering (NAOME) supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

You’re required to attend an induction prior to the start of the course.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.
Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30 to 40% course work and 60 to 70% examination.

Careers

Offshore hydrocarbon activities are moving into area of water depths exceeding 2000m. Subsea drilling, production and control systems are becoming much more important. Therefore, subsea engineers are in great demand world-wide.

- Where are they now?
100% of graduates are in work or further study**

**Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This course teaches you the essential skills required to become a practicing pipeline engineer. The oil and gas industry help to specify the curriculum so we meet their requirements in high-pressure offshore and onshore pipelines. Read more
This course teaches you the essential skills required to become a practicing pipeline engineer. The oil and gas industry help to specify the curriculum so we meet their requirements in high-pressure offshore and onshore pipelines.

You will gain:
-An understanding of the key steps in a pipeline's lifecycle: design, construction, installation, asset management, maintenance and dismantling
-Experience from specialists in pipeline operation
-The ability to develop a thesis through selection of appropriate experimental, computer simulation or data analysis procedures
-Skills in identifying, designing and applying laboratory tests to solve pipeline engineering problems
-Knowledge in applying appropriate mathematical models in the simulation of pipeline engineering problems

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in pipeline engineering. The degree is taught using a mix of academic staff from the School of Marine Science and Technology as well as visiting lecturers and experts from industry.

You will choose an individual dissertation project. This may be a critical review and/or computational or experimental project using our world leading testing facilities. You also benefit from participating in projects sponsored directly by industry partners whenever they are available.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/offshorefloatingsystems/

You’ll study

The programme consists of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- towing/wave tank exclusively for teaching purposes
- marine engine laboratory
- hydrogen fuel cell laboratory
- cutting-edge computer facilities
- industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.
Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The importance of the coastal zone is now globally-recognised and there is a growing demand for skilled engineers who can understand environmental issues in such sensitive and often densely populated areas. Read more
The importance of the coastal zone is now globally-recognised and there is a growing demand for skilled engineers who can understand environmental issues in such sensitive and often densely populated areas. This programme will give you a broad understanding of environmental engineering and oceanographic issues.

We have strong links with industry and local authorities responsible for coastal engineering and management.

Core modules:

− Introduction to Civil Engineering (for non-engineers)
− Introduction to Marine Engineering (for engineers)
− Coastal Flood Defence
− Coastal Morphodynamics
− Coastal Sediment Dynamics
− Geographic Information Systems
− Key Skills and Applied Coastal Oceanography
− Maritime and Coastal Engineering

Optional modules:

− Applied Coastal Sediment Dynamics
− Environmental Audit and Risk Assessment

Assessment method:

Examinations, coursework and dissertation.

Read less
Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. Read more
Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. The course is designed for you as an experienced or recently graduated engineer who wants to develop your subsea knowledge.

Your teaching modules operate in short 'intensive schools' with time after the module to complete the assignments, where applicable. They include:
-Input from industry experts
-Site visits
-Industry-based projects
-Teaching from other disciplines

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in subsea engineering. The degree is taught using a mix of the academic staff from the School of Marine Science and Technology as well as visiting lecturers and experts from industry.

You will undertake a research project leading to a dissertation. This may be a critical review and/or computational or experimental project using the University's world leading testing facilities. The research project is supported by an academic supervisor and may be conducted with an industrial partner which, where appropriate, may be your employer.

Delivery

Ten taught modules worth 120 credits are delivered in blocks through semester one and/or two. A dissertation or research project, worth 60 credits, is undertaken across the three semesters.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/shipoffshorestructures/

You'll study

Your course is made up of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are and to be (2014) professionally by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:
- Naval Architect
- Marine Engineer
- Graduate Engineer
- Marine Surveyor
- Offshore Renewables Engineer
- Project Engineer

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less

Show 10 15 30 per page



Cookie Policy    X